
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

NET 2016-07-1Network Architectures and Services

Proceedings of the Seminars
Future Internet (FI) and

Innovative Internet Technologies and
Mobile Communications (IITM)

Winter Semester 2015/2016 5. 10. 2015 – 29. 02. 2016

Munich, Germany

Georg Carle, Daniel Raumer, Lukas SchwaighoferEditors

Chair of Network Architectures and ServicesPublisher

Network Architectures
and Services
NET 2016-07-1

FI & IITM
WS 15/16

Proceedings zu den Seminaren
Future Internet (FI) und

Innovative Internet Technologien und
Mobilkommunikation (IITM)

Wintersemester 2015/2016

München, 5. 10. 2015 – 29. 02. 2016

Editoren: Georg Carle, Daniel Raumer, Lukas Schwaighofer

Organisiert durch den Lehrstuhl Netzarchitekturen und Netzdienste (I8),
Fakultät für Informatik, Technische Universität München

Proceedings of the Seminars
Future Internet (FI), and Innovative Internet Technologies and Mobile Communication Networks (IITM)
Winter Semester 2015/2016

Editors:

Georg Carle
Lehrstuhl Netzarchitekturen und Netzdienste (I8)
Technische Universität München
85748 Garching b. München, Germany
E-mail: carle@net.in.tum.de
Internet: http://www.net.in.tum.de/~carle/

Daniel Raumer
Lehrstuhl Netzarchitekturen und Netzdienste (I8)
E-mail: raumer@net.in.tum.de
Internet: http://www.net.in.tum.de/~raumer/

Lukas Schwaighofer
Lehrstuhl Netzarchitekturen und Netzdienste (I8)
E-mail: schwaighofer@net.in.tum.de
Internet: http://www.net.in.tum.de/~schwaighofer/

Cataloging-in-Publication Data

Seminars FI & IITM WS 15/16
Proceedings zu den Seminaren „Future Internet“ (FI) und „Innovative Internettechnologien und Mobilkkom-
munikation“ (IITM)
München, Germany, 5. 10. 2015 – 29. 02. 2016
ISBN: 978-3-937201-51-1

ISSN: 1868-2634 (print)
ISSN: 1868-2642 (electronic)
DOI: 10.2313/NET-2016-07-1
Lehrstuhl Netzarchitekturen und Netzdienste (I8) NET 2016-07-1
Series Editor: Georg Carle, Technische Universität München, Germany
c© 2015, Technische Universität München, Germany

II

http://www.net.in.tum.de/~carle/
http://www.net.in.tum.de/~raumer/
http://www.net.in.tum.de/~schwaighofer/

Vorwort

Vor Ihnen liegen die Proceedings des Seminares „Future Internet“ (FI) und des Seminares „Innovative In-
ternettechnologien und Mobilkommunikation“ (IITM). Wir sind stolz, Ihnen Ausarbeitungen zu aktuellen
Themen, die im Rahmen unserer Seminare im Wintersemester 2015/2016 an der Fakultät für Informatik der
Technischen Universität München verfasst wurden, präsentieren zu dürfen. Den Teilnehmerinnen und Teil-
nehmern stand es wie in der Vergangenheit frei, das Paper und den Vortrag in englischer oder in deutscher
Sprache zu verfassen. Dementsprechend finden sich sowohl englische als auch deutsche Paper in diesen
Proceedings.

Unter allen Themen, die sich mit Aspekten der Computernetze von morgen befassen, verliehen wir
in jedem der beiden Seminare einen Best Paper Award. Im IITM Seminar ging dieser an Herrn Julius
Michaelis, der in seiner Ausarbeitung „Middlebox Models in Network Verification Research“ einen Überblick
über Modelle zur Verifikation von Middleboxes gibt. Im FI wurde dieser Herrn Michael Eder verliehen für
seine Ausabreitung „Hypervisor- vs. Container-based Virtualization“ in welcher er Vor- und Nachteile von
hypervisorbasierter mit containerbasierter Virtualisierung verglich.

Einige der Vorträge wurden aufgezeichnet und sind auf unserem Medienportal unter http://media.
net.in.tum.de abrufbar.

Im Seminar FI wurden Beiträge zu aktuellen Themen der Netzwerkforschung vorgestellt. Die folgenden
Themen wurden abgedeckt:

• Hypervisor- und Container-based Virtualisierung

• Projekte für weltweiten Internetzugang

• Vergleich von Hardware- und Software-Traffic-Generatoren und ihrem Einsatz in der Praxis

Auf http://media.net.in.tum.de/#%23Future%20Internet%23WS15 können die aufgezeichneten Vorträge
zu diesem Seminar abgerufen werden.

Im Seminar IITM wurden Vorträge aus dem Themenbereich der Netzwerktechnologien inklusive Mobilkom-
munikationsnetze vorgestellt. Die folgenden Themen wurden abgedeckt:

• Das Interface für Routing Systeme

• Performancevergleiche von Data Plane Devices

• MoonGen Tutorial

• Middlebox Models und Netzwerkverifikation

• Topologieerkennung in kontrollierten Umgebungen

• PFQ: Ein Framework für hochperformante Netzwerk E/A

Auf http://media.net.in.tum.de/#%23IITM%23WS15 können die aufgezeichneten Vorträge zu diesem Se-
minar abgerufen werden.

III

http://media.net.in.tum.de
http://media.net.in.tum.de
http://media.net.in.tum.de/#%23Future%20Internet%23WS15
http://media.net.in.tum.de/#%23IITM%23WS15

Wir hoffen, dass Sie den Beiträgen dieser Seminare wertvolle Anregungen entnehmen können. Falls Sie
weiteres Interesse an unseren Arbeiten habe, so finden Sie weitere Informationen auf unserer Homepage
http://www.net.in.tum.de.

München, Juli 2016

Georg Carle Daniel Raumer Lukas Schwaighofer

IV

http://www.net.in.tum.de

Preface

We are pleased to present you the interesting program of our seminars on “Future Internet” (FI) and “In-
novative Internet Technologies and Mobil Communication” (IITM) which took place in the winter semester
2015/2016. In both seminar courses the authors were free to write their paper and give their talk in English
or German.

We honored the best paper of both seminars with an award. This semester the award in the IITM seminar
was given to Mr Julius Michaelis who presented an overview to existing models for network verification in
his paper “Middlebox Models in Network Verification Research”. In the FI seminar the award was given
to Mr Michael Eder for his paper “Hypervisor- vs. Container-based Virtualization” wherin he discussed
advantages and disadvantages ob both virtualization techniques.

Some of the talks were recorded and published on our media portal http://media.net.in.tum.de.

In the seminar FI we dealt with issues and innovations in network research. The following topics were
covered:

• Hypervisor- vs. Container-based Virtualization

• Analyzing "Global Access to the Internet for All" Projects

• Comparison of Hardware and Software-based Traffic Generation and its Practical Application

Recordings can be accessed on http://media.net.in.tum.de/#%23Future%20Internet%23WS15.

In the seminar IITM we dealt with different topics in the area of network technologies, including mobile
communication networks. The following topics were covered:

• The Interface to the Routing System

• How-To Compare Performance of Data Plane Devices

• MoonGen Tutorial

• Middlebox Models in Network Verification Research

• Topology Discovery in Controlled Environments

• Comparing PFQ: A High-Speed Packet IO Framework

Recordings can be accessed on http://media.net.in.tum.de/#%23IITM%23WS15.

We hope that you appreciate the contributions of these seminars. If you are interested in further information
about our work, please visit our homepage http://www.net.in.tum.de.

Munich, July 2016

V

http://media.net.in.tum.de
http://media.net.in.tum.de/#%23Future%20Internet%23WS15
http://media.net.in.tum.de/#%23IITM%23WS15
http://www.net.in.tum.de

VI

Seminarveranstalter

Lehrstuhlinhaber

Georg Carle, Technische Universität München, Germany (I8)

Seminarleitung

Daniel Raumer, Technische Universität München, Germany
Lukas Schwaighofer, Technische Universität München, Germany

Betreuer

Edwin Cordeiro (cordeiro@net.in.tum.de)
Technische Universität München, Mitarbeiter I8

Cornelius Diekmann (diekmann@net.in.tum.de)
Technische Universität München, Mitarbeiter I8

Paul Emmerich (emmericp@net.in.tum.de)
Technische Universität München, Mitarbeiter I8

Sebastian Gallenmüller (gallenmu@net.in.tum.de)
Technische Universität München, Mitarbeiter I8

Holger Kinkelin (kinkelin@net.in.tum.de)
Technische Universität München, Mitarbeiter I8

Daniel Raumer (raumer@net.in.tum.de)
Technische Universität München, Mitarbeiter I8

Florian Wohlfart (wohlfart@net.in.tum.de)
Technische Universität München, Mitarbeiter I8

Seminarhomepage
http://www.net.in.tum.de/de/lehre/ws15/seminare/

VII

http://www.net.in.tum.de/de/lehre/ws15/seminare/

Inhaltsverzeichnis

Seminar Future Internet

Hypervisor- vs. Container-based Virtualization . 1
Michael Eder (Betreuer: Holger Kinkelin)

Analyzing "Global Access to the Internet for All" Projects . 9
Sascha Rushing (Betreuer: Edwin Cordeiro)

Vergleich von Hardware- und Software-Traffic-Generatoren und ihrem Einsatz in der Praxis 17
Tobias Weiher (Betreuer: Paul Emmerich, Daniel Raumer)

Seminar Innovative Internet Technologien und Mobilkommunikation

The Interface to the Routing System . 25
Elias Hazboun (Betreuer: Edwin Cordeiro)

How-To Compare Performance of Data Plane Devices . 33
Matthias Holdorf (Betreuer: Daniel Raumer, Florian Wohlfart)

MoonGen Tutorial . 41
Jonas Jelten (Betreuer: Paul Emmerich, Daniel Raumer)

Middlebox Models in Network Verification Research . 47
Julius Michaelis (Betreuer: Cornelius Diekmann)

Topology Discovery in controlled environments . 55
Maximilian Pudelko (Betreuer: Florian Wohlfart, Sebastian Gallenmüller)

Comparing PFQ: A High-Speed Packet IO Framework . 61
Dominik Schöffmann (Betreuer: Sebastian Gallenmüller)

VIII

Hypervisor- vs. Container-based Virtualization

Michael Eder
Betreuer: Holger Kinkelin

Seminar Future Internet WS2015/16
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: edermi@in.tum.de

ABSTRACT
For a long time, the term virtualization implied talking about
hypervisor-based virtualization. However, in the past few
years container-based virtualization got mature and espe-
cially Docker gained a lot of attention. Hypervisor-based
virtualization provides strong isolation of a complete opera-
ting system whereas container-based virtualization strives to
isolate processes from other processes at little resource costs.
In this paper, hypervisor and container-based virtualization
are differentiated and the mechanisms behind Docker and
LXC are described. The way from a simple chroot over a
container framework to a ready to use container management
solution is shown and a look on the security of containers
in general is taken. This paper gives an overview of the two
different virtualization approaches and their advantages and
disadvantages.

Keywords
virtualization, Docker, Linux containers, LXC, hypervisor,
security

1. INTRODUCTION
The paper compares two different virtualization approaches,
hypervisor and container-based virtualization. Container-
based virtualization got popular when Docker [1], a free tool
to create, manage and distribute containers gained a lot of
attention by combining different technologies to a power-
ful virtualization software. By contrast, hypervisor-based
virtualization is the alpha male of virtualization that is wi-
dely used and around for decades. Both technologies have
advantages over each other and both come with tradeoffs
that have to be taken into account before deciding which of
the both technologies better fits the own needs. The paper
introduces hypervisor- and container-based virtualization in
Section 2, describes advantages and disadvantages in Secti-
on 3 and goes deeper into container-based virtualization and
the technologies behind in Section 4. There is already a lot
of literature about hypervisor-based virtualization whereas
container-based virtualization started to get popular in the
last few years and there are fewer papers about this topic
around, so the main focus of this paper is container-based
virtualization. Another focus of the paper is Docker which is
introduced in Section 4.3, because it traversed a rapid deve-
lopment over the last two years and gained a lot of attention
in the community. To round the paper out, general securi-
ty risks of container-based virtualization and Docker and
possible ways to deal with them are elaborated in Section 5.
Section 6 gives a brief overview to related work on this topic.

2. DISTINCTION: HYPERVISOR VS. CON-
TAINER-BASED VIRTUALIZATION

When talking about virtualization, the technology most peo-
ple refer to is hypervisor-based virtualization. The hypervisor
is a software allowing the abstraction from the hardware. Eve-
ry piece of hardware required for running software has to be
emulated by the hypervisor. Because there is an emulation of
the complete hardware of a computer, talking about virtual
machines or virtual computers is usual. It is common to be
able to access real hardware through an interface provided
by the hypervisor, for example in order to access files on a
physical device like a CD or a flash drive or to communicate
with the network. Inside this virtual computer, an operating
system and software can be installed and used like on any
normal computer. The hardware running the hypervisor is
called the host (and the operating system host operating
system) whereas all emulated machines running inside them
are referred to as guests and their operating systems are
called guest operating systems. Nowadays, it is usual to get
also utility software together with the hypervisor that allows
convenient access to all of the hypervisor’s functions. This
improves the ease of operation and may bring additional
functionalities that are not exactly part of the hypervisor’s
job, for example snapshot functionalities and graphical inter-
faces. It is possible to differentiate two types of hypervisors,
type 1 and type 2 hypervisors. Type 1 hypervisors are run-
ning directly on hardware (hence often referred to as bare
metal hypervisors) not requiring an operating system and
having their own drivers whereas type 2 hypervisors require
a host operating system whose capabilities are used in or-
der to perform their operations. Well-known hypervisors or
virtualization products are:

• KVM [2], a kernel module for the Linux kernel allowing
access to virtualization capabilities of real hardware
and the emulator usually used with KVM, qemu [3],
which is emulating the rest of the hardware (type 2),

• Xen [4], a free hypervisor running directly on hardware
(type 1),

• Hyper-V [5], a hypervisor from Microsoft integrated
into various Windows versions (type 1),

• VMware Workstation [6], a proprietary virtualization
software from VMware (type 2)

• Virtual Box [7], a free, platform independent virtuali-
zation solution from Oracle (type 2).

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

1 doi: 10.2313/NET-2016-07-1_01

From now on, this paper assumes talking about type 2 hy-
pervisors when talking about hypervisors.
Container-based virtualization does not emulate an entire
computer. An operating system is providing certain features
to the container software in order to isolate processes from
other processes and containers. Because the Linux kernel pro-
vides a lot of capabilities to isolate processes, it is required by
all solutions this paper is dealing with. Other operating sys-
tems may provide similar mechanisms, for example FreeBSD’s
jails [8] or Solaris Zones. Because there is no full emulation
of hardware, software running in containers has to be com-
patible with the host system’s kernel and CPU architecture.
A very descriptive picture for container-based virtualization
is that “containers are like firewalls between processes“ [9].
A similar metaphor for hypervisor-based virtualization are
processes running on different machines connected to and
supervised by a central instance, the hypervisor.

3. USE CASES AND GOALS OF BOTH
VIRTUALIZATION TECHNOLOGIES

Hypervisor and container-based virtualization technologies
come with different tradeoffs, hence there are different goals
each want to achieve. There are also different use cases for
virtualization in general and both hypervisor and container-
based virtualization have therefore special strengths and
weaknesses relating to specific use cases. Because of abstrac-
ting from hardware, both types of virtualization are easy to
migrate and allow a better resource utilization, leading to
lower costs and saving energy.

3.1 Hypervisor-based virtualization
Hypervisor-based virtualization allows to fully emulate ano-
ther computer, therefore it is possible to emulate other types
of devices (for example a smartphone), other CPU architec-
tures or other operating systems. This is useful for example
when developing applications for mobile platforms — the
developer can test his application on his development system
without the need of physically having access to a target de-
vice. Another common use case is to have virtual machines
with other guest operating systems than the host. Some users
need special software that does not run on their preferred
operating system, virtualization allows to run nearly every
required environment and software in this environment inde-
pendently from the host system. Because of the abstraction
from the hardware, it is easier to create, deploy and maintain
images of the system. In the case of hardware incidents, a
virtual machine can be moved to another system with very
little effort, in the best case even without the user noticing
that there was a migration. Hypervisor-based virtualization
takes advantage of modern CPU capabilities. This allows the
virtual machine and its applications to directly access the
CPU in an unprivileged mode [10], resulting in performance
improvements without sacrificing the security of the host
system.

Hypervisors may set up on the hardware directly (type 1)
or on a host operating system (type 2). Figure 1 shows a
scheme where the hypervisor is located in this hierarchy.
Assuming a type 1 Hypervisor, all operating systems were
guests in Figure 1 whereas a type 2 hypervisor was on the
same level than other userspace applications, having the

operating system (not shown in the figure) and the real
hardware on the layers below it.

Figure 1: Scheme of hypervisor-based virtualization.
Hardware available to guests is usually emulated.

3.2 Container-based virtualization
Container-based virtualization utilizes kernel features to
create an isolated environment for processes. In contrast
to hypervisor-based virtualization, containers do not get
their own virtualized hardware but use the hardware of the
host system. Therefore, software running in containers does
directly communicate with the host kernel and has to be
able to run on the operating system (see figure 2) and CPU
architecture the host is running on. Not having to emulate
hardware and boot a complete operating system enables con-
tainers to start in a few milliseconds and be more efficient
than classical virtual machines. Container images are usual-
ly smaller than virtual machine images because container
images do not need to contain a complete toolchain to run a
operating system, i.e. device drivers, kernel or the init system.
This is one of the reasons why container-based virtualization
got more popular over the last few years. The small resource
fingerprint allows better performance on a small and larger
scale and there are still relatively strong security benefits.

Shipping containers is a really interesting approach in soft-
ware developing: Developers do not have to set up their
machines by hand, instead of that a build system image may
be distributed containing all tools and configuration required
for working on a project. If an update is required, only one
image has to be regenerated and distributed. This approach
eases the management of different projects on a developers
machine because one can avoid dependency conflicts and
separate different projects in an easy way.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

2 doi: 10.2313/NET-2016-07-1_01

Figure 2: Scheme of container-based virtualization.
Hardware and Kernel of the host are used, contai-
ners are running in userspace separated from each
other.

4. FROM CHROOT OVER CONTAINERS
TO DOCKER

Container-based virtualization uses a lot of capabilities the
kernel provides in order to isolate processes or to achieve other
goals that are helpful for this purpose, too. Most solutions
build upon the Linux kernel and because the paper’s focus lies
on LXC and Docker, a closer look at the features provided
by the Linux kernel in order to virtualize applications in
containers will be taken. Because the kernel provides most
of the capabilities required, container toolkits usually do
not have to implement them again and the kernel code is
already used by other software that is considered stable and
already in production use. In case of security problems of
the mechanisms provided by the kernel, fixes are getting
distributed with kernel updates, meaning that the container
software does not need to be patched and the user only has
to keep its kernel up to date.

4.1 chroot
The change root mechanism allows to change the root di-
rectory of a process and all of its subprocesses. Chroot is
used in order to restrict filesystem access to a single folder
which is treated as the root folder (/) by the target process
and its subprocesses. On Linux, this is not considered a se-
curity feature because it is possible for a user to escape the
chroot [11].

Apart from that, chroot may prevent erroneous software from
accessing files outside of the chroot and — even if it is possible
to escape the chroot — it makes it harder for attackers to
get access to the complete filesystem. Chroot is often used
for testing software in a somehow isolated environment and
to install or repair the system. This means chroot does not
provide any further process isolation apart from changing the
root directory of a process to a different directory somewhere
in the filesystem.

Compared to a normal execution of processes, putting them
into a chroot is a rather weak guarantee that they are not
able to access places of the filesystem they are not supposed
to access.

4.2 Linux containers
Linux containers [12] (LXC) is a project that aims to build
a toolkit to isolate processes from other processes. As said,
chroot was not developed as a security feature and it is possi-
ble to escape the chroot — LXC tries to create environments
(containers) that are supposed to be escape-proof for a pro-
cess and its child processes and to protect the system even
if an attacker manages to escape the container. Apart from
that, it provides an interface to fine-grained limit resource
consumption of containers. Containers fully virtualize net-
work interfaces and make sure that kernel interfaces may
only be accessed in secure ways. The following subsections
are going to show the most important isolation mechanisms
in greater detail. The name Linux containers (LXC) may be
a little bit confusing: It is a toolkit to create containers on
Linux, of course there are other possibilities to achieve the
same goal with other utilities than LXC and to create isola-
ted processes or groups of them (containers) under Linux.
Because LXC is a popular toolkit, most of the statements of
this paper referring to Linux containers apply to LXC, too,
but we are going to use the term LXC in order to specifically
talk about the popular implementation and Linux containers
in order to talk about the general concept of process isola-
tion as described in this paper on Linux. The capabilities
introduced in the following are difficult to use meaning that
proper configuration requires a lot of reading documentation
and much time setting everything up. Deploying complex
configuration of system-level tools is a hard task. Easily ad-
opting the configuration to other environments and different
needs without endangering security of the existing solution is
nearly impossible without a toolkit providing access to those
features. LXC is a toolkit trying to fulfill these requirements.

4.2.1 Linux kernel namespaces
By now, processes are only chrooted but still see other pro-
cesses and are able to see information like user and group
IDs, access the hostname and communicate with others. The
goal is to create an environment for a process that allows
him access to a special copy of this information that does not
need to be the same that other processes see, but the easy
approach of preventing the process to access this information
may crash it or lead to wrong behaviour. The kernel provi-
des a feature called namespaces (in fact, there are several
different [13] namespaces) in order to realize these demands.
Kernel namespaces is a feature allowing to isolate processes,
groups of processes and even complete subsystems like the
interprocess communication or the network subsystem of the
kernel. It is a flexible mechanism to separate processes from
each other by creating different namespaces for processes
that need to be separated. The kernel allows passing glo-
bal resources such as network devices or process/user/group
IDs into namespaces and manages synchronization of those
resources. It is possible to create namespaces containing pro-
cesses that have a process ID (PID) that is already in use on
the host system or other containers. This simplifies migration
of a suspended container because the PIDs of the container
are independent from the PIDs of the host system. User
namespaces allow to “isolate security-related identifiers and
attributes, in particular, user IDs and group IDs [. . .], the
root directory, keys [. . .], and capabilities“ [14]. Combining
all these features makes it possible to isolate processes in a
way that

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

3 doi: 10.2313/NET-2016-07-1_01

• process IDs inside namespaces are isolated from process
IDs of other namespaces and are unique per-namespace,
but processes in different namespaces may have the
same process IDs,

• global resources are accessible via an API provided by
the kernel if desired,

• there is abstraction from users, groups and other se-
curity related information of the host system and the
containers.

In fact, kernel namespaces are the foundation of process sepa-
ration and therefore one of the key concepts for implementing
container-based virtualization. They provide a lot of features
required for building containers and are available since kernel
2.6.26 which means they are around for several years and are
used in production already [15].

4.2.2 Control groups
Control groups (further referred to as cgroups) are a feature
that is not mandatory in order to isolate processes from other
processes. In the first place cgroups is a mechanism to track
processes and process groups including forked processes. [16]
In the first instance, they do not solve a problem that is
related to process isolation or making the isolation stron-
ger, but provided hooks allow other subsystems to extend
those functionalities and to implement fine-grained resource
control and limitation which is more flexible compared to
other tools trying to achieve a similar goal. The ability to
assign resources to processes and process groups and manage
those assignments allows to plan and control the use of con-
tainers without unrestricted waste of physical resources by a
simple container. The same way it is possible to guarantee
that resources are not unavailable because other processes
are claiming them for themselves. At first this might look
like a feature primarily targeting at hosts serving multiple
different users (e.g. shared web-hosting), but it is also a po-
werful mechanism to avoid Denial of Service (DoS) attacks.
DoS attacks do not compromise the system, they try to ge-
nerate a useless workload preventing a service to fulfill its
task by overstressing it. A container behaving different than
suspected may have an unknown bug, be attacked or even
controlled by an attacker and consuming a lot of physical
resources — having limited access to those resources from
the very beginning avoids outages and may safe time, money
and nerves of all those involved. As said, controlling resources
is not a feature required for isolation but essential in order
to compete with hypervisor-based virtualization. It is very
common to restrict resource usage in hypervisor-based vir-
tualization and being able to do the same with containers
allows to better utilize the given resources.

4.2.3 Mandatory Access Control
On Linux (and Unix), everything is a file and every file has
related information about which user and which group the
file belongs to and what the owner, the owning group and
everybody else on the system is allowed to do with a file.
Doing in this context means: reading, writing or executing.
This Discretionary Access Control (DAC) decides if access
to a resource is granted solely on information about users
and groups. Contrary, Mandatory Access Control (MAC)
does not decide on those characteristics. Mandatory Access

Control is a set of concepts defining management of access
control which is gaining more and more attention over the
past years. The need for such systems is generally to improve
security and in this case MAC is used to harden the access
control mechanisms of Linux/Unix. Instead, if a resource
is requested, authorization rules (policies) are checked and
if the requirements defined by the policy are met access is
granted. There are different approaches on how to implement
such a system, the three big ones are namely SELinux [17],
AppArmor [18] and grsecurity’s RBAC [19]. MAC policies
are often used in order to restrict access to resources that
are sensitive and not required to be accessed in a certain
context. For example the chsh1 userspace utility on Linux
has the setuid bit set. This means that a regular user is
allowed to run this binary and the binary can elevate it self
to running with root privileges in order to do what it is
required to do. If a bug was found in the binary it may be
possible to execute malicious code with root privileges as a
normal user. A MAC policy could be provided allowing the
binary to elevate its rights in order to do its legitimate job
but denying everything root can do but the library does not
need to do. In this case, there is no use case for the chsh
binary to do networking but it is allowed to because it can
do anything root can do. A policy denying access to network
related system components does not affect the binary but
if it was exploited by an attacker, he wouldn’t be able to
use the binary in order to sniff traffic on active network
interfaces or change the default gateway to his own box
capturing all the packets because a MAC policy is denying
the chsh tool to access the network subsystem. There are a
lot of examples where bugs in software let attackers access
sensitive information or do malicious activities that are not
required by the attacked process, e.g. CVE–2007–33042 which
is a bug in the Apache webserver allowing an attacker to send
signals to other processes which gets mitigated already by
enabling SELinux in enforcing mode [10]. Especially network
services like web- or mail servers, but also connected systems
like database servers are receiving untrusted data and are
potential attack targets. Restricting their access to resources
to their minimal requirements increases the security of the
system and all connected systems. Applying these security
improvements to containers adds another layer of protection
to mitigate attacks against the host and other containers
from inside of the container.

4.3 Docker
LXC is a toolkit to work with containers saving users from
having to work with low level mechanisms. It creates an
interface to access all the features the Linux kernel is pro-
viding while reducing the learning curve for users. Without
LXC, a user needs to spend a lot of time to read the kernel
documentation in order to understand and use the provided
features to set up a container by hand. LXC allows to auto-

1chsh allows a user to change its login shell. This is a task
every user is allowed to do on its own but requires modifica-
tion of the file /etc/passwd which is accessible for root only.
chsh allows safe access to the file and allows a user to change
his own login shell, but not the login shells of other users
2Common Vulnerabilities and Exposures is a standard to
assign public known vulnerabilities a unique number in order
to make it easy and to talk about a certain vulnerability and
to avoid misunderstandings by confusing different vulnerabi-
lities

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

4 doi: 10.2313/NET-2016-07-1_01

mate the management of containers and and enables users
to build their own container solution that is customizable
and fits even exotic needs. For those who want to simply
run processes in an isolated environment without spending
too much time figuring out how the toolkit works, this is
still impractical. This is were Docker [1] comes in: It is a
command line tool that allows to create, manage and de-
ploy containers. It requires very little technical background
compared to using LXC for the same task and provides va-
rious features that are essential to work with containers in
a production environment. Docker started in March 2013
and got a lot of attention since then, resulting in a rapid
growth of the project. By combining technologies to isolate
processes with different other useful tools, Docker makes it
easier to create container images based on other container
images. It allows the user to access a public repository on
the internet called Docker Hub [20] that contains hundreds
of ready usable images that can be downloaded and started
with a single command. Users have the ability to change
and extend those images and share their improvements with
others. There is also an API allowing the user to interact
with Docker remotely. Docker brings a lot of improvements
compared to the usage of LXC, but introduces also new at-
tack vectors on a layer that is not that technical anymore
because now users and their behaviour play a bigger part in
the security of the complete system. Before talking about
that in greater detail, some major improvements over LXC
Docker introduced are outlined.

4.3.1 One tool to rule them all
LXC is a powerful tool enabling a wide range of setups and
because of that, it is hard to come by when not being deep
into the topic and the tools. Docker aims to simplify the
workflow. The Docker command line tool is the interface for
the user to interact with the Docker daemon. It is a single
command with memorizable parameter names allowing the
user to access all the features. Depending on the environment,
there is little to no configuration required to pull (download)
images from the online repository (Docker Hub) and run
it on the system. Apart from not being required, it is of
course possible to create a configuration file for Docker and
specific images in order to ease administration, set specific
parameters and to automate the build process of new images.

4.3.2 Filesystem layers generated and distributed in-
dependently

One major improvement over classical hypervisor-based vir-
tualization Docker introduced is the usage of filesystem layers.
Filesystem layers can be thought of as different parts of a file-
system, i.e. the root file system of a container and filesystems
containing application specific files. There may be different
filesystem layers, for example one for the base system which
may be always required and additional layers containing
the files of e.g. a webserver. This means that the webserver
that is ready to run can be distributed as an independent
filesystem layer. By way of illustration a web service is con-
sisting of a SQL database server like MySQL, a webserver
like Apache, a programming language and the framework a
web application is built on like python using Django and a
mail transfer agent like sendmail is assumed. Of course it
is possible to a certain extent to split those tools and run
them in different environments (mail, web and database may

run on completely different machines), this example assumes
that the setup is the developers setup and differs from the
deployment in production use. So, after installing Docker, it
is possible to fetch the filesystem layers of all of those tools
and combine them to one image that runs all the software
presented above and may now be used in order to develop
the web app. The web app itself may now be the content of
a new filesystem layer allowing to be deployed in the same
manner later on. If a new version of one of the components
is released and the developer wants to update its local layer,
only the updated layer has to be fetched. The configuration
of the user usually remains in a separate layer and it is not
affected by the update. Because there is no need to fetch the
data for other layers again, space and bandwidth is saved. If
another user wants to use the web app the developer pushed
to the Docker Hub, but he prefers PostgreSQL over MySQL
and nginx over Apache webserver and the web app is capable
of being used with those alternatives to the developer’s setup,
he may use the respective filesystem layers of the software
he wants to use.

4.3.3 Docker Hub
As said, one of the novelties Docker introduced to the vir-
tualization market was the Docker Hub [20]. It is one of the
things nobody demanded because it was simply not there
and everybody was fine reading documentation and creating
virtual machines and container images from scratch over and
over again. The Docker Hub is a web service that is fully in-
tegrated into the Docker software and allows to fetch images
that are ready to run from the Docker Hub. Images created
or modified by users may be shared on the Docker Hub, too.
The result is that the Docker Hub contains a lot of images of
different software in different configurations and every user
has the ability to fetch the images and documentation of the
images, use and improve them and get in touch with other
users by commenting on images and collaborating on them.
The Docker Hub can be accessed via a web browser, too. To
ease the choice of the right images of often used images like
Wordpress, MongoDB and node.js, the Docker Hub allows
such projects to mark their images as official images that
come directly from declared project members. The ability
for everyone to push their images to the Docker Hub led to
a great diversity and a lot of software available as container
images. Even more complex or very specific configurations of
some programs can be found there. The Hub introduces also
some security problems that are covered in Section 5. Users
are not tied to the Docker Hub. It is possible to set up private
registries that can be used natively the same way, but are e.g.
only accessible for authenticated users in a company network
or in order to build a public structure that is independent to
the already existing structure.

4.4 Managing great numbers of containers
Running containers is cheap regarding resource consumption.
Building large-scale services relying on container structures
may involve thousands of containers located on different ma-
chines all over the world. Today this may still be a corner
case, but some companies are already facing management
problems because they have too much containers to admi-
nistrate them by hand. Google introduced Kubernetes [21]
in order to ease the administration, group containers and
automate working with groups of containers.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

5 doi: 10.2313/NET-2016-07-1_01

5. SECURITY OF CONTAINER-BASED VS.
HYPERVISOR-BASED VIRTUALIZATI-
ON

Hypervisor-based virtual machines are often used in order
to introduce another layer of security by isolating resources
exposed to attackers from other resources that need to be
protected. “Properly configured containers have a security
profile that is slightly more secure than multiple applications
on a single server and slightly less secure than KVM virtu-
al machines.“ [10] The better security profile compared to
multiple applications next to each other is because of the
already mentioned mechanisms making it harder to escape
from an isolated environment, but all processes in all contai-
ners still run together with other processes under the host
kernel. Because KVM is a hypervisor emulating complete
hardware and another operating system inside, it is consi-
dered even harder to escape this environment resulting in a
slightly higher security of hypervisor-based virtualization.

It is possible to combine both technologies and due to the
small resource fingerprint and the introduced security layer of
container-based virtualization, this is considered a good idea.
Nevertheless, container-based virtualization is not proven to
be secure and container breakouts already happened in the
past [22].

Multiple security issues arise from the spirit of sharing images.
Docker has for a long time not had sufficient mechanisms
to check the integrity and authenticity of the downloaded
images, meaning that the authors of the image are indeed
the people who claim they are and that the image has not
been modified without being recognized, to the contrary their
system exposed attack surface and it may has been possible
for attackers to modify images and pass Docker’s verification
mechanisms [23]. Docker addressed this issues by integrating
a new mechanism called Content Trust that allows users
to verify the publisher of images [24]. There is nothing like
the Docker Hub for hypervisor-based virtualization software,
meaning that it is usual to build the virtual machines from
scratch. In case of Linux, on the one hand it is common that
packages are signed and the authenticity and integrity can be
validated, on the other hand each virtual machine contains a
lot of software that needs to be taken care off by hand all
the time.

One of the biggest problems of Docker is that it is hard to
come to grips with the high amount of images containing
security vulnerabilities. Origin of this problem is that images
on the Docker Hub do not get updated automatically, every
update has to be built by hand instead. This is a rather
social problem of people not updating their software neither
updating the containers they pushed to the Docker Hub in
the past. This is a somehow harder problem compared to
the same phenomenon of software not being up to date on a
virtual machine: There is actually no update available on the
Docker Hub, the latest image contains vulnerabilities. On
virtual machines when running an operating system that is
still taken care of, someone needs to log in and install the
security updates, which may be forgotten or simply ignored
because of various reasons, but building the fixed container
as a user is usually way more effort.

A study [25] found out that “Over 30% of Official Images in
Docker Hub Contain High Priority Security Vulnerabilities“.
The numbers were generated by a tool scanning the images
listed on the Docker Hub for known vulnerabilities. More
than 60% of official images, which means they come from
official developers of the projects contained in the container,
contained medium or high priority vulnerabilities. Analyzing
the vulnerabilities of all images on the Hub showed that 75%
contained vulnerabilities considered medium or high priority
issues. Overcoming these problems requires permanent analy-
sis of the containers which means scanning them for security
problems regularly and inform their creators and users about
problems found. This means that it may be easier to come
by the problem of outdated containers because the fact that
they are stored centrally allows to statically scan all images
in the repository.

Mr. Hayden points out how to build a secure LXC container
from scratch that can be used as foundation for further
modifications [10].

6. RELATED WORK
One of the use cases for hypervisor and container-based
virtualization is improving security by isolating processes
that are untrusted or are connected to other systems and
expose attack surface, i.e. a webserver on a machine connected
to the internet. Of course, there are different ways to improve
security that may be applied additionally to virtualization.

The already described Mandatory Access Control (see Sec-
tion 4.2.3) goes already into the direction of hardening the
operating system. This means to add new or improve already
present mechanisms in order to make it harder to successful-
ly attack systems. On Linux, the grsecurity [19] project is
well-known for their patch set adding and improving a lot
of kernel features, for example MAC through their RBAC
system, Address Space Layout Randomization (ASLR) and
a lot of other features making it harder to attack the kernel.

Another approach of separating applications can be found in
the Qubes OS [26] project. They build an operating system
based on Linux and the X11 window system on top of XEN
and allow to create AppVMs that run applications in dedi-
cated virtual machines — somehow similar to the container
approach, but with hypervisor-based virtualization instead
of mechanisms built inside a standard Linux kernel. Accor-
ding to their homepage, it is even possible to run Microsoft
Windows based application virtual machines.

MirageOS [27] is also an operating system setting up on XEN,
but deploying applications on MirageOS means deploying
a specialized kernel containing the application. Those uni-
kernels [28] contain only what is needed in order to perform
their only task. Because there are no features not absolutely
required, unikernels are usually really small and performant.
MirageOS is a library operating system that may be used in
order to create such unikernels. The probably biggest weak-
ness of this approach is that applications need to be written
specifically to be used with unikernels.

7. CONCLUSION
Container-based virtualization is a lightweight alternative to
hypervisor-based virtualization for those, who do not require

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

6 doi: 10.2313/NET-2016-07-1_01

or wish to have separate emulated hardware and operating
system kernel — a system in a system. There are many sce-
narios where speed, simplicity and only the need to isolate
processes are prevalent and container-based virtualization
fulfills these needs. By using mostly features already present
in the Linux kernel for several years, container-based virtua-
lization builds on a mature codebase that is already running
on the user’s machines and kept up to date by the Linux
community. Especially Docker introduced new concepts that
were not associated and used together with virtualization.
Giving users the social aspect of working together, sharing
and reuse the work of other users is definitely one of Dockers
recipes for success and a completely new idea in the area
of virtualization. Because it is relatively easy to run a huge
number of containers, there are already tools allowing to
manage large groups of containers.

When it comes to security, there is no need for a “vs.“ in
the title of this paper. Generally, it is of course possible
to run containers on an already (hypervisor-) virtualized
computer or to run your hypervisor in your container. The
hypervisor layer is considered a thicker layer of security
than the application of the mechanisms described above.
Nevertheless, applying these lightweight mechanisms adds
additional security at literally no resource cost.

Both approaches and of course their combination is hardware-
independent, allows a better resource utilization, improves
security and eases management.

8. REFERENCES
[1] Docker project homepage, https://www.docker.com/,

Retrieved: September 13, 2015

[2] KVM project homepage, http://www.linux-kvm.org/
page/Main_Page, Retrieved: September 16, 2015

[3] qemu project Homepage,
http://wiki.qemu.org/Main_Page, Retrieved:
September 16, 2015

[4] XEN project homepage, http://www.xenproject.org/,
Retrieved: September 16, 2015

[5] Microsoft TechNet Hyper-V overview,
https://technet.microsoft.com/en-us/library/

hh831531.aspx, Retrieved: September 16, 2015

[6] VMware Homepage, http://www.vmware.com/,
Retrieved: September 16, 2015

[7] VirtualBox project homepage,
https://www.virtualbox.org/, Retrieved: September
16, 2015

[8] M. Riondato FreeBSD Handbook, Chapter 14. Jails,
https://www.freebsd.org/doc/handbook/

jails.html, Retrieved: September 26, 2015

[9] E. Windisch: On the Security of containers,
https://medium.com/@ewindisch/on-the-security-

of-containers-2c60ffe25a9e, Retrieved: August 18,
2015

[10] M. Hayden: Securing Linux containers,
https://major.io/2015/08/14/research-paper-

securing-linux-containers/, Retrieved: August 18,
2015

[11] chroot (2) manpage, release 4.02 of Linux man-pages
project, http://man7.org/linux/man-
pages/man2/chroot.2.html, Retrieved: September 16,
2015

[12] LXC project homepage,
https://linuxcontainers.org/, Retrieved:
September 13, 2015

[13] namespaces (7) manpage, release 4.02 of Linux
man-pages project, http://man7.org/linux/man-
pages/man7/namespaces.7.html, Retrieved:
September 16, 2015

[14] user namespaces (7) manpage, release 4.02 of Linux
man-pages project, http://man7.org/linux/man-
pages/man7/user_namespaces.7.html, Retrieved:
September 16, 2015

[15] Docker Docs: Docker Security,
https://docs.docker.com/articles/security/,
Retrieved: August 18, 2015

[16] P. Menage, P. Jackson, C. Lameter: Linux Kernel
Documentation, https://www.kernel.org/doc
/Documentation/cgroups/cgroups.txt, Retrieved
September 13, 2015

[17] SELinux project homepage,
http://selinuxproject.org/page/Main_Page,
Retrieved: September 26, 2015

[18] AppArmor project homepage,
http://wiki.apparmor.net/index.php/Main_Page,
Retrieved: September 26, 2015

[19] grsecurity project homepage,
https://grsecurity.net/, Retrieved: September 16,
2015

[20] Docker Hub, https://hub.docker.com/, Retrieved:
September 26, 2015

[21] Kubernetes project homepage, http://kubernetes.io/,
Retrieved: September 16, 2015

[22] J. Turnbull: Docker container Breakout
Proof-of-Concept Exploit,
https://blog.docker.com/2014/06/docker-

container-breakout-proof-of-concept-exploit/,
Retrieved: August 18, 2015

[23] J. Rudenberg: Docker Image Insecurity,
https://titanous.com/posts/docker-insecurity,
Retrieved: August 18, 2015

[24] D. Mónica: Introducing Docker Content Trust,
https://blog.docker.com/2015/08/content-trust-

docker-1-8/, Retrieved: August 18, 2015

[25] Jayanth Gummaraju, Tarun Desikan and Yoshio
Turner: Over 30% of Official Images in Docker Hub
Contain High Priority Security Vulnerabilities,
http://www.banyanops.com/blog/analyzing-docker-

hub/, Retrieved: August 18, 2015

[26] Cubes OS project homepage,
https://www.qubes-os.org/, Retrieved: September
16, 2015

[27] MirageOS project homepage, https://mirage.io/,
Retrieved: September 16, 2015

[28] XEN Unikernels wiki page,
http://wiki.xenproject.org/wiki/Unikernels,
Retrieved: September 16, 2015

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

7 doi: 10.2313/NET-2016-07-1_01

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

8

Analyzing "Global Access to the Internet for All" Projects

Sascha Rushing
Betreuer: Edwin Cordeiro

Seminar Future Internet WS2015/16
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: sascha.rushing@tum.de

ABSTRACT
The world has acknowledged the opportunities and possibil-
ities the Internet offers. It is not only a convenience, but
genuinely helps to improve many different and important
parts of life, such as education, health and economy. Un-
fortunately only around one third of the world’s population
currently has access to it. The open research group Global
Access to the Internet of All (GAIA) is an initiative of the
Internet Research Task Force (IRTF), with the goal that in
the near future everyone is provided with affordable Inter-
net access. This paper will introduce the most promising
projects related to GAIA, including Google’s Project Loon,
internet.org by Facebook, Microsoft’s approach using TV
whitespaces and Community Networks. Additionally, pro-
posals concerning how the chair Network Architectures and
Services of the Technische Universität München could con-
tribute regarding its field of research will be presented.

Keywords
IRTF, GAIA, Internet for all

1. INTRODUCTION
1.1 Motivation
The Internet has grown to be a fundamental part of every-
day life. Sending emails to colleagues, video-chatting with
family or checking the latest sports results at home on the
computer or via smartphones on the go. The Internet has
created an entirely new way of communication and informa-
tion exchange, connecting societies all around the globe.

Unfortunately this privilege is still not accessible to ev-
erybody. Even though the number of internet users is in-
creasing, only around 40% of the entire world’s population
is online. This means that about 4 billion people do not
have access to the Internet, with more than 90% for those
from developing countries[1].

Figure 1 visualizes this issue. The size of the countries em-
bodies the amount of people with Internet access, whereas
the color (ranging from white to dark red) depicts the per-
centage of the population. As stated earlier and visible in the
image, the developing countries are very poorly connected.

The Global Internet User Survey 2012 conducted by the
Internet Society interviewed over 10.000 internet users across
20 different counties. Its goal was to provide general in-
formation on the behavior and opinions of internet users
about various topics regarding the Internet. The majority
of the participants agreed, that the internet plays an im-
portant role in their everyday life concerning subjects such

Figure 1: The world online[2]

as knowledge, education, health, economy and many oth-
ers. Furthermore 83% of the interviewees agreed that in-
ternet access should be considered a basic human right.[3]
The initiative Global Goals by the United Nations released
in September 2015 also includes the desire for universal and
affordable Internet access in least developed countries by
2020.[4]

With this information in mind, the question why so many
people do not have Internet access arises. Building broad-
band internet infrastructure can be very costly, especially if
the population is scattered across huge areas. Because of
this low cost effectiveness Internet Service Providers (ISP)
do not pursue this issue.[5]

Another problem is the pricing and affordability of Inter-
net. In developing countries access costs can be as much
as 40 times their national average income. Even in more
developed countries this can be an issue, due to unstable
financial circumstances people cannot commit to a lengthy
broadband contract.[5]

This paper presents a research group and its most promis-
ing ideas to try and make Internet access possible for every-
one.

1.2 Internet Research Task Force (IRTF)
The Internet Research Task Force (IRTF) is a research group
focusing on internet related topics. It consists of multiple
sub groups investigating specific subjects concerning Inter-
net protocols, applications, architecture and technology. In
contrast to the Internet Engineering Task Force (IETF), a
parallel organization dedicated to short term subjects of en-
gineering and standard making, the IRTF commits to long-
term related research. Any committed individual can con-

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

9 doi: 10.2313/NET-2016-07-1_02

tribute and participate.[6]
Since the creation of IRTF in 1989, 25 research groups

have been chartered and concluded their activities. As of
September 2015, there are a total of nine active research
groups.[7]

1.3 Global Access to the Internet for All (GAIA)
One sub group of IRTF is called Global Access to the Inter-
net for All (GAIA). It was chartered on October 15th 2014,
as a result of the The Internet Society’s Global Internet User
Survey 2012 [8], which revealed that a majority of the par-
ticipants classify Internet access as a basic human right[3].
As the name let’s one suspect, its research focuses on solu-
tions that will provide Internet access to everyone.

The Global Access to the Internet for All (GAIA) initia-
tive is officially defined by the following six goals[8]

1. ”to create increased visibility and interest among the
wider community on the challenges and opportunities
in enabling global Internet access, in terms of technol-
ogy as well as the social and economic drivers for its
adoption; ”

2. ”to create a shared vision among practitioners, researchers,
corporations, non-governmental and governmental or-
ganizations on the challenges and opportunities; ”

3. ”to articulate and foster collaboration among them to
address the diverse Internet access and architectural
challenges (including security, privacy, censorship and
energy efficiency); ”

4. ”to document and share deployment experiences and
research results to the wider community through schol-
arly publications, white papers, presentations, work-
shops, Informational and Experimental RFCs; ”

5. ”to document the costs of existing Internet Access, the
breakdown of those costs (energy, manpower, licenses,
bandwidth, infrastructure, transit, peering), and out-
line a path to achieve a 10x reduction in Internet Ac-
cess costs especially in geographies and populations
with low penetration. ”

6. ”to develop a longer term perspective on the impact of
GAIA research group findings on the standardization
efforts at the IETF. This could include recommenda-
tions to protocol designers and architects. ”

2. PROPOSALS
2.1 Google - Project Loon
Project Loon is an initiative by Google. The first pilot tests
were launched in June 2013 in New Zealand. The core con-
cept of Project Loon is the use balloons in the stratosphere
with an altitude of approximately 20 km as wireless con-
nection points. It utilizes the phenomenon that the winds
in the stratosphere are stratified, meaning they are layered
with each layer having a different wind direction and speed,
as shown in Figure 2.[9] Controlled by one large communi-
cation network, the balloons can be arranged as to evenly
cover a desired area. This is done by altering the balloon’s
altitude and moving it to a different wind layer, which in
turn will carry the balloon to its designated position.[9] The

Figure 2: Project Loon utilizes the properties of
stratified winds in the stratosphere.[9]

wind data for these calculations is provided by the National
Oceanic and Atmospheric Administration(NOAA).[10]

These high altitudes provide unique advantages, but they
also create particular engineering challenges. As the balloon
rises up in the air, the air pressure and temperature are
constantly decreasing. At its optimal altitude air pressure
is only 1% of that at sea level, with temperatures around
-50◦C. Additionally, due to the thinner atmosphere, the bal-
loons are exposed to more direct UV light. To ensure that
the balloon does not pop, all these factors have to be taken
into consideration in its design.[11] Currently balloons can
last for up to 100 days, before deliberately descending down
to earth[9]. Besides these technological issues, there are po-
litical concerns as well. Many countries may not want to be
dependent on a U.S. located company, due to the current
status of their relationship with the United States of Amer-
ica.[12]

On the other hand there are very positive things concern-
ing the altitude of the balloons. The winds in the strato-
sphere are fairly steady with 8 - 32 km/h, which enables
controlled position alteration. Furthermore, they are well
over commercial airplane altitudes as well as weather phe-
nomenon. This ensures that the balloons can move freely
with little danger of collision.[11]

Figure 3: Main components of a balloon 1) solar
panels 2) envelope 3) electronics[9]

Each of these solar powered balloons, consisting of three
main components as shown in Figure 3, can cover a ground
area up to 40 km in diameter. Specialized antennas enable
two kinds of connections. Firstly, with other balloons in the
mesh network and secondly, with the end user or ground
station connected to the internet.[11]

Google has developed antennas which can be installed

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

10 doi: 10.2313/NET-2016-07-1_02

outside of buildings, for example at home or the work place.
In the beginning, these antennas establish a wireless con-
nection via ISM (industrial, scientific and medical) radio
bands, using 2.4 and 5.8 GHz. These frequencies are not gov-
ernmentally owned and unlicensed around the world, which
saved Google from frequency negotiations and purchase. The
end device in turn could be connected via Wi-Fi to the local
antenna. The same method is used to establish a connection
between the balloons and a ground station, connected to an
internet backbone. Google claimed they were able to reach
speeds equivalent to 3G.[11]

As of now, Google has pursued another connection ap-
proach using a communication technology called LTE, for
which Google partnered with various telecommunication com-
panies. Using the cellular spectrum, every phone or LTE-
enabled device will be able to connect directly to the balloon
covering the area.[9]

Now that the user can connect to the balloon network
and the balloon network to the ground station, the only link
missing is the connection between the balloons themselves.
The official algorithm used by Google to control and man-
age their mesh network of balloons is disclosed. It is very
probable that their approach builds upon a common method
such as the IEEE 802.11s, which is a standard for mesh net-
working using many mesh points.[11]

2.2 Facebook - internet.org
internet.org is a project initiated by Facebook in partnership
with various other companies, non-profit organizations and
governments. The core of their idea is to tackle the prob-
lem of connectivity using a divide-and-conquer approach, as
shown in Figure 4, for different population densities need
different solutions. The goal is to create a wireless network,
using Free Space Optics and radio waves [13], that can be
received no matter where. The reason of using wireless over
terrestrial technology is the justified by mainly two reasons.
Building cell towers and fiber cable infrastructure requires
physical construction, which may not be possible due to ge-
ographical reasons, or even prohibited due to regulatory ap-
proval. Another downside of terrestrial networks is their
exposure to insecurities such as war or natural disasters.[14]

Depending on the population density and geographical
possibilities, Internet access can be provided by either a ra-
dio mast, an unmanned aerial vehicle, a LEO satellite or
a GEO satellite. Following simple laws of physics, each
method has a different range and signal strength. The closer
the device is to earth, the stronger is its signal, yet the
smaller is the area it can cover. A relatively forward ap-
proach is the use of satellites. Unfortunately the costs of
building and shooting them into space are still very high.
They will undoubtedly be important to provide connectivity
in remote locations, but cannot be used to create a contin-
uous network.[14]

To overcome this issue, Facebook is currently researching
a similar approach as Google’s Project Loon. Instead of us-
ing balloons, unmanned solar powered drones called Aquilla
are to be used, as depicted in Figure 5. They are made
of carbon fiber and have a wing span of around 42 meter,
which is roughly the size of a Boeing 737. These 400 kilo-
gram heavy, v-shaped crafts will too, like Google’s balloons,
be stationed at an altitude of approximately 20 km.[13] Face-
book is confident that drones are a better solution than bal-

Figure 4: Divide-and-Conquer approach by inter-
net.org[14]

loons as they claim that drones can fly towards their desired
position more accurately. Additionally they think that the
drones can return to earth more easily for maintenance, cre-
ating the opportunity of a cost effective method.[14]

Figure 5: Facebook’s solar powered drone,
Aquilla.[13]

Solely providing Internet access is not enough if the con-
nection speed is too slow. To overcome this problem, Face-
book is working on improving a wireless transmission tech-
nique called Free Space Optics (FSO)[14].

FSO is a procedure of transmitting optical signals through
free space of air. To propagate these optical signals through
air FSO uses light, generated by either LEDs or lasers. The
concept of FSO transmission can be compared to regular
optical transmission using fiber-optic cables, the only differ-
ence being the medium they use. In the case of fiber-optic
cables light travels through glass, with a speed of approx-
imately 200,000 km/s. FSO, using air as the transmission
medium, has a speed of around 300,000 km/s, the speed of
light. The projected beam size at the receiving end is a lot
bigger than at the transmitter. Meaning the shape between
the transmitter and receiver is rather equal to a cone than
a straight line. This implies that not all the information is
arriving at the receiving end. This phenomenon is called ge-
ometric path loss. To reduce this effect, by making the beam

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

11 doi: 10.2313/NET-2016-07-1_02

narrower, the transmitter and receiver should have fixed po-
sitions.[15]

Unfortunately there are still other drawbacks to the FSO
method, such as obstruction by physical objects. This is
not the case when using cables, since they do not need to
be laid out in a straight line between transmitter and re-
ceiver. Another issue, taking into account that the trans-
mitters (drones) are in the stratosphere, is fog and clouds.
The humid air conditions have a huge impact on light, as the
water can absorb, scatter or reflect it, which interrupts the
light beam and breaks the connection.[15] For this reason,
Facebook is working on a combination of FSO and radio
waves as a compromise for bad weather conditions.[13]

Public reactions to the internet.org project have been very
mixed and Facebook has been criticized on what their inter-
net will offer. The main issue is that Facebook reserves the
right to only give access to a selected amount of websites
and not the entire internet.[16] On May 18th 2015, an open
letter concerning these issues has been sent to Mark Zucker-
berg. This letter was signed by many international organi-
zations including Germany based Digitale Gesellschaft and
Förderverein freie Netzwerke e.V./freifunk.net [17].

2.3 Community Networks
In contrast to relying on networking structures provided by
companies such as Google or Facebook, Community Net-
working, often referenced as bottom-up networking, is built
and operated by citizens for citizens. In this model of the
Future Internet communities build, operate and own open
IP-based networks, meaning that anybody who wants to par-
ticipate can join and therefore increase the size and connec-
tivity of the network. With the help of non-profit organi-
zations managing these networks, it is possible to develop
a variety of different services for these networks including
local networking, voice connections and Internet access.[18]

Since anybody can participate in these networks, they can
be of very large scale. Additionally they are distributed and
decentralized as well as very dynamic, for people can join
but also abandon the network at any time. The main com-
ponents of Community Networks are nodes which are linked
with each other, either wirelessly, using IEEE 802.11a/b/n
technology, or via fiber cable. Due to the convenience of
installing wireless equipment in contrast to terrestrial con-
struction, wireless technology is mostly used. The nodes are
owned and maintained by members of the network, with the
only requirement being the acceptance of the peering agree-
ment such as the Pico Peering Agreement [19], with the pur-
pose of diminishing participation barriers.[18]

There are already many of such Community Networks up
and running all around the world. One of the biggest is lo-
cated in Spain called Guifi.net, which consists of over 20,000
nodes.[18] The German initiative freifunkt.net is distributed
all over Germany, present in currently 209 cities and towns.
Each community has its own website including information,
such as a live map of all connected nodes and more impor-
tantly on how interested persons can join the project. There
are also regular meetings to help new members get started,
by supporting them getting their equipment configured and
installed.[20]

There are still a lot of open research questions concerning
Community Networking. A research project, called community-
lab initiated in 2011, is investigating various properties of
these networks, which include IEEE 802.11a/b/n connec-

tivity and interference problems, privacy issues and many
more.[18]

The idea of Community Networking is not only of use
in combination with actual Internet access, but as well in
secluded locations using an ”Internet in a box” approach.
This means that each network contains its own content and
services only available in that particular network. It is not
connected to the actual Internet. Unlike the way we know it,
the content of this network is not stored on servers, but on
mobile devices owned by the people of the community, such
as smartphones, tablets and laptops. The main requirement
of these devices is the availability of either a Wi-Fi or Blue-
tooth module and a moderate amount of persistent mem-
ory.[21]

The way content is distributed in the network can be com-
pared to human verbal interaction. If two people are close
to each other they can talk and exchange information. After
going separate ways, these two individuals can in turn talk
to new people, passing on the information gathered from
their previous conversation partner. This way information
is spreads arbitrarily.

Figure 6: Content is being shared between devices
and Liberouters[22]

The mobile devices follow the same principle. If two de-
vices are close enough to each other, they establish a Wi-Fi
or Bluetooth connection with each other and exchange con-
tent saved on their persistent memory. Since all the infor-
mation available in the network is stored on these portable
devices, storage space is a very limited yet vital resource. To
ensure that one’s device is not being ”polluted”with uninter-
esting content, it is possible to subscribe to certain content
and information categories, filtering what will actually be
downloaded and saved to the device’s persistent memory.[21]

Considering persistent memory availability, connection dis-
tances and battery issues mobile devices alone may not be
enough. Public access points, via so called Liberouters, dis-
tributed in various often visited places can help solve this
problem. A Liberouter contains a USB flash drive on which
information can be stored. Via Wi-Fi connection mobile de-
vices can exchange information with the Liberouter, down-
loading new, subscribed to content as well as uploading in-
formation gained from other Liberouter or devices as shown
in Figure 6. Liberouters are made of Raspberry Pis, a WLAN
module and a flash drive, creating a very affordable solution
for approximately 80 Euro.[21]

Even though this approach is fairly simple, it can have

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

12 doi: 10.2313/NET-2016-07-1_02

a huge impact on various parts of life in remote locations.
For example, in a farming village farmers can subscribe to
weather data gathered by a local weather station, which can
help increase the harvest. The local news can be distributed
like this as well, giving everyone the chance to be up to date
on local events. Sectors like healthcare, education and many
others would also gain a lot by this distribution method.

2.4 Whitespaces
Due to the complexity of terrestrial Internet access construc-
tion, it has become obvious that wireless connectivity in
rural and remote areas is a lot more cost effective. This
can be done by using the IEEE 802.11 standard, Free Space
Optics or other radio bands. The problem when using the
electromagnetic spectrum is licensing. Most frequencies are
strongly regulated by either governments or companies and
can therefore not be used.[23]

Figure 7: TV whitespaces can cover a considerable
larger area than regular Wi-Fi.[24]

In analog TV transmission, broadcasting channels cannot
use frequencies continuously, due to interference issues. This
means that there has to be a ”gap” between two channels,
leaving certain frequencies unused. These empty channels
are referred to as white spaces[23]. They can be used, simi-
lar to Wi-Fi, to establish an Internet connection. Compar-
ing the Wi-Fi and TV whitespace frequencies, the latter can
service an area 16 times the size of the Wi-Fi range. This
means that fewer access points are needed to provide in-
ternet access for a larger region. Another advantage of TV
whitespaces are their penetration, meaning that they are not
as easily obstructed by physical objects, such as walls. Due
to its properties TV whitespaces are often denoted as Super
Wi-Fi.[25]

Microsoft has been actively researching the field of TV
whitespaces for the last couple of years. They have been
involved in many projects with other companies and govern-
ments to provide internet connectivity with this technology.
Most of which were conducted in Africa, but there have also
been projects in Asia and South America.[26]

2.5 Others

Virtual Public Networks. Even though Internet access is
available in an area, it does not mean that everyone has the
ability to use it. As the Nottingham Citizens Survey 2011
revealed, affordability is also a very genuine issues in devel-
oped countries[27]. Since most households do not occupy
their entire bandwidth at all times, the remaining capac-
ity could be shared. This approach is realized in Virtual
Public Networks (VPuN), splitting the connection into best
(home user) and less than best effort (guest user) connec-
tions.[27][28]

Social Wi-Fi: Hotspot Sharing with Online Friends.
Making one’s WiFi connection openly accessible to others
can bear risks, such as the sharer being accountable for ille-
gal actions of the guest user. To prevent the probability of
harmful guest users Social WiFi makes use of the high on-
line social network penetration. Only people who are friends
or contacts on social networks (e.g. Facebook, LinkedIn,
Google+, etc.) can automatically connect to your network
and make use of your Internet access.[29][30]

A4AI - Alliance of Affordable Internet. A4AI is a global
initiative, composed of private sector, public sector, and civil
society organizations dedicated to making Internet access
affordable for everyone. Their ultimate goal is to decrease
Internet access costs to less than 5% of monthly income.[31]
A4AI is rather a political than technological initiative, try-
ing to shift policies and regulations in order to create a com-
petitive and innovative broadband market.[32]

Traffic Optimization. Traffic optimization can help save
bandwidth usage, airtime in wireless networks and therefore
energy. This will be an important part of creating high per-
formance Internet accessibility in remote locations, which
only have limited resources at their disposal. A new ap-
proach of optimizing network traffic is called Simplemux,
which is a generic multiplexing protocol.[33][34]

Local Initiatives. There are various programs and projects
actively working on getting the world online, such as Air-
Jaldi in India[35] and TUCAN3G in Peru[36].

3. TECHNISCHE UNIVERSITÄT MÜNCHEN
3.1 Chair of Network Architectures and Ser-

vices
The chair for Network Architectures and Services at the
Technische Universität München focuses on topics in the
field of Telematics, the combination of telecommunication
and informatics. This includes issues concerning network se-
curity, peer-to-peer communication, mobile communication,
high speed networks and many more.[37]

The following section will provide ideas on how the Tech-
nische Universität München, in particular the chair for Net-
work Architectures and Services, could contribute to the
GAIA initiative with their research.

3.2 Contribution Proposals
3.2.1 Recent Publications

IP Spoofing. IP spoofing describes the action of forging
the source IP address in packets. This is done to increase
anonymity on the Internet, but also to impersonate other
sources.[38] It is therefore a big issue concerning authenti-
cation and DoS attacks. The chair has been involved in in-
vestigations regarding this problem and how to implement
spoofing protection for firewalls.[39]

This could be a very interesting topic concerning the Google
balloons and Facebook drones. With so many new Internet
users the occurrence of such attacks will very likely increase.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

13 doi: 10.2313/NET-2016-07-1_02

A potential research project could be a spoofing protection
implementation for these aerial crafts, for packets coming
into the ”local network”, ”local” meaning all end users con-
nected to one particular craft, as well as packets leaving the
”local network” into the mesh network and therefore the In-
ternet. Successfully filtering all packets in the craft firewall
will ensure that only relevant and honest packets will use
the resources and bandwidth of the mesh network. Due to
the fact that these aerial crafts are moving and the users
connected to it will vary, the filtering criteria will have to
change dynamically. The findings of the chair state that the
introduced approach can process thousands of rules within
a second, which would make this method possible.

Software-based Packet Processing. Another topic the chair
has been actively researching is software-based Packet pro-
cessing. Instead of using rather expensive dedicated hard-
ware, software-based Packet processing runs on commodity
and therefor cheaper hardware.[40]

In Community Networking, more specifically freifunk München
the Wlan routers use a Linux-based operating system called
OpenWrt instead of readymade firmware.[41] OpenWrt does
not provide too much functionality, but offers the ability of
adding packages to obtain new functionalities.[42]

The chair could get involved in creating a package for
OpenWrt concerning packet processing. Fast packet pro-
cessing is especially vital in networks where only a few routers
act as a bridge between two bigger clusters. Additionally,
mobile devices can also be used as nodes. Here it could also
be of interest to the chair to investigate packet processing on
mobile devices concerning power efficiency and performance.

Digital Certificates. The TUM Secure E-Mail project aims
to increase the security and privacy of email communication
using OpenPGP and S/MIME digital certificates. A cur-
rently open thesis topic attends the issue of how the certifi-
cate management could be handled.[43]

In local Community Networks (Internet-in-a-box approach)
data is being distributed via various Liberouters and devices,
granting everyone access to all the information. To ensure
privacy in this kind of setup, a certificate approach similar
to the TUM Secure E-Mail could be used. The fact that
these networks do not have a stable connection to some sort
of server calls for a creative solution, for example using one
specific Liberouter as a certificate manager in the town’s city
hall.

3.2.2 General Field of Research

Authentication and Anonymity. One of the main research
fields of the chair is network security. This includes methods
for authentication and security protocols as well as privacy
and anonymity on the Internet.[44]

These topics are an essential part of Community Network-
ing. As mentioned in section 2.3, anyone can participate in
Community Networks and increase its size and connectiv-
ity. This implies that there are literally a lot of ”men in the
middle”, who could easily intercept and access data sent or
received by users in the network. Even though the interfer-
ence and modification of data is strictly prohibited by the

peering agreement[19], it does not mean that ever member
of the network will abide by it. The results of the chair’s
research could help improve those security issues.

Traffic Measurement and Analysis. The chair is involved
in research about traffic measurement and analysis. By an-
alyzing the measured data, malicious activities as well as
malfunctions in the network can be detected. Additionally
the chair contributes to standardization bodies, particularly
to the IETF, a parallel organization of the IRTF.[44]

The outcomes of this study could help to improve the
arrangement of the Project Loon balloons and Facebook
drones. Depending on various factors of the traffic, the crafts
have to obtain new positions as to react to the current de-
mand. In order to have low responds times, the traffic has
to be analyzed accordingly and in a timely manner.

4. CONCLUSION
It has been officially acknowledged that the Internet should
be accessible to everyone, not just one third of the world’s
population. Internet access was not only rated as a basic hu-
man right by the Global Internet User Survey 2012, but was
also addressed more recently in the Global Goals initiative
by the United Nations in September 2015. Open research
groups like GAIA try to tackle this public problem as a com-
munity. Many global players are also working on solutions to
make this idea reality, for example Google and their Project
Loon, Facebook with internet.org and Microsoft using TV
whitespaces. Even individual citizens are making an effort
in solving this issue, as seen in Community Networks. The
future concerning global access to the Internet for all looks
very promising and hopefully someday soon it will not only
be an idea anymore, but reality.

5. REFERENCES
[1] International Telecommunication Union. ICT facts

and figures, 2014, Access date: 10.09.2015. URL:
http://www.itu.int/en/ITU-D/Statistics/

Documents/facts/ICTFactsFigures2014-e.pdf.

[2] University of Oxford. The World Online, Access date:
12.09.2015. URL: http:
//geonet.oii.ox.ac.uk/blog/the-world-online/.

[3] Internet Society. Global Internet User Survey
Summary Report, 2012, Access date: 09.09.2015.
URL: http://www.internetsociety.org/internet/
global-internet-user-survey-2012.

[4] United Nations: Global Goals, Access date:
26.09.2015. URL:
http://www.globalgoals.org/global-

goals/innovation-and-infrastructure/.

[5] Global Access to the Internet for All Research Group
(GAIA), Access date: 05.09.2015. URL:
https://irtf.org/gaia.

[6] A. Weinrib, Intel Corporation, and J. Postel. IRTF
Research Group Guidelines and Procedures.

[7] IRTF Research Groups, Access date: 17.09.2015.
URL: https://irtf.org/groups.

[8] GAIA Meetings Overview, Access date: 05.09.2015.
URL:
https://sites.google.com/site/irtfgaia/home.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

14 doi: 10.2313/NET-2016-07-1_02

[9] Google. Project Loon, Access date: 17.09.2015. URL:
http://www.google.com/loon/.

[10] Steven Levy. How Google Will Use High-Flying
Balloons to Deliver Internet to the Hinterlands, Access
date: 22.09.2015. URL:
http://www.wired.com/2013/06/google_internet_

balloons/all/google.com/loon.

[11] Doowon Kim. A Survey of Balloon Networking
Applications and Technologies, December 2013, Access
date: 21.09.2015. URL:
http://www.cse.wustl.edu/~jain/cse570-

13/ftp/balloonn.pdf.

[12] Project Loon: Google’s biggest obstacle isn’t
technology. It’s politics, Access date: 22.09.2015.
URL: https://gigaom.com/2013/06/21/project-
loon-googles-biggest-obstacle-isnt-technology-

its-politics/.

[13] Tom Simonite. Meet Facebook’s Stratospheric Internet
Drone, Access date: 22.09.2015. URL:
http://www.technologyreview.com/news/539756/

meet-facebooks-stratospheric-internet-drone/.

[14] internet.org by Facebook. Connecting the World from
the Sky, Access Date: 19.09.2015. URL:
https://fbcdn-dragon-a.akamaihd.net/hphotos-

ak-ash3/t39.2365-

6/851574_611544752265540_1262758947_n.pdf.

[15] Willebrand, Heinz, Ghuman, and Baksheesh. Free
Space Optics: Enabling Optical Connectivity in
Today’s Networks. Sams, Indianapolis, IN, USA, 2001,
Access date: 22.09.2015. URL:
https://books.google.de/books?id=iSk7r67xyboC&

printsec=frontcover#v=onepage&q&f=false.

[16] Jeremy Gillula and Jeremy Malcolm. Internet.org Is
Not Neutral, Not Secure, and Not the Internet, Access
date: 23.09.2015. URL: https:
//www.eff.org/deeplinks/2015/05/internetorg-

not-neutral-not-secure-and-not-internet.

[17] Open Letter to Mark Zuckerberg Regarding
Internet.org, Net Neutrality, Privacy and Security,
Access date: 23.09.2015. URL:
https://openmedia.org/sites/default/files/

LetterMarkZuckerbergMay182015-FINAL.pdf.

[18] Bart Braem, Christ Blondia, Christoph Barz, Henning
Rogge, Felix Freitag, Leandro Navarro, Joseph
Bonicioli, Stavros Papathanasiou, Pau Escrich, Roger
Baig Vi nas, Aaron L. Kaplan, Axel Neumann,
Ivan Vilata i Balaguer, Blaine Tatum, and Malcolm
Matson. A Case for Research with and on Community
Networks. SIGCOMM Comput. Commun. Rev.,
43(3):68–73, July 2013. URL:
http://doi.acm.org/10.1145/2500098.2500108.

[19] Pico Peering Agreement v1.0, Access date: 21.09.2015.
URL: http://www.picopeer.net/PPA-en.shtml.

[20] German based community networking initiative
freifunk.net, Access date: 23.09.2015. URL:
http://freifunk.net/.

[21] Jörg Ott and Teemu Kärkkäinen. Liberouter, Access
date: 17.09.2015. URL: https://drive.google.com/
file/d/0B1P45t6wc9rzNVp6Q29UYUc0N0U/edit?pli=1.

[22] Arseny Kurnikov, Teemu Kärkkäinen, Marcin Nagy,
and Jörg Ott. Liberouter Diagram, Access date:
17.09.2015. URL:

https://drive.google.com/file/d/

0B1P45t6wc9rzOHJEMHJ0ZjFxZnlkalpmX1N6N0tkNUtPQlpZ/

view?pli=1.

[23] Robert Horvitz, Ryszard Struzak, Dariusz Wiecek,
Steve Song, Carlos A. Afonso, Timothy X Brown,
Jon M. Peha, Cristian, Gomez, Mike Jensen, David
Crawford, Linda E. Doyle, Alan Woolhouse, Ermanno
Pietrosemoli, Sebastian Büttrich, Marco Zennaro, and
Andrés Arcia-Moret. TV White Spaces - A Pragmatic
Approach. ICTP - The Abdus Salam International
Centre for Theoretical Physics, 2013.

[24] TV White Spaces: Super Wi-Fi, Access date:
24.09.2015. URL:
http://research.microsoft.com/en-

us/projects/spectrum/technology.aspx.

[25] Dynamic Spectrum and TV White Spaces, Access
date: 24.09.2015. URL:
http://research.microsoft.com/en-

us/projects/spectrum/.

[26] Microsoft TV White Space: Pilots and
Demonstrations, Access date: 25.09.2015. URL:
http://research.microsoft.com/en-

us/projects/spectrum/pilots.aspx.

[27] Panagiotis Papadimitriou. Virtual Public Networks,
GAIA Presentation, Access date: 27.09.2015. URL:
https://drive.google.com/file/d/

0B1P45t6wc9rzeDNldWpxeFpuSFk/edit?pli=1.

[28] Arjuna Sathiaseelan, Charalampos Rotsos, Sriram C.
S., Dirk Trossen, Panagiotis Papadimitriou, and Jon
Crowcroft. Virtual Public Networks, Access date:
27.09.2015. URL:
http://www.cl.cam.ac.uk/~as2330/docs/vpun.pdf.

[29] Social WiFi: Hotspot Sharing with Online Friends,
GAIA Presentation, Access date: 27.09.2015. URL:
https://www.ietf.org/proceedings/93/slides/

slides-93-gaia-1.pdf.

[30] Zhen Cao, Jurgen Fitschen, and Panagiotis
Papadimitriou. Social WiFi: Hotspot Sharing with
Online Friends, Access date: 27.09.2015. URL:
http://www.ikt.uni-hannover.de/fileadmin/

institut/Publikationen/pimrc_2015.pdf.

[31] A4AI - Alliance of Affordable Internet, Access date:
27.09.2015. URL:
http://a4ai.org/visionand-strategy/.

[32] A4AI Strategy, Access date: 27.09.2015. URL:
http://a4ai.org/what-we-do/.

[33] Jose Saldana. Simplemux Traffic Optimization, GAIA
Presentation, Access date: 27.09.2015. URL:
http://www.slideshare.net/josemariasaldana/

simplemux-a-generic-multiplexing-protocol.

[34] Jose Saldana. Simplemux Traffic Optimization, Access
date: 27.09.2015. URL:
http://datatracker.ietf.org/doc/draft-saldana-

tsvwg-simplemux/.

[35] AirJaldi - Connecting India, Access date: 27.09.2015.
URL: http://main.airjaldi.com/.

[36] TUCAN3G - Connecting Peru, Access date:
27.09.2015. URL: http://www.ict-tucan3g.eu/.

[37] Technische Universität München. The Chair for
Network Architectures and Services, Access date:
26.09.2015. URL:
http://www.net.in.tum.de/en/homepage/.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

15 doi: 10.2313/NET-2016-07-1_02

[38] Jun Li Toby Ehrenkranz. On the State of IP Spoofing
Defense, Access Date: 05.11.2015. URL:
http://ix.cs.uoregon.edu/~lijun/pubs/papers/

ehrenkranz09spoofing.pdf.

[39] Cornelius Diekmann, Lukas Schwaighofer, and Georg
Carle. Certifying spoofing-protection of firewalls. In
11th International Conference on Network and Service
Management, CNSM, Barcelona, Spain, nov 2015.
URL:
http://www.net.in.tum.de/fileadmin/bibtex/

publications/papers/diekmann2015_cnsm.pdf.

[40] Daniel Raumer, Florian Wohlfart, Dominik Scholz,
Paul Emmerich, and Georg Carle. Performance
Exploration of Software-based Packet Processing
Systems, Access Date: 01.10.2015. URL:
http://www.net.in.tum.de/fileadmin/bibtex/

publications/papers/MMBnet15-1.pdf.

[41] Freifunk München, Access Date: 27.10.2015. URL:
https://ffmuc.net/.

[42] OpenWrt, Access Date: 01.11.2015. URL:
https://openwrt.org/.

[43] Design and Implementation of a Management Service
for Digital Certificates, Access Date: 15.10.15. URL:
http://www.net.in.tum.de/fileadmin/TUM/theses/

pdf/announce-certservice.pdf.

[44] Research of the Chair for Network Architectures and
Services, Access date: 26.09.2015. URL:
http://www.net.in.tum.de/de/forschung/.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

16 doi: 10.2313/NET-2016-07-1_02

Vergleich von Hardware- und Software-Traffic-Generatoren
und ihrem Einsatz in der Praxis

Tobias Weiher
Betreuer: Paul Emmerich, Daniel Raumer

Seminar Future Internet WS2015
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: weiher@in.tum.de

KURZFASSUNG
Das Testen von Hardware für Netzwerkeinsätze wird immer
wichtiger. Durch die wachsende Größe und Geschwindigkeit
der Netzwerke werden auch ihre Anforderungen anspruchs-
voller. Hardware wie Router und Switches müssen wie vorge-
sehen funktionieren und Last standhalten, um repräsentati-
ve Testergebnisse zu erhalten und auch realen Traffic zu un-
terstützen. Software-basierte Ansätze existieren, die unfle-
xible hardware-orientierte Lösungen ersetzen wollen, jedoch
sind jene meist unpräzise und letztere teuer. Hybride Soft-
ware-Traffic-Generatoren mit Hardwareunterstützung sind
eine Möglichkeit, um Präzision und geringere Kosten zu ver-
einbaren.

Schlüsselworte
Traffic-Generatoren, Software, Hardware, Performanz

1. EINLEITUNG
Das Internet und seine Netzwerke werden immer größer,
schneller und ihre Anforderungen auf die im Hintergrund be-
findlichen Ressourcen anspruchsvoller. Darunter fallen Hard-
ware wie Router und Switches, die wie vorgesehen funktio-
nieren und Last standhalten müssen. Unter Last wird der
Aufwand verstanden, den die Hardware standhalten muss,
wenn sie sehr viele Pakete mit einer hohen Datenrate, dem
Traffic, bearbeiten und weiterleiten muss.
Um dieses Verhalten zu testen, wird auf verschiedene Ver-
fahren von Traffic-Generatoren zurückgegriffen. Häufig wer-
den von größeren Unternehmen teure Hardware-Lösungen
verwendet, die für gewisse Anforderungen entwickelt wur-
den, um gezielt die Performanz zu testen. Jedoch ist diese
Herangehensweise nicht sehr flexibel, da die Hardware meist
nicht selbst konfigurier- und änderbar ist. Manchmal wird
jedoch ein flexibler Weg des Testens erwünscht, besonders
im Umgang mit neueren Protokollen oder Netzwerkdesigns.
Hierzu gibt es Traffic-Generatoren, die in Software realisiert
sind. Allerdings kann bei diesen Alternativen nicht gewähr-
leistet werden, ob ihre Anforderung auch von der zugrunde-
liegenden Maschine umgesetzt werden kann. Aufgrund des-
sen gibt es Bemühungen verschiedenster Forschungsgrup-
pen, software-basierte Ansätze zu verbessern, um die teuren
hardware-orientierten Lösungen zu ersetzen.
Im folgenden Abschnitt 2 wird zunächst auf die generel-
le Unterscheidung der Traffic-Generatoren eingegangen. Zu-
dem werden einige Begrifflichkeiten im Zusammenhang zu
diesen Generatoren erklärt. Im Abschnitt 3 wird der Unter-
schied zwischen Hardware- und Software-Generatoren ver-

deutlicht. Unterabschnitt 3.1 geht auf die Stärken, sowie
Schwächen der Hardware-Traffic-Generatoren ein. Unterun-
terabschnitt 3.1.1 beschreibt mit NetFPGA eine Open Source
Alternative zu proprietären Hardwaresystemen. Anschlie-
ßend werden mit Unterabschnitt 3.2 die software-basierten
Traffic-Generatoren betrachtet. Unterunterabschnitt 3.2.1 er-
wähnt die Vorteile gegenüber einfachen Software-Generato-
ren und beschreibt deren Funktion. Im Unterabschnitt 3.3
wird Bezug zu einigen Statistiken genommen. Zunächst wer-
den die Traffic-Generatoren in Hinsicht auf ihrer Paketraten
in Unterunterabschnitt 3.3.1 verglichen. Danach werden in
Unterunterabschnitt 3.3.2 einige Strategien zur Umsetzung
der Sendeintervalle zwischen Paketen, beziehungsweise den
inter-departure times präsentiert. Der letzte Teil mit Unter-
abschnitt 3.4 zeigt einige Netzwerk-Tools, die in der Praxis
eingesetzt werden.

2. ARTEN VON TRAFFIC-GENERATOREN
Traffic-Generatoren sind Werkzeuge, um Netzwerke hinsicht-
lich ihrer Performanz und Stabilität zu überprüfen, um wo-
mögliche Probleme frühzeitig in der Entwicklung zu entde-
cken. Hierbei werden Daten in das Netzwerk eingespeist, um
angeschlossene Geräte wie Router oder Switches zu testen.
Dabei wird unterschieden, welche Daten in welchem Maße
zugeführt werden.
Diverse Traffic-Generatoren lassen sich grob in folgende Ka-
tegorien unterteilen.[1]

• Traffic-Generatoren auf Anwendungsebene
• Traffic-Generatoren auf Datenflussebene
• Traffic-Generatoren auf Paketebene
• Traffic-Generatoren im geschlossenen Kreis und mit

mehreren Ebenen

Die Generatoren, die auf Anwendungsebene funktionieren,
erlauben, das Verhalten von Programmen und ihrem Ein-
fluss auf das Netzwerk zu emulieren. Ein Programm, das bei-
spielsweise mehrere Spielserver emuliert und die Netzwerk-
daten von vielen Clients und der Server selbst austauscht
und versendet, würde zu diesen Traffic-Generatoren zählen.
Ein Netzwerk-Tool, welches lediglich Pakete über eine gewis-
se Dauer für einen Datenfluss erzeugt, wird den Traffic-Ge-
neratoren auf Datenflussebene zugeordnet. Hierbei wird ver-
sucht, möglich realistischen Traffic zu generieren, beispiels-
weise die Anzahl und Größe der Pakete, die bei einem Web-
shop-Einkauf entstehen würden.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

17 doi: 10.2313/NET-2016-07-1_03

Der Großteil der Traffic-Generatoren arbeitet allerdings auf
Paketebene. Hierbei werden verschiedenste, vom Benutzer
definierte Parameter umgesetzt, um beispielsweise die Pa-
ketgröße, die Verzögerung von zu sendenden Pakete (auch
inter-packet delay genannt, also die mindestens zu wartende
Zeit, bevor ein Paket gesendet werden darf) oder die Pa-
ketrate, häufig gemessen in Anzahl Pakete minimaler Größe
innerhalb einer Sekunde, zu konfigurieren. Auch kann das
Sendeintervall bestimmt werden, welche die Zeit zwischen
zwei zu sendenden Pakete so abstimmt, dass das zweite Pa-
ket erst versendet wird, nachdem eine gewisse Zeit nach dem
vorherigen Versenden abgelaufen ist. Diesen Begriff versteht
man unter anderem auch als inter-departure time, welche
zu jedem Paket unterschiedlich ausfallen kann, da sie in der
Regel pro Paket definiert wird. Jedoch kann dieses Sendein-
tervall nicht geringer sein als die minimale Verzögerung zwi-
schen zwei Paketen, das inter-packet delay. Letztere wird
häufig durch die physikalische Grenzleistung der Übertra-
gung definiert, der line rate, im Gegensatz zur bit rate, die
die Bitrate der Übertragung angibt.[2] Die maximale Bitra-
te kann nicht größer sein als die durch die physikalische line
rate mögliche Leitung, sie kann jedoch niedriger ausfallen.
Die maximale Bitrate von 10GbE, also 10 Gigabit Ether-
net, ist 10.000.000.000 bps, damit 10 Milliarden Bits pro
Sekunde. Um dies in einer maximalen Paketrate anzugeben,
müssen die 10 Milliarden bps durch die Präambel eines jeden
Paketes, der geringst möglichen Framelänge und dem soge-
nannten inter-frame gap, dem Warteabstand zwischen zwei
Paketen, geteilt werden. Dadurch erhält man eine maximale
Frame Rate von

10 Gigabits/s

Präambel + Framelänge + inter-frame gap in bits
=

10.000.000.000 bits/s

8 ∗ 8 bits + 64 ∗ 8 bits + 12 ∗ 8 bits
=

10.000.000.000 b

672 b ∗ s
=

14.880.952, 38 Pakete pro Sekunde.[3]

Die letzte Kategorie umfasst Traffic-Generatoren, die die In-
teraktion über mehrere Schichten des Netzwerk-Protokoll-
Stacks hinweg miteinbeziehen. Hier werden Benutzer-, so-
wie Session- und Anwendungs-Informationen extrahiert, um
Netzwerkcharakteristika zu ermitteln, die ein realistischeres
Traffic-Abbild erstellen sollen.
Damit immer überprüft werden kann, dass der erwünschte
Traffic durch die Generatoren erzeugt wird, sollten all diese
Generatoren mit sowohl Generierungs-, als auch Überwa-
chungs-Funktionalität ausgestattet sein. Das bedeutet, dass
Traffic-Generatoren nicht bloß Daten erzeugen können soll-
ten, sondern auch eine Bestätigung über die erreichte Ra-
te ausgeben können oder, falls diese nicht erreicht wird,
dementsprechend tatsächliche Werte präsentieren. Mithilfe
gewisser Zeitstempelverfahren kann dadurch sogar eine ge-
zieltere Paketrate realisiert werden, welche in folgenden Ab-
schnitten näher beschrieben werden.

3. VOR- UND NACHTEILE DER GENERA-
TOREN

Traffic-Generatoren erfüllen den Zweck, Testgeräte oder Netz-
werke auf Fehler und Performanz zu überprüfen. Dabei kann
auf verschiedenste Realisierungen von Netzwerk-Tools zu-
rückgegriffen werden. Es gibt sowohl hardware-basierte An-
sätze wie auch Software-Traffic-Generatoren. Um zu diffe-

renzieren, welche Tools für welchen Gebrauch geeigneter er-
scheinen, werden generelle Lösungen betrachtet und vergli-
chen.

3.1 Hardware-basiert
Traffic-Generatoren auf Hardware-Basis sind geschlossene,
zu meist nicht näher konfigurierbare Systeme, die vordefi-
nierte Daten nach Angaben des Herstellers erzeugen. Bei-
spiele hierfür sind Netzwerktester von Ixia[4] oder Spirent[5],
die Traffic-Generatoren für 1/10/40/100 GbE beziehungs-
weise sogar höhere Gigabit Ethernet Werte anbieten. Diese
werben damit, Daten mit line rate erzeugen zu können, da-
mit also die höchste Paketrate des jeweiligen GbE-Wertes
erreichen, teilweise sogar darüber hinaus, indem sie die mi-
nimale Framelänge der kleinsten Ethernetpakete nochmals
kürzen, beispielsweise auf 58 Byte. Da die Hersteller kom-
pletten Zugriff auf ihre Hardware haben, erzielen sie sehr
genaue Zeitwerte, die auch dank der präzisen Zeitstempel
im Nanosekundenbereich besonders niedrig ausfallen. Die
Anzahl der versendeten Bytes, unabhängig der Größe der
Pakete, der Hardware-Traffic-Generatoren kann dabei nach
ihren Angaben durchwegs die maximale Rate erreichen.[6]
Allerdings können nur diejenigen Protokolle verwendet wer-
den, die zum Zeitpunkt der Erstellung der Hardware be-
ziehungsweise ihrem Erwerb unterstützt wurden. Neuarti-
ge Protokolle werden durch die Hardware nicht erkannt.
Immerhin kann bei den meisten Hardware-Generatoren der
Test-Traffic durch ein Script benutzerdefiniert eingestellt wer-
den, sodass ein Testgerät nach eigenen Bedürfnissen bean-
sprucht und überprüft werden kann.[6]
Jedoch sind diese präzisen, hardware-basierten Traffic-Gene-
ratoren teuer und somit für Forschungseinrichtungen nicht
sinnvoll erwerbbar, um beispielsweise die Daten und Spe-
zifikationen der Hardware-Generatoren genauer zu untersu-
chen. Ein gebrauchter Traffic-Generator dieser Art kostet
bereits 12.000$[7], neuere Geräte können damit gut das Dop-
pelte des Preises wert sein. Das Hinzufügen weiterer unter-
stützter Protokolle und Funktionen für diese Module erhöht
den Preis zusätzlich.[15]

3.1.1 NetFPGA
Um den hohen Preisen der Hardwarehersteller entgegenzu-
wirken und mehr Flexibilität in das Testen durch Traffic-
Generatoren zu bringen, wurde das Projekt NetFPGA[8] ins
Leben gerufen. Das Projekt begann im Jahr 2001 an der
Stanford University, um Studenten das Netzwerkverhalten
und die benötigte Hardware zu veranschaulichen. Da das
Projekt jedoch größer wurde und die Hardware immer aus-
gereifter, stieg die Nachfrage nach einem offizielleren Gerät
speziell für Forscher an.[9]
NetFPGA bietet Software und Hardware an, um neue De-
signs, Simulationen und das Testen auf einer Open Source
Netzwerkplattform zu vereinfachen. Der Projektname leitet
sich von network und dem FPGA, einem field-programmable
gate array, ab. Mit diesen FPGAs sind Architekturen ge-
meint, die nach der Produktion noch vom Benutzer umpro-
grammierbar sind. Die erste NetFPGA-Plattform, erstellt
für Forschungs- und Lehrgruppen, war das NetFPGA-1G im
Jahr 2007, eine kostengünstige Platine für 1 Gigabit Ether-
net.[10]
Der Nachfolger von 2010 war das NetFPGA-10G (Abbil-
dung 1), welche mit einer 40 Gigabit pro Sekunde fähigen
PCIe Schnittstelle ausgestattet ist und 4 10 GbE Verbindun-

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

18 doi: 10.2313/NET-2016-07-1_03

gen mitbringt. Alle Karten des NetFPGA-Projektes sind mit
FPGAs der Firma Xilinx[11] verbaut. Die aktuellste Karte
ist das NetFPGA SUME, welche Anwendungen mit Anfor-
derungen von 40 und 100 Gigabit pro Sekunde unterstützen
können soll.[12]
Dieser Hardware-Traffic-Generator ist bereits für etwas un-
ter 10.000$ zu erwerben, für den akademischen Gebrauch
sogar unter 5.000$.[13]

Abbildung 1: NetFPGA-10G[14]

3.2 Software-basiert
Im Gegensatz zu den hardware-basierten Traffic-Generato-
ren, wird für Software-Generatoren lediglich das Programm
und eine ausführbare Maschine benötigt, die das jeweilige
Programm umsetzen soll. Jedoch ergeben die Software-Lö-
sungen auch unerwünschte Probleme, die nicht immer sofort
zu erkennen sind. Falls nicht anders angegeben, so bezieht
sich der Abschnitt der software-basierten Traffic-Generato-
ren auf die Quelle [1].
Bereits das Erzielen einer gewissen Paketrate mit minima-
len Paketgrößen ist stark abhängig vom Softwaredesign des
jeweiligen Generators. Da es auch andere Programme auf
der auszuführenden Maschine gibt, die für den Ablauf des
Systems benötigt werden, muss der Traffic-Generator die
Ressourcen mit den anderen Anwendungen teilen. Dadurch
sinkt die Performanz, die durch die CPU erreicht werden
kann, um eine hohe Paketrate zu erzielen. Somit ist es mög-
lich, dass eine angezielte Paketrate von 150.000 Paketen pro
Sekunde schon bei unter 80.000 Paketen seinen Grenzwert
erreicht. Dies erfolgte in einem Test mit Pentium IV Ma-
schinen und einem Linux 2.6.15 Betriebssystem, auf denen
nicht benötigte Anwendungen ausgeschaltet wurden.
Auch wenn die größtmöglichen Pakete verwendet werden,
gibt es Performanzprobleme. So kann die angestrebte Bitra-
te von 1 Gigabit pro Sekunde bereits den maximal mögli-
chen Durchsatz von 500 Megabit pro Sekunde erschöpfen.
Dieser Wert entspricht in der kleinst möglichen Paketgrö-
ße einer Paketrate von unter 45.000 Paketen pro Sekunde,
also weitaus weniger als die im vorherigen Fall erreichten
80.000 Pakete. Dies liegt an der Struktur der Software-Gene-
ratoren, die im Gegensatz zu Hardware-Traffic-Generatoren
keine dedizierten Speicherbereiche besitzen, aus denen effi-
zient gelesen oder geschrieben werden kann. Somit muss die
Software diese Speicherbereiche teuer umkopieren, bis diese
ausgesendet werden können, worunter die Präzision dieser
Generatoren leidet.
Doch nicht nur die Konkurrenz um Ressourcen des Systems
vermindern die Präzision der Software-Generatoren, sondern
auch die Genauigkeit der Zeitauflösung. Dies ist besonders
für die inter-departure time zwischen Paketen bemerkbar.

Falls eine gewisse Paketrate eingestellt wird, für die das Sen-
deintervall zwischen zwei Paketen kleiner ausfällt als die Ge-
nauigkeit der Zeitmessung es erfassen kann, so senden einige
Software-Traffic-Generatoren die gesamte Menge der Pakete
in einem Schwall beziehungsweise Burst aus.
Ein anderer Fall, der bei einem solchen Test womöglich nicht
beachtet wird, ist eine längere Wartedauer, bevor ein erneu-
tes Paket versendet wird. Wenn die inter-departure time bei
einigen Software-Generatoren einen Wert um die 4 Millise-
kunden annimmt, so könnte der Scheduler des Betriebssys-
tems unter dieser geringen Last den Prozess des Software-
Generators von der CPU entkoppeln. In diesem Augenblick
wird der Prozess allerdings wieder benötigt, sodass dieser
teure Kontextwechsel des Prozesses viel Zeit beansprucht
und damit die Paketrate durch die Verzögerung reduziert
wird. Aufgrund dessen ist es für Software-Traffic-Generato-
ren notwendig, diese Phänomene zu bedenken und beispiels-
weise eine Polling-Funktion einzuführen, die innerhalb klei-
nerer Zeiteinheiten durchwegs auf neue Informationen hin
überprüft und damit die Ressourcen auf der CPU behält.
Obwohl die software-basierten Traffic-Generatoren flexibel
sein können und durch Aktualisierungen der Versionen neu-
artige Protokolle unterstützt werden können, so haben diese
jedoch, abhängig ihrer Implementierung, besondere Schwä-
chen in ihrer Präzision und sind damit zumeist inakkurat.

3.2.1 Hardware-unterstützt
Werden Software-Traffic-Generatoren jedoch auf Basis ge-
wisser Netzwerkkarten entwickelt, so gewinnen sie eine hö-
here Präzision durch unterstützte Funktionen der Hardwa-
re. Hierzu zählen genauere Zeitstempel durch Taktraten der
Chips auf den Netzwerkkarten oder auch eine Zeitkorrektur
im Laufe der Ausführung, die sich besonders bei reinen Soft-
ware-Generatoren von der tatsächlichen Zeit durch Fehler,
einem Clock Drift, entfernt.
Ein bekanntes Beispiel in der Open Source Community ist
OSNT, ein Open Source Network Tester, welcher auf das
NetFPGA-10G (Abbildung 1) mit 4 10GbE Schnittstellen
basiert. OSNT ermöglicht durch eine Virtualisierung der zu-
grundeliegenden Hardware, dem NetV (Abbildung 2), eine
Aufteilung des NetFPGA-10G für sowohl Traffic-Generie-
rung, als auch Traffic-Überwachung.[15]

Abbildung 2: NetV-Virtualisierung[15]

Diese Software besteht aus einem OSNT Traffic-Generator,

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

19 doi: 10.2313/NET-2016-07-1_03

welcher Pakete an allen 4 10GbE Schnittstellen erstellen und
empfangen kann. Indem ausgehende Pakete mit Zeitstempel
versehen werden, können Informationen bezüglich Verzöge-
rungen und Verlust der Pakete ermittelt werden. Damit kann
ein Netzwerkelement wie ein Router oder Switch getestet
werden oder ein kleineres Netzwerk, da Ein- und Ausgang
der Pakete an derselben NetFPGA-Karte verbunden werden
können.
Ebenso ermöglicht OSNT durch seinen OSNT Traffic-Moni-
tor, ankommende Pakete an den 10GbE Schnittstellen auf-
zuzeichnen und an die überliegende Software weiterzuleiten,
um diese zu analysieren und weiterzuverwenden. Diese Da-
tenrate kann sehr hoch ausfallen, wenn alle oder die meisten
der eingehenden Pakete aufgezeichnet werden sollen. Da die
Aufzeichnung einen Flaschenhals für die PCIe Bandbreite
verursacht, werden Pakete optional gehashed, also effizient
tabellarisiert, und in der Hardware bereits gekürzt. Damit
soll eine geringe Verlustrate mit einer hohen Auflösung so-
wie Präzision des Zeitstempels unterstützt werden.
Durch das hybride OSNT System kann auf derselben Net-
FPGA-Karte mit ihrer NetV -Virtualisierungstechnik und
den Zeitstempeln eine Charakterisierung des Netzwerkes be-
ziehungsweise des Messgerätes auf full line-rate pro Daten-
fluss erzielt werden. Mit dem Zeitstempel werden ein- und
ausgehende Pakete markiert, sodass OSNT im Netzwerk die-
se Pakete analysieren kann. Da die Zeit jeweils im Paket
vermerkt wurde, lässt sich eine Aussage bezüglich des Netz-
werkes treffen.
Außerdem bemüht sich die Software als ein skalierbares OS-
NT System, eine große Anzahl von mehreren Traffic-Genera-
toren und -Überwachungen zu koordinieren. Durch eine Zeit-
synchronisierung aller OSNT-Geräte soll ein größeres Netz-
werk zuverlässig auf beispielsweise Latenz, Paketschwankun-
gen oder -verlust überprüft werden können.[15]
Eine weitere Software, die die Hardware eines Systems, bei-
spielsweise eines NetFPGAs, ausnutzen kann, ist das OF-
LOPS, ein offenes Framework für OpenFlow Switch Eva-
luationen.[16] OpenFlow ist ein System, mit welchem Rou-
ter durch eine Konfiguration lediglich Regeln ausführen, die
ihm durch einen Kontrollrechner beigebracht wurden. Somit
wird seine Routing-Logik ersetzt und aus dem System aus-
gegliedert. Dieses Verfahren kommt in software-definierten
Netzwerken, auch Software Defined Networks, kurz SDN,
vor, indem die Logik, auch Control Plane, ausgelagert wird
und der Router als einfache Weiterleitungsplattform, auch
Data/Forwarding Plane, fungiert. Wenn eine höhere Zeit-
präzision verlangt wird, so kann OFLOPS die NetFPGA-
Hardware nutzen, andernfalls kann diese auch mit Perfor-
manzeinschränkungen auf üblicher Hardware mit der Soft-
warelösung OpenVSwitch genutzt werden.[16]
Ebenso ist eine Verbindung der Hardware NetFPGA-10G
mit der Virtualisierung durch OSNT und der Host-Soft-
ware OFLOPS für einen OpenFlow-Einsatz denkbar. Mit
diesem sogenannten OFLOPS-Turbo-Host können mehrere
Switches in unterschiedlichen Netzwerkstrukturen verbun-
den werden, um gewisse Aspekte der Netzwerkarchitektur
mit hoher Präzision zu messen. Dies ist sowohl mit der Data
Plane der Switches oder Router möglich, als auch mit der
ausgegliederten Control Plane.[17]
Ein weiterer hardware-unterstützter Software-Traffic-Gene-
rator ist BRUNO, ein Traffic-Generator für einen Netzwerk-
prozessor, im Speziellen dem Intel IXP2400. BRUNO, wel-
cher für BRUte on Network prOcessor steht, basiert auf ei-

ner modifizierten BRUTE (Browny and RobUst Traffic En-
gine) Version. BRUTE wurde dafür designt, um Sendezeiten
von Paketen abhängig von gegebenen Traffic-Modellen zu er-
mitteln. Das System schreibt diese Informationen in einen
Speicherbereich, der mit der Paket-verarbeitenden Einheit
des Netzwerkprozessors geteilt wird. Der Netzwerkprozessor
nutzt diese Daten für die Erstellung der Pakete und sendet
diese mit einer geeigneten Zeitschranke, der inter-departure
time, los. BRUNO soll für eine 1GbE Verbindung die line
rate ausnutzen können und versendet mit einer hohen Prä-
zision mit einer Paketrate von bis zu 1.488.000 Pakete pro
Sekunde.[18]
Um höhere Flexibilität bei gewohnter Präzision durch Hard-
ware zu erhalten, verwendet MoonGen einen etwas anderen
Ansatz. MoonGen ist ein Hochgeschwindigkeits-Paket-Ge-
nerator, welcher 2014 an der Technischen Universität Mün-
chen entwickelt wurde. Durch MoonGen wird die gesam-
te Paketerstellungslogik zu Benutzer-kontrollierbaren Lua-
Scripts übertragen, um ein Höchstmaß an Flexibilität zu er-
zielen. Dies wird durch die Einbindung von LuaJIT ermög-
licht, einem Just-In-Time-Compiler für Lua, womit direkt
mit Bibliotheken der Sprache C und dessen Structs gear-
beitet werden kann. Dadurch können Pakete effizient mit
MoonGen erzeugt werden. Außerdem wird das Paketverar-
beitungs-Framework DPDK, das Data Plane Development
Kit, verwendet, um schnell und präzise den Input und Out-
put der Pakete auf unterstützter Hardware durchzuführen.
Dadurch wird eine Rate von 14,88 Megapakete pro Sekunde
ermöglicht, einer line rate von 10GbE mit minimaler Paket-
größe (vergleiche Abschnitt 2). Derzeit werden durch DPDK
und MoonGen die Hardware-Funktionen auf den Intel-Kar-
ten 82599, X540 und 82580 unterstützt. Es können zwar an-
dere Netzwerkkarten verwendet werden, die von DPDK un-
terstützt werden, jedoch kann dabei die Zeitstempelfunktion
und die Datenraten-Kontrolle der Hardware nicht genutzt
werden. Durch die Lua-Scripts ist es außerdem möglich, je-
des einzelne Paket, das versendet werden soll, zu manipulie-
ren. Dies kann ohne große Performanz-Einbußen stattfinden,
da durch Lua eine kleinere Schleife durchlaufen wird, wenn
nicht alle Bereiche des Paketes verändert werden. Durch
MoonGen wird nur dann mit Performanz bezahlt, wenn es
durch aufwändigere Aktionen benötigt wird, beispielsweise
dem Ver- oder Entschlüsseln einzelner Felder in eigen defi-
nierten Protokollen eines Paketes. Wenn hingegen nur die
IP-Adresse vieler vordefinierter Pakete im Puffer geändert
werden soll, bevor diese versendet werden, so kann MoonGen
mehrere Pakete erstellen und nur das nötige IP-Feld bear-
beiten. Andere Paket-Generatoren, die ebenfalls auf DPDK
aufbauen wie Pktgen-DPDK, können dabei nur langsamer
Pakete versenden als MoonGen, da jene in einer komplexe-
ren Ausführung alle möglichen Konfigurationen durchlaufen
müssen, obwohl nur ein Feld im Paket bearbeitet werden
müsste.[19]

3.3 Eigenschaften im Vergleich
Um nun einige der hier erwähnten Traffic-Generatoren zu
vergleichen, wird zunächst nur auf eine der vielen denkbaren
Charakteristika eingegangen. Allerdings ist dieser Vergleich
nicht einfach, da es keine direkt übereinstimmenden Me-
triken gibt, auf die Traffic-Generatoren sich reduzieren las-
sen.[20] Aufgrund dessen werden die durch die Forschungs-
gruppen spezifizierten Statistiken bei Übereinstimmung auf-
gezählt und bewertet.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

20 doi: 10.2313/NET-2016-07-1_03

3.3.1 Paketraten
Unter dem Begriff der Paketrate wird der maximale Durch-
satz an Paketen mit minimaler Größe verstanden. Dies ent-
spricht in der Regel einer Paketgröße von 64 Bytes. Zusätz-
lich mit dem Abstand zweier Frames und der Ankündigung
eines weiteren Paketes ergibt dies eine Länge von 84 Byte
(Abschnitt 2).
Hierbei erzielen die hardware-basierten Traffic-Generatoren
wie beispielsweise von Ixia[4] oder Spirent[5] den meisten
Durchsatz bis hin zur maximal möglichen line rate der je-
weiligen GbE-Anbindung. Jedoch sind diese auch die teuers-
ten Ableger in ihrem Bereich.
Die einfachen Software-Traffic-Generatoren erzielen weitaus
weniger Pakete in der Sekunde, ob nun die kleinstmögliche
Länge oder nicht, da diese Ressourcen mit dem Betriebs-
system teilen müssen und sonst weniger optimiert auf die
jeweilige Hardware der Rechner sind.
Im Gegenteil dazu sind die neueren Software-Generatoren
basierend auf spezieller Hardware, wie zum Beispiel aus dem
NetFPGA-Projekt (Unterunterabschnitt 3.1.1) oder unter-
stützten DPDK-Modellen, wesentlich effizienter und errei-
chen zudem Paketraten bis zur line rate.[19]
Jedoch sind die meisten dieser hardware-unterstützten Soft-
ware-Traffic-Generatoren für 10GbE-Schnittstellen entwickelt,
während die Hardware-Generatoren schon mit 100GbE oder
teilweise sogar 400GbE für Datenzentren werben.[21] Eini-
ge Testversuche zu Software-Traffic-Generatoren für höhere
Raten scheinen aber zuversichtliche Ergebnisse zu liefern.
So erreicht MoonGen mit einem Test von 120 Gigabit pro
Sekunde bis zu 178,5 Megapakete pro Sekunde.[19] Ein Ma-
ximalwert bei dieser Anbindung wäre eine Paketrate von

120 Gigabits/s

84 ∗ 8 bits
=

120.000.000.000 bits/s

672 bits
=

178.571.428, 57 Pakete pro Sekunde.

3.3.2 Sendeintervall
Das Sendeintervall zwischen zwei zu sendenden Paketen wird
unterschiedlich gebraucht. Zum einen gibt es den inter-packet
delay, welcher den minimalen Zeitabstand zwischen allen
Paketen entspricht. Hier darf nur dann ein Paket versen-
det werden, wenn diese Zeit erreicht wird. Damit kann eine
gewisse Paketrate eingestellt werden, die durch den Testver-
lauf eingehalten wird. Dieser Zeitabstand kann nicht kleiner
ausfallen als es die maximale Paketrate durch die line rate,
der physikalischen Grenze, erlaubt, durch welche sie häu-
fig definiert wird. Dieses inter-packet delay ist abhängig von
der Fähigkeit des Generators, der angebundenen Verbindung
und dem dahinterliegenden Netzwerk.
Zum anderen gibt es den Begriff der inter-departure time,
welche für jedes Paket unterschiedlich konfiguriert werden
kann. Diese entspricht der Zeit, nachdem ein Paket versen-
det wurde, bis ein nächstes Paket gesendet werden darf. Die-
se kann nicht kleiner ausfallen als das inter-packet delay.
Einfache Software-Traffic-Generatoren können eine inter-de-
parture time von wenigen Milli- und Mikrosekunden schon
nicht mehr garantieren, wodurch bei einem sehr kleinen Sen-
deintervall die Software zu einem burst neigt, also Pake-
te in einem Schwall so schnell wie möglich versendet wer-
den. Da die Genauigkeit in der Zeitstempelauflösung fehlt,
können gezielte Tests für Netzwerkgeräte kaum ausgeführt
werden, wenn die Ankunfts- und Sendezeiten der Pakete

nicht genau gemessen werden kann.[1] Hardware-unterstütz-
te Software-Generatoren haben diesbezüglich eine wesentlich
bessere Chance, die Zeiten bei der Paketmarkierung einzu-
halten. Das NetFPGA-10G besitzt eine 6,25 Nanosekunde
Zeitstempel-Auflösung mit einer Koordination der Zeitfeh-
ler, verursacht durch Clock Drifts, durch GPS.[15] Somit
dürften die Zeitgrenzen zwischen Paketen bei unterschiedli-
chen inter-departure time-Verteilungen mit hoher Genauig-
keit erkannt werden. Lediglich die Hardware-Traffic-Genera-
toren werben mit einem höchst akkuraten Zeitstempelmodul
für Zeitsynchronisationen direkt über Kabel oder ebenfalls
GPS von einer Auflösung von 2,5 Nanosekunden für Gene-
rierung und Analyse.[6]

Abbildung 3: MoonGen’s Paketverzögerung[19]

MoonGen bietet für gewisse inter-departure times eine wei-
tere Strategie an. Anstatt eine Zeit lang zu warten, bis Pake-
te gesendet werden dürfen, was Fehler in der Zeitabweichung
verursachen kann, werden die Lücken zwischen regulären Pa-
keten mit ungültigen Paketen gefüllt. Durch die Verände-
rung der Größe der ungültigen Pakete kann genau bestimmt
werden, wann Pakete versendet werden. Zudem können be-
liebig komplexe Traffic-Muster dadurch erzeugt werden. Je-
doch muss das Testgerät im Netzwerk dazu in der Lage sein,
ungültige Pakete zu erkennen und diese, ohne die Paketver-
arbeitung negativ zu beeinflussen, zu verwerfen. Diese Pa-
kete besitzen eine falsche CRC-Summe im Ethernetframe
und, wenn nötig, eine ungültige Länge für kleinere Lücken.
Obwohl in der Theorie willkürliche Lücken zwischen Pake-
ten möglich sein sollten, füllen einige Netzwerkkarten Pakete
kleiner als 76 Bytes, inklusive Präambel und inter-frame gap
(siehe Abschnitt 2), auf, also 8 Byte weniger als das übliche
Minimum von 84 Bytes (Unterunterabschnitt 3.3.1). Daher
können Lücken von 1 bis 75 Bytes, also 0,8 bis 60 Nanose-
kunden bei 10 Gigabit Ethernet, nicht erzeugt werden. Die
generierte Paketrate bei dieser Alternative muss der jewei-
ligen line rate entsprechen, es müssen also durchwegs Pake-
te generiert und von der Hardware versendet werden. Die
transparenten Pakete pi in Abbildung 3 sind die ungülti-
gen Pakete, die von der Testhardware frühzeitig verworfen
werden.[19]

3.4 Werkzeuge (Tools) in Verwendung
Traffic-Generatoren, die vermehrt in der Praxis zum Ein-
satz kommen, werden in diesem Abschnitt beschrieben. Sie
entsprechen weit verbreiteten Software-Generatoren, die un-
terschiedliche Einsatzbereiche haben, da sie verschiedenen
Arten von Traffic-Generatoren (Abschnitt 2) entsprechen.
Viele von ihnen existieren bereits seit einiger Zeit, einige
sind etwas moderner.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

21 doi: 10.2313/NET-2016-07-1_03

Mausezahn ist ein Traffic-Generator auf Paketebene, mit
welchem beinahe jedes denkbare Paket versendet werden
kann. Es wird hauptsächlich für Voice-over-IP-Programme,
aber auch für Sicherheitstests gegen bestimmte Angriffe, wie
einem Denial of Service, kurz DoS, durch einen TCP SYN-
Flood, verwendet. Hierbei können Verzögerungen von Pa-
keten zwischen zwei Endgeräten präzise überprüft werden,
Tests und Angriffe auf Firewalls, Einbruchserkennungssys-
temen für Netzwerke oder Netzwerke selbst ausgeübt wer-
den, sowie das Netzwerkverhalten unter besonderen Bedin-
gungen, wie Lasttests oder defekte Pakete, getestet werden.
Mausezahn existiert seit 2007, wurde aber im Juli 2013 in
das netsniff-ng toolkit übernommen.[23] Netsniff-ng ist ein
Netzwerkkit, welches für Linux frei zur Verfügung steht.[24]
Dadurch, dass bei Paketempfang und -versand keine Daten
umkopiert werden müssen aufgrund von Zero-Copy-Buffers,
also gemeinsam verwendetem Speicher (zwischen Kernel- und
Userspace), erzielt netsniff-ng eine bessere Performanz als
einfache Software-Traffic-Generatoren.[22]
Iperf ist ein weiterer Software-Traffic-Generator auf Pake-
tebene.[25] Iperf ist ein Tool, um die maximale TCP-Band-
breite zu messen. Ebenso können diverse Parameter und
UDP-Charakteristika eingestellt werden. Iperf gibt die ge-
messene Bandbreite, den Delay und Paketverlust wieder,
nachdem so viel Traffic wie möglich über eine gewisse Zeit
versendet wurde. Da durch Iperf jedoch nicht speziell de-
finiert werden kann, welche Pakete wie versendet werden,
werden diese Bandbreiten-Mess-Werkzeuge nicht direkt als
Traffic-Generatoren bezeichnet.[1] 2003 wurde Iperf der Ver-
sion 1.7.0 veröffentlich. Seit 2014 existiert Iperf3, eine Re-
implementierung, um eine kleinere, einfachere Basis zu bie-
ten, mit der nun Funktionalitäten verwendbar sind, die es in
der ersten Iperf-Version nicht gab[26], wie TCP Retransmit-
Informationen, welche nun standardmäßig aktiviert sind, und
eine genauere Ausgabe bezüglich CPU-Verbrauch.[27]
Ein weiterer Traffic-Generator, der seit 2014 durch Hardwa-
re mit DPDK unterstützt werden kann, ist Ostinato, eine
Paket-basierte Generator- und Analyse-Software mit benut-
zerfreundlicher Oberfläche. Mit dieser Open Source Software
können Pakete von verschiedenen Datenströmen mit unter-
schiedlichen Protokollen und Raten versendet werden. Osti-
nato wurde im April 2010 veröffentlicht.[28]
Zudem gibt es Paket-Traffic-Generatoren, die schon 2007
versuchten, Hardware zur Unterstützung einzusetzen. D-ITG,
ein Distributed Internet Traffic Generator, welcher zu da-
maliger Zeit neuartige Protokolle unterstützte und auf dem
Intel IXP-425 Netzwerkprozessor aufbaut. D-ITG erzeugt
IPv4 und IPv6 Traffic, welche durch die inter-departure ti-
me und Paketgrößen in einem stochastischen Prozess mit
mehreren zur Verfügung stehenden Mustern erzeugt wird.
Damit kann die Verzögerung, die Hin- und Rückzeit eines
Paketes, also die Round Trip Time, Paketverlust, Schwan-
kungen und Durchsatz gemessen werden. Zudem ist es mög-
lich, jedes Experiment mit einem Random Seed zu versehen,
welche die Reproduzierbarkeit eines zufälligen Traffic-Mus-
ters garantiert. Ebenso können viele andere Bereiche des Pa-
ketes verändert werden.[29]
Ein Traffic-Generator auf Datenflussebene ist Harpoon. Es
verwendet eine Menge von Verteilungseigenschaften, die au-
tomatisch aus Netzwerkverläufen erfasst werden können, um
Datenflüsse mit denselben statistischen Angaben, wie aus
den Internetverläufen, zu erstellen. Ebenso kann Hintergrund-
Traffic generiert werden, welcher zum Testen von Anwen-

dungen, Protokollen oder Router und Switches genutzt wird.
Im Juni 2004 wurde Harpoon für die Öffentlichkeit zur Ver-
fügung gestellt.[30]
Ein Software-Traffic-Generator, welcher auf mehreren Pro-
tokoll-Ebenen arbeitet, ist Swing. Dieses Programm zeich-
net akkurat die Paketinteraktionen von Anwendungen auf
und extrahiert Verteilungen von Nutzer-, Anwendungs- und
Netzwerkverhalten. Damit kann anschließend sofort Paket-
Traffic generiert werden, welcher auf den zugrundeliegenden
Modellen der Netzwerkemulations-Umgebung mit gewöhn-
lichen Protokollstacks arbeitet. Durch die extrahierten Ver-
haltensweisen kann detailliert Burst im Traffic über zahlrei-
che Zeiträume reproduziert werden. Zudem kann der Benut-
zer in Swing Annahmen über den Traffic ändern, wie bei-
spielsweise Paketgrößen oder zusätzliche Anwendungen, um
einen neuen Traffic zu erzeugen.[31]

4. ZUSAMMENFASSUNG
In dieser Arbeit wurden die Stärken der hardware-basier-
ten und -unterstützten Traffic-Generatoren bezüglich Per-
formanz und Präzision gegenüber den einfachen, aber güns-
tigen Software-Generatoren aufgezeigt. Besonders Generato-
ren mit hoher Zeitstempelauflösung sind für Delay-Messun-
gen wichtig, da sie akkurat ausgehende, sowie eintreffende
Pakete bezeichnen können und damit eine detaillierte und
genaue Zeitinformation erhalten. Ebenso sind Generatoren
wichtig, die ungewollte Burst-Situationen beim Umsetzen ei-
ner gewissen Paketrate durch Einhalten der inter-departure
times vermeiden. Letztendlich sollte der Traffic-Generator
auch im Stande sein zu überprüfen, welcher Traffic durch ihn
verursacht und ob das angestrebte Ziel erreicht wurde, also
Daten auch überwachen, beziehungsweise aufzeichnen kön-
nen. Auch der Trend der immer schnelleren Anbindung von
100 GbE oder 400 Gigabit Ethernet sollte von moderneren
Software-Traffic-Generatoren präzise auf line rate erreicht
werden, um eine Alternative zu geschlossenen und meist un-
flexiblen Hardware-Traffic-Systemen zu bieten.

5. LITERATUR
[1] Alessio Botta, Alberto Dainotti, Antonio Pescapé: Do

You Trust Your Software-Based Traffic Generator?, in
IEEE Communications Magazine, Seite 158-165,
September 2010

[2] Line rate and bit rate, http://blog.ipspace.net/
2009/03/line-rate-and-bit-rate.html, zuletzt
besucht am 21.09.2015

[3] Spirent: HOW TO TEST 10 GIGABIT ETHERNET
PERFORMANCE, Rev. B 03/12, März 2012

[4] ImpairNet,
http://www.ixiacom.com/products/impairnet,
zuletzt besucht am 22.09.2015

[5] Spirent TestCenter,
http://www.spirent.com/Ethernet_Testing/

Software/TestCenter?docfilter=

{FF146BE3-9E89-476F-AB1E-3C176C0AB3A4}#

Overview, zuletzt besucht am 22.09.2015

[6] SPIRENT: MX 100 GIGABIT TEST MODULES,
http://www.spirent.com/~/media/Datasheets/

Broadband/PAB/SpirentTestCenter/Spirent_mX_

100G_CFP2_Datasheet.pdf, Seite 3, Rev. A 05/13,
Mai 2013

[7] Spirent TestCenter Module,

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

22 doi: 10.2313/NET-2016-07-1_03

http://www.smartechconsulting.com/

NG-100G-F2-HyperMetrics-40G-100G-Ethernet,
zuletzt besucht am 22.09.2015

[8] NetFPGA, www.netfpga.org, zuletzt besucht am
22.09.2015

[9] Greg Watson, Nick McKeown, Martin Casado:
NetFPGA: A Tool for Network Research and
Education, in 2nd workshop on Architectural Research
using FPGA Platforms (WARFP), 2006.

[10] John W. Lockwood, Nick McKeown, Greg Watson,
Glen Gibb, Paul Hartke, Jad Naous, Ramanan
Raghuraman, Jianying Luo: NetFPGA - An Open
Platform for Gigabit-rate Network Switching and
Routing, in IEEE International Conference on
Microelectronic Systems Education (MSE’07), Seite
160-161, Juni 2007

[11] All Programmable FPGAs and 3D ICs, http://www.
xilinx.com/products/silicon-devices/fpga.html,
zuletzt besucht am 22.09.2015

[12] Noa Zilberman, Yury Audzevich, G. Adam Covington,
Andrew W. Moore: ’NetFPGA SUME: Toward 100
Gbps as Research Commodity,’ IEEE Micro, vol.34,
no.5, Seite 32-41, September-October 2014

[13] NETFPGA-SUME,
http://digilentinc.com/Products/Detail.cfm?

NavPath=2,1301,1311&Prod=NETFPGA-10G-SUME,
zuletzt besucht am 22.09.2015

[14] NetFPGA 10G Board, https://github.com/NetFPGA/
NetFPGA-public/wiki/NetFPGA-10G-Board, zuletzt
besucht 23.09.2015

[15] Gianni Antichi, Muhammad Shahbaz, Yilong Geng,
Noa Zilberman, Adam Covington, Marc Bruyere, Nick
McKeown, Nick Feamster, Bob Felderman, Michaela
Blott, Andrew W. Moore, Philippe Owezarski: OSNT:
Open Source Network Tester, in IEEE Network, Seite
6-12, September/Oktober 2014

[16] Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob
Sherwood, Andrew W. Moore: OFLOPS: An Open
Framework for OpenFlow Switch Evaluation, in
Volume 7192 der Serie Lecture Notes in Computer
Science, Springer-Verlag GmbH Berlin Heidelberg,
Seite 85-95, März 2012

[17] Charalampos Rotsos, Gianni Antichi, Marc Bruyère,
Philippe Owezarski, Andrew Moore: OFLOPS-Turbo:
Testing the Next-Generation OpenFlow switch,
European Workshop on Software Defined Networks
(EWSDN), Budapest, Hungary, 2 Seiten, September
2014

[18] Gianni Antichi, Andrea Di Pietro, Domenico Ficara,
Stefano Giordano, Gregorio Procissi, Fabio Vitucci:
BRUNO: A High Performance Traffic Generator for
Network Processor, in SPECTS 2008, Seite 526-533,
Edinburgh, UK, Juni 2008

[19] Paul Emmerich, Sebastian Gallenmüller, Daniel
Raumer, Florian Wohlfart, Georg Carle: MoonGen: A
Scriptable High-Speed Packet Generator,
http://arxiv.org/abs/1410.3322, 13 Oktober 2014,
zuletzt besucht am 23.09.2015

[20] Sándor Molnár, Péter Megyesi, Géza Szabó: How to
Validate Traffic Generators?, in IEEE International
Conference on Communications 2013: IEEE ICC’13 -
1st IEEE Workshop on Traffic Identification and

Classification for Advanced Network Services and
Scenarios, Seite 1340-1344, Juni 2013

[21] 400GbE Load Modules, http:
//www.ixiacom.com/products/400gbe-load-modules,
zuletzt besucht am 24.09.2015

[22] Mausezahn, http://www.perihel.at/sec/mz/, zuletzt
besucht am 24.09.2015

[23] netsniff-ng v0.5.8-rc1,
https://github.com/netsniff-ng/netsniff-ng/

releases/tag/v0.5.8-rc1, zuletzt besucht am
24.09.2015

[24] netsniff-ng toolkit, http://netsniff-ng.org/, zuletzt
besucht am 24.09.2015

[25] Iperf - The TCP/UDP Bandwidth Measurement Tool,
http://web.archive.org/web/20081012013349/

http://dast.nlanr.net/projects/Iperf/, zuletzt
besucht am 24.09.2015

[26] iperf / iperf3,
https://fasterdata.es.net/performance-testing/

network-troubleshooting-tools/

iperf-and-iperf3/, zuletzt besucht am 07.11.2015

[27] iperf3, http://software.es.net/iperf/, zuletzt
besucht am 24.09.2015

[28] Ostinato, http://ostinato.org/, zuletzt besucht am
24.09.2015

[29] Alessio Botta, Alberto Dainotti, Antonio Pescapè:
Multi-protocol and Multi-platform Traffic Generation
and Measurement, in INFOCOM 2007 DEMO Session,
2007

[30] Harpoon: A Flow-level Traffic Generator,
http://cs.colgate.edu/~jsommers/harpoon/,
zuletzt besucht am 24.09.2015

[31] The Swing Traffic Generator,
http://cseweb.ucsd.edu/~kvishwanath/Swing/,
zuletzt besucht am 24.09.2015

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

23 doi: 10.2313/NET-2016-07-1_03

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

24

The Interface to the Routing System

Elias Hazboun
Supervisor: Edwin Cordeiro

Innovative Internet Technologies and Mobile Communications WS2015
Chair for Network Architectures and Services

Department of Informatics, Technical University of Munich
Email: hazboun@in.tum.de

ABSTRACT
Management of today’s ever growing communication net-
works is posing a challenge for network operators around
the globe; networks are expected to react quickly to change,
and automation is steadily becoming a necessity to cope
with complexity. This paper presents one of the protocols
proposed by the Internet Engineering Task Force (IETF) to
cope with such a challenge, called the Interface to the Rout-
ing System (I2RS). The protocol focuses on routing oper-
ations in networks by offering operators standardized pro-
grammatic interfaces to the routing information stored in
their devices. I2RS is based on NETCONF protocol while
its data models are based on YANG modeling language. We
argue that I2RS is a viable solution for the challenge at hand
and has a good business case for operators since it leverages
existing routing protocols and does not require a potential
overhaul of network architectures.

Keywords
I2RS, Software defined networking, network management,
NETCONF, YANG, routing system.

1. INTRODUCTION
Traffic carried by networks whether mobile, global or intra-
data-center is rapidly increasing, one estimate by Cisco
predicts that the annual global IP traffic will surpass 2.0
zettabytes (1021 bytes) by 2019 which translates to a three-
fold increase from 2014 [1]. Moreover, businesses are moving
fast and are expecting their underlying networks to be able
to follow suit [2]. Therefore, network operators today are
facing more and more pressure to be flexible to match busi-
ness change and to be efficient to cope with the ever-growing
traffic.

Software defined networking (SDN) is one possible approach
to offer this flexibility. SDN development and large scale
implementations [3] show that SDN is a viable solution for
the current network challenges [4]. In traditional networks,
the control plane and the data plane are distributed across
complex devices in the network. On the other hand, SDN
is an approach to networking in which control of the net-
work or what is called the control plane is partially or fully
centralized in a logical entity and decoupled from the actual
forwarding devices which carry the traffic [5].

Nevertheless, both SDNs and traditional networks are facing
a challenge to support complex automation and quick policy-
based interaction with network operations. Today, these

aspects are supported usually by proprietary and limited
protocols such as Cisco ACI [6] which do not facilitate use
in multi-vendor networks [7].

This gap between the needs of network operators and the
standard solutions available motivated vendors and carriers
to investigate a new protocol, which culminated in early 2013
with the Internet Engineering Task Force (IETF) creating
a working group to find such a solution particularly aimed
towards routing operations in networks, known as the Inter-
face to the Routing System (I2RS) [8]. Figure 1 illustrates
where the new protocol I2RS interacts with a network com-
pared to the currently used SDN protocol Openflow [9] (Not
shown in the figure is the possible interaction between I2RS
and the data plane for retrieving data flow information).

Figure 1: I2RS and Openflow interactions

In this paper, we present and shortly analyze the idea of
I2RS and the protocol being developed at IETF. The rest
of the paper is structured as follows: section 2 describes the
driving force behind I2RS. Section 3 focuses on the architec-
ture of I2RS and the different elements in it, while section
4 describes its data model. Section 5 mentions typical use-
cases for the protocol as set out by the IETF and section 6
offers brief analysis of I2RS. Finally, we conclude the paper
in section 7.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

25 doi: 10.2313/NET-2016-07-1_04

2. THE NEED FOR A NEW PROTOCOL
We must first understand the current state of affairs of ac-
cessing information on routing devices to recognize the key
requirements expected from I2RS and its goals.

Today, a typical network operator manages a large number
of routing devices purchased from multiple vendors and run-
ning a variety of routing protocols. These devices maintain
information that is integral to their function. For example, a
Routing Information Base (RIB) contains routes to network
destinations learned from routing protocols such as BGP or
OSPF. Additional information might include counters and
statistics in addition to packet forwarding rules pertaining
to the forwarding plane of these devices.

Access to the previous information is an essential part for
successful network management. To this end, operators usu-
ally use a combination of the following three methods.

• Command line interface (CLI): vendor specific com-
mands are entered by a network engineer in a Unix
like shell to edit or learn device states.

• Simple Network Management Protocol (SNMP): a his-
toric and popular protocol that is most often used to
retrieve (and to lesser extent modify) state informa-
tion about devices. It is based on simple scalar data
types to represent network configuration data [10].

• Network Configuration Protocol (NETCONF): a mod-
ern protocol that uses remote procedure calls (RPC)
to configure devices; it is focused on being simple and
extensible therefore it uses XML for data encoding [11].

Vendors have realized the shortcomings of using legacy tech-
niques in network-oriented applications and automation, for
example CLI scripting is not easy to use when it comes to
data retrieval and filtering, while SNMP users are faced with
lack of both configuration semantics and expressing power of
models. Consequently, proprietary protocols and interfaces
to access information have emerged through the years to
solve specific use-cases. These protocols however are limited
and hard to integrate into multi-vendor networks, neverthe-
less they are used today. Their deployment demonstrates
the dire need for a standardized method of accessing and
manipulating routing information [7].

This is where I2RS steps in. It is in a sense, not a replace-
ment of the three methods of management mentioned above,
but a new method that focuses on creating a standardized
data-model driven interface for the secure and dynamic ac-
cess of information in routing devices. Thus, I2RS can be
defined as ”a programmatic asynchronous interface for trans-
ferring state into and out of the internet routing system”
[12].

I2RS is still a work-in-progress and some of its aspects have
not been agreed upon completely yet. Nevertheless, from
the previous discussion, we can already derive four key as-
pects that drive I2RS development as proposed by the IETF.
First, it has to offer a fast, programmatic, asynchronous ac-
cess for atomic operations. Second, it has to offer access to
information not easily accessible by existing configuration

protocols. Third, it has to offer the ability to retrieve data
as well as to subscribe to event notifications from devices.
Fourth, it has to be data-model driven to facilitate extensi-
bility and standardization [12].

3. ARCHITECTURE
The architecture of I2RS is designed in a way that facilitates
control and enables network applications to be built on top
of networks. In this section we explain I2RS architecture,
its properties and interactions.

3.1 Architectural Properties
I2RS protocol has to possess some defining properties to
achieve its goals. The IETF has laid these out in [12] and
can be summarized as such:

Perhaps the most logical property is simplicity, since most
network operators agree that complex protocols are often
error prone and are difficult to operate and implement cor-
rectly. However, maintaining simplicity of a protocol that
accesses a wide variety of data types stored on different types
of devices can be a challenge of its own.

Additionally, for a protocol that is reliant on modeling cur-
rent and future data, I2RS must have easy extensibility or
otherwise its limitations will quickly catch up to its poten-
tial and hinder its adoption. That is why the IETF is be-
ing careful with designing models that are extensible in a
straightforward fashion.

Moreover, model-driven programmatic interfaces are re-
quired since current routing data models and the mecha-
nisms to access them on devices are not standardized and
are governed by vendor specific rules. This hinders interop-
erability and the ease of application implementation. Hence,
I2RS must utilize a standard model-driven protocol which
facilitates data access through automated applications.

Finally, performance and scalability are expected of I2RS be-
cause routing systems are anticipated to have a high num-
ber of operations and changes per second while requiring
low latency execution to ensure smooth management. One
method for achieving scalability is through filterable access
to data, while another is through multi-channel communi-
cation between I2RS clients and agents as discussed in sub-
section 3.2.

3.2 Major Architectural Components
In terms of the architecture of I2RS, we identify five major
components [12] and discuss their interactions below.

Network application: a network oriented piece of software
with the goal of accessing or manipulating network states.
It achieves its goal by communicating with I2RS clients.

I2RS client: an entity that implements the I2RS protocol
and communicates with I2RS agents to access their services,
in order to gain access to network information or to modify
it. A client could be either an external I2RS library or simply
the piece of code that is I2RS aware inside an application.

I2RS service: a set of functions for information access and

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

26 doi: 10.2313/NET-2016-07-1_04

modification coupled with their usage policy. They are de-
fined by a given data-model such as MPLS or BGP services
which provide access to MPLS and BGP related states re-
spectively.

I2RS agent: an entity that actually interacts with the rout-
ing element sub-systems to obtain and modify their states;
it provides this functionality as an I2RS service for request-
ing clients. How agents access this information is out of the
scope of I2RS. However, how the data is presented, i.e. its
models, is an integral part of I2RS.

Routing element: in the scope of I2RS, a routing element is
any device that implements some functionality pertaining to
routing; it could be a traditional router implementing BGP
or the logical control plane of an SDN controller.

No matter what the implementation of a specific routing el-
ement is, an I2RS agent’s behavior to clients must not be
affected. For example, in the case of a physically distributed
routing element, an agent should still support the access of
data from the whole element. Additionally, multiple agents
can reside on a single routing element; in that case, they
must be responsible for the service of separate sets of infor-
mation to ensure simplicity.

3.3 Roles, Identities, and Priorities
Access to such delicate information on routing elements must
have some kind of access control and tracking; to this end
I2RS defines roles that can be assigned to clients, where a
role of an I2RS client defines its read/write and subscription
rights (called scopes). Furthermore, I2RS assigns identities
to clients which agents use for authentication [13]. Finally,
a client may have a priority attribute that can aid in case
of state access conflicts which we will discuss at the end of
subsection 3.4.

3.4 I2RS Interactions
Figure 2 illustrates the components mentioned in subsection
3.2 and their associated connections. An application can
communicate with multiple local and remote I2RS clients
and conversely an I2RS client can respond to multiple ap-
plications. Clients on the other hand are served by agents
running on routing elements, where if necessary, a single
client can request from multiple agents on the same or dif-
ferent routing elements. Finally, an agent is able to serve
more than one client at a time.

I2RS is mainly focused on the interactions between agents
and clients, where agents provide - through their advertised
services - the ability for clients to access and modify data on
the routing elements in addition to the ability to subscribe
to events affecting these elements.

Agents can access the data of three components on the rout-
ing elements: The routing subsystem which includes the RIB
manager and routing protocols like BGP, the dynamic sys-
tem state which includes the various counters and data flow
information, and finally the static system state which in-
cludes data pertaining to the system itself such as inter-
face information. One point to note is that I2RS agents
are not directly accessing the Forwarding Information Base

Figure 2: Interactions between I2RS clients and
agents

(FIB), but rely on devices themselves to translate I2RS RIB
changes into corresponding FIB entries on their own.

Routing elements and their agents keep track of I2RS state
changes in the I2RS data store which comprises records of
changes and their requesting clients as well as the active sub-
scriptions by clients. A data store is only stored in memory
and will be lost upon reboot, hence it is called an ephemeral
state [14]. Therefore, any implementation must be careful
to specifically assign I2RS changes as ephemeral, so that
even when the running configuration is copied to a persis-
tent memory for example, these changes will not. Using
the data-store, an agent must have the ability to roll back
changes it has applied since the client interaction when nec-
essary; this roll back usually reverts to the state specified by
other means of device configuration.

As agents modify these states on routing elements, conflicts
may arise between requested modifications and the configu-
ration provided by means other than I2RS such as SNMP or
CLI. In such cases, a clear operator policy must be in place
to enforce a pre-determined behavior. Whatever the policy
may be, the agent must notify the requesting client if their
request was blocked.

Additional conflicts can arise from two clients trying to mod-
ify the same state on an I2RS agent; however, this case
should be avoided as I2RS considers it an error. Neverthe-
less, if such a case does occur, an agent must try to resolve
this issue by first considering the priorities of clients or by
a first come first served basis. No matter the conflict sce-
nario that might occur in agent implementation, the design
property of simplicity dictates that the behavior must be
predictable and the error reportable to affected clients.

3.5 Notable Protocol Considerations
The IETF working group opted for a model of I2RS where
existing protocols are utilized and leveraged as much as pos-
sible. To that end, it was agreed that the I2RS shall be
based on NETCONF [11] and its close sibling with a REST

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

27 doi: 10.2313/NET-2016-07-1_04

interface RESTCONF [15]. Nevertheless, the I2RS working
group has also recognized that some modifications must be
made to these protocols before being used in I2RS, espe-
cially in regards to security aspects. As for the transport
layer protocol, the working group has left it as an operator
chosen aspect, as long as features of integrity, authentication
and ease of deployment are fulfilled.

In regards to the atomicity of operations performed by
agents, no guarantees beyond a single client message shall be
made. An agent will not try to have roll back mechanisms
for multiple client messages. This limitation is in a sense
a feature that pledges simplicity and predictable behavior
which are part of the goals of I2RS. In the case of error
handling within a single message, a client can signal to the
agent one of three kinds of behavior; perform all operations
or none at all in case of error, perform all operations up to
the point of error or attempt to perform all operations re-
gardless of errors. No matter the behavior set by the client,
an agent must reply with explicit success or failure messages
to requesting clients.

3.6 Security Considerations
I2RS exposes sensitive interfaces to the routing system, the
access of which requires security guarantees in order to be
adopted by operators. In this section, we present major
I2RS security aspects.

First of all, I2RS assumes that a routing element can trust
an I2RS agent residing on it, since it is a part of it, whether
as a part of the operating system image or as a signed add-
on to it. However, such trust cannot be established between
a client and an agent, therefore some kind of mutual authen-
tication must take place before operations can be permitted.
A client must be able to verify the identity of the agent it
is trying to communicate with and its attached routing ele-
ment. Additionally, an agent must be able to authenticate
a client based on its supplied identity in the communication
channel [13].

Using this identity, an agent can link a client to a role that
has a set of specific scopes (read/write and subscription
rights); these in turn will be used for authorization purposes
before performing any operations on behalf of the client.

Moreover, data confidentiality is vital for sending sensitive
configuration and statistics over the network; operators are
reluctant to transport network information in plain text.
However, I2RS acknowledges that there should be support
for cases where confidentiality is not explicitly needed by an
operator. As a result, communication channels may support
unsecure transport layer protocols. As for data integrity, the
proposed I2RS protocol should be able to protect against
data modification in transit as well as replay attacks where
messages are merely repeated by attackers [13].

4. INFORMATIONAL MODEL
At the heart of I2RS are the standard data models and their
semantics, which serve as interfaces for information in rout-
ing elements. These models should be extensible by design
and try to - if possible - use preexisting data models. The
I2RS working group has chosen YANG [16] to be the lan-
guage used for modeling. YANG was also developed at the

IETF and is an acronym for ”Yet Another Next Genera-
tion”, it is a modern data modeling language that uses trees
to model configuration and state data. Although not based
on XML, it has an associated language called YIN which
maps its data models into XML. Yang features a small set of
prebuilt standard models but supports extensibility through
derivation for vendor created data types [17].

I2RS aims primarily to use YANG to model the states and
elements in the RIB, which is where a standardized pro-
grammatic interface is currently critically missing. How-
ever, I2RS agents shall support services for other states in
a routing element ranging from Border Gateway Protocol
(BGP) and Inter-gateway Protocol (IGP) to Quality of ser-
vice (QoS) and policy mechanisms.

To be vendor agnostic, the I2RS information model must
be compatible with all the various routing elements in the
network and their different implementations. To that end,
I2RS borrows from object oriented paradigm to define ob-
ject classes, types and inheritance. For example, a parent
class can have all the common attributes found in all routing
devices, while its subclasses add vendor or use-case specific
attributes. Moreover, an agent may not support all classes or
attributes in a service and shall communicate to requesting
clients through a capability model what it currently offers.

Finally, objects in routing elements seldom exist alone and
are rarely unaffected by other objects, thus the I2RS infor-
mation model must express these relationships as clear and
robust as possible.

Figure 3 shows an example of partial modeling of a route
object in the RIB, a route is matched based on one of five
criteria and of course for a given route a next hop must be
given.

Figure 3: Interactions between I2RS Clients and
agents

5. USE CASES
For a new protocol to succeed and be adopted by network
operators, it has to meet their needs and expectations. It
has to stem from their current and anticipated requirements.
Therefore, I2RS must be designed with its envisioned use-
cases in mind. Nevertheless, covering all possible use-cases
can lead to the protocol bearing too many responsibilities
and becoming too complex. That does not mean however,

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

28 doi: 10.2313/NET-2016-07-1_04

that a protocol must simply ignore proposed use-cases, but
perhaps leave their support for the future or vendor specific
extensions.

So for a protocol that promises standardized access for rout-
ing information across a wide variety of devices, the task of
adopting and supporting use cases becomes a balancing act
that should be carefully analyzed. The following are two
example use-cases accepted by I2RS working group [18].

Distributed Reaction to Network Based Attacks: I2RS can
be used to quickly modify control planes in case of attacks
to either filter or direct suspicious traffic to analyzers. I2RS
here is essential for three key elements: quick reaction times,
distributed control, and the injection of temporary states
that do not affect long term policies installed. Today, ad-
ministrators handle this use-case by either manually entering
(and later deleting) commands to filter traffic, or by asking
their network provider to do such a task from their end.
Both of which are not as quick and are more error prone
than an automated solution provided by I2RS.

Intra-Data Center Routing : Data centers today are rapidly
increasing in size and network operators are resorting to
applying large multi-tiered topologies with BGP and IS-IS
as routing protocols. I2RS provides operators in data centers
quick access to topology changes and data flow information,
which in turn translates into faster adaption and insertion
of new routing policies as needed.

One possible example to the first use case is an application
that collects statistics in a network. The application could
use a library that acts as an I2RS client to subscribe to rel-
evant notifications offered by I2RS agents. In one scenario,
the application receives enough notifications that could lead
it to conclude that an attack is being mounted on a part of
the network. The application could then - using the I2RS
client - issue write operations to agents in the affected part
to defend against the attack by changing the routing pol-
icy. Moreover, when the attack is sensed to have come to
an end, the application could revert its policy change. Such
automation and interaction using complex reasoning is a key
element for the future of traditional networks and SDNs.

From the previous two use-cases in addition to others, some
frequent interactions of I2RS can be deduced:

• Accessing routes currently installed in the RIB as well
as receiving near real-time notifications in case of their
removal or change.

• Installing source and destination based routes in the
RIB with all their related information.

• Interacting with traffic flow and other network traffic
measurement protocols to determine path performance
and make path decisions.

6. ANALYSIS
I2RS as a protocol is still in development. Nevertheless,
based on the working group drafts and its reliance on
NETCONF and YANG, we can analyze it and discuss its
possible future implementations.

6.1 Possible Implementations
I2RS still has no existing real world implementations yet.
However, some implementation efforts are already under-
way; one of which is currently planned at our chair for net-
work architectures and services; we present here two ap-
proaches for possible I2RS implementations. The first ap-
proach, currently spearheaded by the chair of I2RS working
group (Susan Hares) [19], relies on integrating I2RS into
OpenDaylight (ODL) which is an open source platform for
programmable SDNs [20]. This approach benefits from the
capability of ODL to access the Linux kernel and is also
supported by industry vendors who already expressed inter-
est in supporting ODL. The other approach which is based
on Bird (an open source software routing project) [21], re-
lies on programming I2RS as another protocol like BGP or
OSPF, which will allow I2RS to directly access and manip-
ulate routes as needed [22].

These implementation efforts are essential for the devel-
opment of I2RS because they prove its feasibility and de-
ployability and most importantly they expose unanticipated
shortcomings, as stated by David Clark and added to IETF
Tao: ”We believe in rough consensus and running code” [23].
For example, at the 94th IETF hackathon, the team working
on I2RS found out that I2RS lacked any information regard-
ing secondary pathways for sending analytical data by other
protocols such as IPFIX [24], which prompted that more
work and specification must be done in that area [19].

6.2 SDN & I2RS
A comparison can be made between I2RS and OpenFlow
which drives SDN at the moment. OpenFlow is focused on
direct interaction with the forwarding plane and essentially
treats devices as simple switches [9]. On the other hand,
I2RS is focused on policy change and the RIB, and actually
depends on the device itself to do the appropriate forward-
ing plane changes. Furthermore, I2RS relies on much more
interaction with existing routing protocols and technologies
to enable reuse and easy deployment.

For that reason, we believe that I2RS succeeds in proving
its business case to network operators better than a com-
plete SDN solution, since its adoption won’t mean the com-
plete change of the network architecture like most SDN so-
lutions require. They can still use all the existing solutions
for routing and control plane to FIB communication, but
they now have the power to automate complex operations
across all their various devices. Nevertheless, it can also be
projected that I2RS will help the gradual introduction of
SDN approaches to traditional networks and even facilitate
the adoption of what is called hybrid SDNs [25].

6.3 Reliance on NETCONF and YANG
The possibility of using NETCONF and YANG for automa-
tion of network operations was of interest long before the
I2RS working group was created. A 2011 paper [26] by
Tail-f Systems, highlighted the benefits of using a rich lan-
guage such as YANG compared to solutions based on SNMP,
in addition to the importance of transaction-based manage-
ment protocol that supports consistency checking such as
NETCONF.

Based on these standards, we can already have some un-

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

29 doi: 10.2313/NET-2016-07-1_04

derstanding of I2RS expected performance. For example,
the use of XML in NETCONF grants three main benefits:
human-readability which facilitates debugging, flexibility in
structuring data, and extensibility of message format [27].
Moreover, multiple studies have analyzed resource usage and
efficiency of XML based solutions compared to other man-
agement protocols and the consensus was that with proper
processing and data compression, XML outperforms legacy
management solutions [28] [29]. Additionally, several imple-
mentations of NETCONF/YANG have been done by both
the industry and the academia with partial support of older
protocols like SNMP. This means that although I2RS is a
new protocol, its reliance on modern yet tested protocols
gives it robustness and a starting point for early imple-
menters.

7. CONCLUSION
In this paper, we presented the I2RS protocol which is cur-
rently in development by the IETF as a solution for the
challenge of accessing information stored in the routing sys-
tem of today’s complex and ever growing networks. I2RS
aims to offer programmatic standardized interfaces in which
read/write operations and event notification subscriptions
are offered to network oriented applications. Its base pro-
tocols of NETCONF and YANG have both been proved to
be efficient and are currently supported by major vendors
and operators. Some considerations must still be amended
to both of them before being adopted, for example, in terms
of security.

Finally, a protocol’s specification and architectural sound-
ness do not guarantee its adoption, it must also be able to
present a case for its adoption to network operators. To
this end, we have shown that I2RS offers a middle ground
between traditional networks and complete SDN solutions,
where operators are not required to change their entire in-
frastructure but can deploy I2RS to leverage existing routing
protocols.

8. REFERENCES
[1] Cisco Inc. Cisco Visual Networking Index: Forecast

and Methodology, 2014-2019. White paper, Cisco Inc.,
May 2015. http://www.cisco.com/c/en/us/
solutions/collateral/service-provider/

ip-ngn-ip-next-generation-network/white_paper_

c11-481360.pdf (Accessed 9 Dec. 2015).

[2] Susan Hares and Russ White. Software-Defined
Networks and the Interface to the Routing System
(I2RS). IEEE Internet Computing, 17(4):84–88, 2013.

[3] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah
Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon
Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat.
B4: Experience with a Globally-deployed Software
Defined Wan. SIGCOMM Comput. Commun. Rev.,
43(4):3–14, August 2013.

[4] Hyojoon Kim and Feamster, N. Improving network
management with software defined networking.
Communications Magazine, IEEE, 51(2):114–119,
February 2013.

[5] Open Networking Foundation. Software-Defined
Networking: The New Norm for Networks. White

paper, Open Networking Foundation, Palo Alto, CA,
USA, April 2012. http://www.opennetworking.org/
images/stories/downloads/sdn-resources/

white-papers/wp-sdn-newnorm.pdf (Accessed 20
Dec. 2015).

[6] Cisco Inc. Cisco Application Centric Infrastructure
Microsegmentation Solution. White paper, Cisco Inc.,
2015. http://www.cisco.com/c/en/us/solutions/
collateral/data-center-virtualization/

application-centric-infrastructure/

white-paper-c11-736420.pdf (Accessed 9 Dec.
2015).

[7] Alia Atlas, Tom Nadeau, and David Ward. Interface
to the Routing System Problem Statement.
Internet-Draft draft-ietf-i2rs-problem-statement-08,
IETF Secretariat, December 2015.
https://datatracker.ietf.org/doc/

draft-ietf-i2rs-problem-statement/ (Accessed 20
Dec. 2015).

[8] I2RS Working Group. Interface to the Routing System
Charter. Working Draft, October 2015. https:
//datatracker.ietf.org/doc/charter-ietf-i2rs

(Accessed 16 Dec. 2015).

[9] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford,
Scott Shenker, and Jonathan Turner. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM
Comput. Commun. Rev., 38(2):69–74, March 2008.

[10] Jeffrey D. Case, Mark Fedor, Martin Lee Schoffstall,
and James R. Davin. Simple Network Management
Protocol (SNMP). STD 15, RFC Editor, May 1990.

[11] R. Enns, M. Bjorklund, J. Schoenwaelder, and
A. Bierman. Network Configuration Protocol
(NETCONF). RFC 6241, RFC Editor, June 2011.

[12] Alia Atlas, Joel Halpern, Susan Hares, David Ward,
and Tom Nadeau. An Architecture for the Interface to
the Routing System. Internet-Draft
draft-ietf-i2rs-architecture-10, IETF Secretariat,
November 2015. https://datatracker.ietf.org/
doc/draft-ietf-i2rs-architecture/ (Accessed 19
Dec. 2015).

[13] Susan Hares, Scott Brim, Nancy Cam-Winget,
Dacheng Zhang, Qin Wu, Ahmed Abro, Salman
Asadullah, Joel Halpern, and Eric Yu. I2RS Security
Considerations. Internet-Draft
draft-hares-i2rs-security-03, IETF Secretariat,
February 2015. https://datatracker.ietf.org/doc/
draft-hares-i2rs-security/ (Accessed 11 Dec.
2015).

[14] Jeffrey Haas and Susan Hares. I2RS Ephemeral State
Requirements. Internet-Draft
draft-ietf-i2rs-problem-statement-02, IETF
Secretariat, March 2016. https://datatracker.ietf.
org/doc/draft-ietf-i2rs-ephemeral-state/

(Accessed 19 Dec. 2015).

[15] Andy Bierman, Martin Bjorklund, and Kent Watsen.
RESTCONF Protocol. Internet-Draft
draft-ietf-netconf-restconf-09, IETF Secretariat,
December 2015. https://datatracker.ietf.org/
doc/draft-ietf-netconf-restconf/ (Accessed 18
Dec. 2015).

[16] M. Bjorklund. YANG - A Data Modeling Language

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

30 doi: 10.2313/NET-2016-07-1_04

for the Network Configuration Protocol (NETCONF).
RFC 6020, RFC Editor, October 2010.

[17] J. Schönwälder, M. Björklund, and P. Shafer. Network
Configuration Management Using NETCONF and
YANG. Communications Magazine, IEEE,
48(9):166–173, Sept 2010.

[18] Russ White, Susan Hares, and Alvaro Retana.
Protocol Independent Use Cases for an Interface to
the Routing System. Internet-Draft
draft-white-i2rs-use-case-06, IETF Secretariat, July
2014. https://datatracker.ietf.org/doc/
draft-white-i2rs-use-case/ (Accessed 18 Dec.
2015).

[19] Hares, Susan. ”I2RS Implementation”. I2RS Mailing
List. IETF, 16 Dec. 2015.
https://mailarchive.ietf.org/arch/msg/i2rs/

KDvuzS3B_cvyF6nA-zZkKE3Ibo4 (Accessed 20 Dec.
2015).

[20] J. Medved, A. Tkacik, R. Varga, and K. Gray.
OpenDaylight: Towards a Model-Driven SDN
Controller architecture. In World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2014 IEEE
15th International Symposium on a, pages 1–6, June
2014.

[21] The Bird Internet Routing Daemon Project.
http://bird.network.cz (Accessed 15 Dec. 2015).

[22] Private correspondence with Bird Developers. ”I2RS
Implementation”. 17 Dec. 2015.

[23] Paul Hoffman. The Tao of IETF: A Novice’s Guide to
the Internet Engineering Task Force, 11 2012.
https://www.ietf.org/tao.html (Accessed 20 Dec.
2015).

[24] B. Claise, B. Trammell, and P. Aitken. Specification of
the IP Flow Information Export (IPFIX) Protocol for
the Exchange of Flow Information. STD 77, RFC
Editor, September 2013.
http://www.rfc-editor.org/rfc/rfc7011.txt.

[25] C. E. Rothenberg, R. Chua, J. Bailey, M. Winter,

C. N. A. CorrÃ la, S. C. de Lucena, M. R. Salvador,
and T. D. Nadeau. When open source meets network
control planes. Computer, 47(11):46–54, Nov 2014.

[26] Stefan Wallin and Claes Wikström. Automating
Network and Service Configuration Using NETCONF
and YANG. In Proceedings of the 25th International
Conference on Large Installation System
Administration, LISA’11, pages 22–22, Berkeley, CA,
USA, 2011. USENIX Association.

[27] Gerhard Münz, Albert Antony, Falko Dressler, and
Georg Carle. Using NETCONF for Configuring
Monitoring Probes. In IEEE/IFIP NETWORK
OPERATIONS & MANAGEMENT SYMPOSIUM
(IEEE/IFIP NOMS 2006), POSTER SESSION, 2006.

[28] James Yu and Imad Al Ajarmeh. An Empirical Study
of the NETCONF Protocol. International conference
on Networking and Services (ICNS’06), 0:253–258,
2010.

[29] T.F. Franco, W.Q. Lima, G. Silvestrin, R.C. Pereira,
M.J.B. Almeida, L.M.R. Tarouco, L.Z. Granville,
A. Beller, E. Jamhour, and M. Fonseca. Substituting
COPS-PR: an evaluation of NETCONF and SOAP for
policy provisioning. In Policies for Distributed Systems
and Networks, 2006. Policy 2006. Seventh IEEE

International Workshop on, pages 10 pp.–204, June
2006.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

31 doi: 10.2313/NET-2016-07-1_04

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

32

How-To Compare Performance of Data Plane Devices

Matthias Holdorf
Advisors: Daniel Raumer and Florian Wohlfart

Innovative Internet Technologies and Mobile Communications WS2015/2016
Chair for Network Architectures and Services

Department of Informatics, Technische Universität München
Email: matthias.holdorf@tum.de

ABSTRACT
Over the past years network technologies have grown and
evolved fast. The requirements on network devices have
become more complex and diverse. In order to measure and
compare the performance of data plane devices, benchmarks
are used. This paper describes a taxonomy of benchmark
methodologies as well as the requirements and test setups
to assess them. It is surveyed which of these benchmarks
are used by test equipment vendors. Based on this survey,
the methodologies are discussed in usefulness and feasibility
of their measurements.

Keywords
Performance Testing, Benchmarks, Data Plane Devices, RFC-
2544, RFC-2889, ITU-T Y.1564

1. INTRODUCTION
The convergence of several traffic types and the increas-
ing data rates lead to higher performance requirements on
networks. With new technologies emerging, such as Cloud
Computing and Software-Defined Networking (SDN), today’s
networking architecture is transforming. [2, 3] The perfor-
mance of data plane devices influences the network size, sta-
bility and reliability. The definition and tasks of a data plane
device are described in chapter 2. In order to compare these
devices, benchmarks are used. The term benchmark refers
to a test, used to evaluate the performance of a network
device under predefined starting conditions, relative to the
performance of another device under the same conditions.
The goal of a benchmark is to enable a meaningful compari-
son between two devices. [1] There are different benchmark-
ing recommendations for data plane devices, as discussed in
chapter 3.

Benchmarking was developed to measure the perfor-
mance of a Device under Test (DUT). But there are addi-
tional aspects that need to be considered when defining a
benchmark. One of them is comparability. In order for a
benchmark to deliver a fair comparison between two DUTs,
independently executed test runs should yield comparable
results. This is of course, given the circumstances that both
setup environments are identical. The comparability is also
affected by the repeatability of a benchmark on an identi-
cal DUT in different moments in time. In order to achieve
a fair comparison, the test setup and the experimentation
methodologies need to be well defined. [2] The definition of
the requirements, test setups and the execution of bench-
mark tests are depicted in chapter 4.

In chapter 5 the benchmarking methodology as described
in the RFC-2544 is outlined as well as the reporting for-
mat. The usage of benchmark methodologies by test equip-
ment vendors are investigated in chapter 6 and 7. Based on
this survey, the usefulness and feasibility of the described
methodologies are discussed in chapter 8.

2. NETWORK TRAFFIC PLANES
Every network device can be partitioned into three basic el-
ements with distinct activities: (1) the data plane, (2) the
control plane and (3) the management plane. Each logically
separated plane classifies a different type of traffic in the
network. Every plane has its own distinctive characteris-
tic and security requirements. These three planes are the
components of the layered architecture that networks have
evolved to today. [4, 5, 6, 9] In traditional networking, the
three planes are implemented in the firmware of routers and
switches. [7, 8] In the following chapters the three network
traffic planes are described in more detail. The task of each
device is explained, their distinction in responsibilities as
well as their interdependencies.

2.1 Management Plane
The management plane handles the administrative interface
into the overall system. It is also associated with monitor-
ing, configuration and maintenance of a system. The man-
agement plane is often considered as a subset of the control
plane. [9, 10]

2.2 Control Plane
The control plane is responsible for routing decisions. It is
the Signalling of the network. Therefore, it comprises the
protocols by which routers learn the forwarding topologies
and the state of the network. Implementing these complex
protocols in the data plane would lead to poor forwarding
performance. Thus, it maintains the information necessary
for the data plane to operate. [9, 10, 20, 21] This informa-
tion is collected by routing protocols like Open Shortest Path
First (OSPF), Enhanced Interior Gateway Routing Protocol
(EIGRP) or Border Gateway Protocol (BGP). [10]

The control plane informs the data plane about the
collected information. This updates the Routing Informa-
tion Base (RIB) or a separate Forwarding Information Base
(FIB) of the data plane. End users rarely interact with the
control plane. One exception is the ICMP ping, where a
control plane protocol can be directly employed. [9]

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

33 doi: 10.2313/NET-2016-07-1_05

2.3 Data Plane
The data plane is also known as forwarding plane. It is de-
fined as the part of the network that carries the traffic. It
enables data transfer to and from clients, handling multiple
conversations through multiple protocols. Data Plane traffic
should not have destination IP addresses that refer to any
networking device. It should rather be sourced from and
destined to a certain devices e.g. a server or client. The
main task of a router in the case of the data plane is to
merely forward a packet. [9]

Under normal circumstances transit packets constitute
a large amount of traffic that enters the data plane. This is
the reason why routers use specialized forwarding hardware,
such as Application-Specific Integrated Circuits (ASIC), to
accomplish this forwarding as fast as possible. [9, 10] How-
ever, there are exceptions that need to be taken into account.
Not every transit packet belongs to the data plane and not
only transit traffic is forwarded by the data plane. In the
case of such an exception, additional router processing re-
sources are consumed to forward a packet. The data plane
should be focused on forwarding packets but is yet com-
monly burdened by other activities: NAT session creation
and NAT table maintenance, NetFlow Accounting, Access
Control List (ACL) logging and error signalling (ICMP). [5,
9]

In order to define data plane devices, the definition that
every networking device consists of the three layered plane
architecture (including the data plane) is used. Thus, in or-
der to define a data plane device, we first need to define a
network device. [4, 5, 6, 9]

After the examination of additional sources [11, 12,
13, 14, 15, 16], the following devices can be classified as
data plane devices: Network Interface Card, Repeater, Hub,
Bridge, Switch, Router, Firewall and Gateway. Since the
survey of all devices is beyond the scope of this paper, only
the performance benchmarking of routers and switches are
examined.

3. BENCHMARK STANDARDS
The Benchmarking Methodology Working Group (BMWG)
is a working group of the Internet Engineering Task Force
(IETF). It proposes recommendations concerning the per-
formance of networking devices and services. The BMWG
defines benchmark methodologies for the management, con-
trol and data plane. [17, 18, 19]

The Request for Comments (RFC) 2544: Benchmarking
methodology for network interconnect devices [23], which is
proposed by the BMWG, is widely accepted in the industry.
The proposal became an international standard for testing
the performance of networking devices. [49, 50] It provides
the benchmarking tests for the performance indices defined
in the RFC-1242 [22], as well as the test setup conditions
to apply and report format to document the tests. [1] Since
the RFC-2544 does not address some of the specificities of
IPv6, a new recommendation RFC-5180: IPv6 Benchmark-
ing Methodology for Network Interconnect Devices [45] was
proposed by the BMWG.

The BMWG further proposed the RFC-2889: Bench-
marking Methodology for LAN Switching Devices [24], which
extends the general methodology for benchmarking tests de-

fined in the RFC-2544 to specific properties of LAN switch-
ing devices. This proposal primarily focuses on devices which
can be assigned to the OSI-Layer 2.

There are additional recommendations from other or-
ganizations which can be applied to performance test data
plane devices. [41] One of them is the ITU-T Y.1564: Eth-
ernet Service Activation Test Methodology [42], which is also
called EtherSAM. [43] This recommendation was developed
to address drawbacks of the RFC-2544 in terms of testing
today’s Ethernet services and validating service-level agree-
ments (SLA). [43] The MEF 14, proposed by the Metro
Ethernet Forum (MEF), defines test procedures that may
be specified as part of a Service Level Specification (SLS)
for an Ethernet service. [44]

Moreover, network testing service providers define their
own benchmark recommendations. The switch testing test
plan from Ixia [48] builds on the RFC-2544 and RFC-2889,
but extends them by additional benchmarking tests.

4. PREREQUISITE FOR TESTING
This chapter describes the prerequisites that need to be de-
fined prior to the application of performance testing. In
particular, these are the requirements, the test setup and
the test execution. In order to have a fair comparison be-
tween two or more DUTs, it is essential that these topics are
well defined.

4.1 Requirements
The DUT must be configured by the provided instructions.
Particularly, it is anticipated that all of the supported pro-
tocols are configured and enabled. It is expected that all
performance benchmarking tests run without altering the
configuration of the DUT in any way other than specified in
the requirements for the specific test. This should prevent
manipulation to enhance the test results. For example, it is
not allowed to disable all transport protocols but one; while
testing that specific transport protocol. Further, the DUT
should include the usual recommended routing update in-
tervals and keep alive frequency. This procedure should en-
sure transparency and therefore a fair comparison between
DUTs. [23]

In order to facilitate this transparency, well specified
frame formats and sizes should be used while performing the
tests. In addition, it is of interest to know the performance
of a DUT under a number of different conditions. The per-
formance tests should be applied under as many conditions
as the test equipment can simulate. Therefore, the test suite
should first be run without any modification. After that, the
test should be repeated under each available condition sep-
arately. If the number of conditions or interesting condition
combinations is feasible, the tests may also be performed
while successively adding conditions. [23]

While not all possible manipulation can be covered, and
the single DUTs vary in complexity and setting options,
the exact configuration of the DUT and software, including
which functions are disabled, have to be included as part of
the report of a performance benchmark test. [23]

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

34 doi: 10.2313/NET-2016-07-1_05

4.2 Test Setup
The RFC-2544 document moreover explains how the defined
benchmark tests may be set up. Ideally, the series of tests
is performed with a tester with both transmitting and re-
ceiving ports. Consequently a connection is made from the
sending ports of the tester to the receiving ports of the DUT
and also another connection from the sending ports of the
DUT to the receiving ports of the tester (see Figure 1). This
way the tester can determine how many packets received by
the DUT were transmitted. In addition, the tester can verify
that the correct packets were received. [23]

Figure 1: Test Setup [23]

4.3 Test Execution
The execution of a performance test as described in [23]
consists of multiple trials. Each of these trials returns a
specific piece of information, for example the throughput at
a particular input frame rate. There are five phases which
each trial undertakes according to the RFC-2544:

1. In case the DUT is a router, send the routing update
and pause two seconds to ensure the update is done.

2. Send the learning frames to the output port and wait
for two seconds. The learning frames to be used should
be uniformly specified.

3. Run the performance test trial.

4. Wait for two seconds for any remainder frames to be
received.

5. Wait for at least five seconds for the DUT to stabilize.

The objective for benchmarking tests is to determine the
results which can be continuously expected by the DUT.
Therefore, the duration of a trial must be a compromise be-
tween the accuracy and the duration of a trial. While more
trials yield to better statistical evaluable results, it might
not be feasible to run a lot of trials with a long duration,
especially when different conditions should be taken into ac-
count. However, the duration of a trial should be at least
60 seconds.

5. TAXONOMY OF PERFORMANCE TEST
This chapter describes the performance benchmark tests and
the reporting formats which are defined in the broadly ac-
cepted standard document RFC-2544. The performance in-
dexes for these tests are derived from the RFC-1242. [23]

5.1 Throughput
The objective is to determine the packet forwarding capabil-
ity as defined in the RFC-1242. This refers to the maximum

amount of packets per second that a DUT can forward with-
out losing any packet. [1] In order to determine the through-
put of a DUT, the following procedure is applied: Send a
specific number of frames at a particular rate through the
DUT. Afterwards, the number of transmitted frames by the
DUT is counted. If fewer frames are transmitted than sent
to the DUT, the test is rerun with a reduced number of
frames sent to the DUT. The throughput is defined as ”the
fastest rate at which the count of test frames transmitted by
the DUT is equal to the number of test frames sent to it by
the test equipment.” [23]

The achieved results of this benchmark test should be re-
ported as a graph. The X coordinate of the axis describes
the frame size and the Y coordinate represents the frame
rate. Further, there should be one line which shows the
theoretical frame rate for the media at the specific frame
size. A second line will represent the actual test findings.
Additionally, the protocol, data stream format and type of
media used in the test should be described. This will im-
prove transparency even further. [23]

5.2 Latency
The purpose of this test is to determine the latency as de-
fined in the RFC-1242. The latency test measures the time
a frame needs to travel from the DUT through the network
to the destination device. At first the throughput of the
DUT needs to be measured, to ensure the frames are trans-
mitted without being discarded. The second step is for the
packet generator to send traffic for 120 seconds. Every 60
seconds an identifying tag is included in one frame. The time
at which this frame is fully transmitted is recorded (Times-
tamp A). The receiver logic in the test equipment recognizes
the tagged frame and records the time at which it was re-
ceived (Timestamp B). The latency value is the result of the
subtraction of Timestamp B and Timestamp A. [22, 23, 32]
This test can be configured to measure the round-trip time.
[32, 43]

The report of the result must specify which definition of
latency according to the RFC-1242 was used. The latency
should be reported as a table where the rows contain the
frame size. The columns of the table should represent the
rate at which the latency test was run, the media type and
the resultant latency value. For each frame size, the mea-
surement must be conducted 20 times. The reporting value
is the average of these measurements. [23, 32]

5.3 Packet Loss Rate
The target is to determine the frame loss rate as defined in
the RFC-1242. The test equipment sends a specific number
of frames at maximum line rate and then measures whether
the network dropped any frames. If this is the case, the
values are recorded and the test is restarted at a slower rate.
The granularity of reducing the frame rate must be at least
10%, while a finer granularity is encouraged. This test is
repeated until there are two successive trials in which no
frames are lost. [1, 22, 23, 32]

The achieved results should be reported as a graph. The
X axis constitutes the input frame rate as a percentage of
the theoretical rate of the media. The Y axis depicts the
percent loss at the given input rate. [23]

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

35 doi: 10.2313/NET-2016-07-1_05

5.4 Back-to-Back Frame
The object of this test is to characterize the ability of a DUT
to process back-to-back frames as defined in the RFC-1242.
It assesses the buffering capability of a DUT. The test de-
termines the maximum number of frames received before a
frame is lost. An increasing number of devices can produce
bursts of back-to-back frames. Since the MTU of Ether-
net networks is relatively small, many fragments have to be
transmitted. The loss of even one fragment can cause an
endless loop as the sender continuously attempts to send
the data again.

For the execution of the test, a burst of back-to-back
frames with minimum inter-frame gap is sent to the DUT.
Should a frame be dropped, the burst length is decreased. If
the frames are received without any errors, the burst length
will be increased. Each trial should be at least two seconds
long. The measurement should be repeated 50 times. The
back-to-back value is the average of the recorded values be-
ing reported for each frame size. [22, 23, 32]

The back-to-back frame benchmark should be reported
as a table. In that case the rows represent the tested frame
size. The columns show the average frame count for each
type of data stream tested. Additionally, the standard de-
viation for each measurement can be reported. [23]

5.5 System Recovery
The purpose of this test is to characterize the speed at which
a DUT recovers from an overload condition. The test proce-
dure starts by measuring the throughput of a DUT. After-
wards a stream of frames at a rate of the minimum of 110%
of the assessed throughput or maximum rate for the media
is sent to the DUT for at least 60 seconds. At a tagged
frame (Timestamp A) the frame rate is reduced to 50% of
the initial rate. After that change in the frame rate, the
time of the last frame lost is recorded (Timestamp B). The
system recovery time is obtained by subtracting Timestamp
B from Timestamp A. [23]

The benchmark test should be reported in the format
of a table. Whereby the rows specify the tested frame sizes.
The columns of the table constitute the frame rate used as
well as the measured recovery time for each type of data
stream tested. [23]

5.6 Reset
The target is to determine the speed at which a DUT recov-
ers from a device or software reset. First, the throughput
benchmark needs to be performed for the minimum frame
size on the media used in the trial. After that, a continuous
stream of data is sent to the DUT at the recorded through-
put rate. Then a reset is caused in the DUT. The time of
the last frame of the initial stream being received (Times-
tamp A) and the first frame of the new stream being received
(Timestamp B) needs to be recorded. The reset value is de-
termined by subtracting Timestamp A from Timestamp B.
The report format is a simple set of statements, one for each
reset type. [23]

6. HARDWARE TEST EQUIPMENT
This chapter examines the usage of performance method-
ologies in hardware test equipment and describes the ad-

justments and notes from vendors. By that, we can make
conclusions about their usefulness and applicability.

6.1 Agilent
Agilent Technologies [25] uses the RFC-2544 methodology in

two of their products which are called Agilent FrameScope
TM

and Agilent FrameScope
TM

pro. [26] The company empha-
sizes that the RFC-2544 is not a standard, but did became
increasingly popular and well-accepted to determine the per-
formance of network devices and therefore is used for bench-
marking performance tests. As described by Agilent Tech-
nologies: In order to meet the requirements of the RFC-
2544, a considerable amount of configuration needs to be
done. The execution as well as the set up for testing is very

time consuming. The Agilent Agilent FrameScope
TM

there-
fore incorporates several efficiency improvements to the test-
ing as defined in the RFC-2544. Out of the six performance
tests defined in the RFC, only throughput, latency, frame
loss rate and back-to-back frames are supported. Hence,
the system recovery and reset tests are omitted. [26]

The test parameter setup of the FrameScope
TM

allows
for greater flexibility as defined in the RFC-2544. The tester
has a choice of whether the testing will be done upstream
only or downstream only or both. Moreover, the perfor-
mance tests can be extended to frame sizes outside the range
specified by the RFC-2544. [26]

The test suite of the product allows for configuring and
saving all RFC-2544 testing parameters. This enables for
testing under different conditions by modifications of the
given parameters in a reasonable amount of time. The RFC-
2544 specifies that one trial should last at least 60 seconds.
[23] This makes testing time consuming. For this reason
the test equipment allows for automated testing. Another
crucial requirement in order to allow for transparency and
fair comparison of DUTs is a meaningful reporting format.
Therefore Agilent Technologies implements a web based re-
porting tool which satisfies the reporting requirements as
defined in the RFC-2544. This document can also serve for
Service Level Agreement (SLA) verification between a ser-
vice provider and a customer. [26]

6.2 Albedo
Albedo [27] implements the benchmarking tests as defined
in the RFC-2544 and ITU-T Y.1564 in their test equipment
Ether.Giga. [28] The test device supports up to 10 Gigabit
Ethernet. In the document Ethernet RFC-2544 explained
[29], the company describes their motive and how they ap-
ply the performance tests.

A tester consists of both transmitting and receiving
ports. The tester includes sequence numbers in the frames
it transmits, in order to check that all frames transmitted
are also received back. The test equipment can be used to
test OSI-Layer 2 and OSI-Layer 3 data plane devices. How-
ever, one criterion that is not matched by the test equipment
is the test duration as defined in the RFC-2544. Since the
RFC was designed for laboratory testing [23, 42], the trials
may take several days to complete. This duration is not
feasible when applied in practice. The time can be reduced
by the selection of certain tests to be run as well as reduc-
ing their duration. This violates the requirement that every

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

36 doi: 10.2313/NET-2016-07-1_05

possible condition should be tested, which can be supported
by a DUT. Further, it violates the requirement that a trial
should run at least 60 seconds. [23, 29]

6.3 Exfo
Exfo [30] uses the RFC-2544 and ITU-T Y.1564 as perfor-
mance benchmark methodologies in their test equipment
Power Blazer, which supports 100 Gigabit Ethernet. [31]
The motivation behind this decision is described in [32] as
following: The customer’s SLA dictate certain performance
criteria which must be met. However, Ethernet performance
criteria are difficult to prove and cannot be accomplished ac-
curately by bit-error-rate (BER) anymore.

The portable RFC-2544 test equipment provided by
Exfo enables performance testers to immediately test and
demonstrate that the data plane device meets the customer’s
SLA. The results captured this way may serve for further
comparisons of different devices. [32] The test equipment
makes an addition to the defined benchmark tests in the
RFC-2544, by the measurement of packet jitter. This is
crucial, because exorbitant jitter can cause failures in real-
time applications. This can cause dropout effects in VoIP
applications. For video applications this can cause images
to falsify. [32] As criticized in chapter 6.1, the duration of
a trial as defined in the RFC-2544 leads to a problem. Ev-
ery test should be performed by each defined frame sizes as
defined in [23]. Further, each test trial has 20 iterations.
This will yield to a length of almost five hours, which is not
feasible. Therefore customization is needed. This can be
accomplished by testing only two out of the seven defined
frame sizes or conducting only two out of the six defined per-
formance tests. It depends on the type of data plane device
and the area in which it will be applied. [32]

6.4 Spirent
The Spirent TestCenter 2.0 as described in [34] is a com-
prehensive test suite which provides OSI-Layer 2-7 testing
for up to 10 Gigabit Ethernet. The test suite implements
both RFC-2544 and RFC-2889. Spirent [33] describes these
RFCs as industry-standard. [34] It extends the benchmark
methodology defined in the RFC-2544 similar to [26] by
jumbo Ethernet frames in order to test streaming and con-
formance testing for certain protocols. The test suite con-
tains six major fields of testing: Ethernet Switch Testing,
Enterprise/Metro Router Testing, Carrier Ethernet Test-
ing, Broadband Access Testing, Layer 4-7 Testing as well
as IPTV and Video Quality Testing. [34]

Another test equipment product developed by Spirent
is the Router Performance Tester AX/4000 (RPT). [35] The
RPT allows for customizing of IP test packets and traffic
generation through the DUT at full line rate and reports in
real-time. The device supports testing data plane devices
according to the RFC-2544. However, as in [26] and [32]
the two tests of system recovery and reset as defined in the
RFC-2544 are not supported. [35]

6.5 Viavi
An Ethernet testing solution provided by Viavi [36], de-
scribed in the product note [38], is building on the RFC-2544
as well. The test equipment further supports the Y.1564
standard mentioned in chapter 3 and can saturate rates up

to 10 Gigabit. The two standards can be tested asymmetri-
cally with a unidirectional upstream and downstream traf-
fic. Further test applications supported are mobile Ethernet
backhaul up to LTE, cloud connectivity and fault isolation.
[38]

6.6 Ixia
The IxAutomate test suite [47] from Ixia [46] implements
both RFC-2544 and RFC-2889 recommendations. While
the RFC-2544 was designed as a general methodology for
networking devices of all types, the RFC-2889 was writ-
ten specifically to benchmark the data plane performance
of OSI-Layer 2 LAN switching devices. Additionally, the
new recommendation RFC-2544-IPv6 [45] is integrated into
the test equipment. While all benchmarking tests of the
RFC-2889 are implemented, the system recovery and reset
test as defined in the RFC-2544 are omitted. [47]

6.7 Xena Networks
The company Xena Networks [39] offers with XenaBay and
XenaCompact two OSI-layer 2 and 3 test chassis which sup-
port up to 100 Gigabit Ethernet. These chassis can be
configured with different test software provided by Xena.
Specifically, software is provided for the following test method-
ologies: RFC-2544, RFC-2889, RFC-3918 and ITU-T Y.1564.
Further, a software packet is provided for scripting test au-
tomation. [40]

7. SOFTWARE TEST EQUIPMENT
Besides testing data plane devices with hardware equipment
there is the possibility to measure their performance with
software. Approaches exist in PacketExpert [53], LAN Tor-
nado RFC 2544 [54], iPerf [55], Ostinato [56] or MoonGen
[57]. PacketExpert, LAN Tornado RFC 2544 and MoonGen
come with direct support for the RFC-2544.

Both hardware and software testing procedures have to
face the same challenges: performance, flexibility, and pre-
cision in timestamping and rate control. The advantages
of software traffic generators are their flexibility and their
low costs. The MoonGen [59] software e.g., uses Lua Scripts
which allow for modification of each single packet and runs
on Intel commodity NICs. Hardware test equipment on the
other hand have advantages in performance and precision.
[57]

It is important for test equipment to saturate high rates,
while still being precise to assure repeatability of the same
experiment in different moments in time and a fair compar-
ison between different DUTs. If this can not be assured,
the outcome of the tests have no value. This is the ma-
jor downside of software packet generators, which often lack
performance capabilities and precision. [58]

Botta et al. [58] discuss the inherent problems of soft-
ware packet generator in more detail. While the MoonGen
[59] project presents new approaches which overcome some
of these disadvantages.

8. USEFULNESS AND FEASIBILITY
Based on the evaluation in chapter 6 and 7, we can con-
clude that test equipment vendors are using the RFC-2544,
RFC-2889 and ITU-T Y.1564 as standards to build their

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

37 doi: 10.2313/NET-2016-07-1_05

test equipment. Further, academic research is interested
in developing network testing equipment that supports the
RFC-2544. [1, 51, 52, 57]

However, there were also criticism and disadvantages
mentioned from these parties. Since the RFC-2544 was writ-
ten over a decade ago, in 1999, it is no longer sufficient
in terms of fully validating today’s Ethernet services. The
RFC-2544 does not satisfy all requirements anymore, such
as packet jitter, QoS measurement or multiple concurrent
service levels. Also, the method of sequential testing takes
several hours to complete, as mentioned by manufacturers.
[25, 27] This test method is both time consuming and costly.
Furthermore, the system recovery and reset test as defined
in the RFC-2544 were rarely implemented by any test equip-
ment vendor.

In the throughput test, the RFC-2544 makes no dis-
tinction between committed and excess traffic. This is not
sufficient for testing SLA. The frame delay is determined
based on the assessment of a single frame during a trial.
This approach does not take into account any fluctuation or
peak that may occur during the testing. Furthermore, the
RFC-2544 does not measure the inter-frame delay variation
(IFDV). [43, 63] Most of the tests defined in the RFC-2544
are performed with one endpoint generating traffic and an-
other endpoint placed in loopback. While this is the simplest
and fastest way to perform a test trial, there are disadvan-
tages to this test setup. When a test fails, there is no infor-
mation on where packets are being dropped or where delay
is being introduced. [37] A solution to that is the testing in
an asymmetric mode, as adapted by manufacturers. [25, 36]

Additionally, vendors of test equipment like Exfo, Ixia and
MRV have concerns about the feasibility of the test method-
ologies described in the RFC-2544. [63, 64, 65] This is due
to the reason of time consumption of the test trials as well
as the lack of validating certain features. Ixia [64] states
that the RFC-2544 and RFC-2889 are good for testing best
case scenarios in a laboratory environment, but they do not
provide an insight into the device performance under a real-
world data center traffic load. Additionally, they do not
assess performance of mixed frame sizes. Both [64] and [65]
therefore suggest the usage of the ITU-T Y.1564. [42] This
is reflected by the usage of methodologies by test equipment
vendors as surveyed in chapter 6. The evaluation (see Table
1) shows, that all examined test equipment, developed after
the approval of the ITU-T Y.1564 in March 2011, implement
the suggest methodology.

Test Equipment RFC-2544 Y.1564 GbE Year
Agilent FrameScope yes no 1 2006
Albedo Ether.Giga yes yes 10 2012
Exfo Power Blazer yes yes 100 2015
Spirent TestCenter yes no 10 2006
Viavi QT-600-10 yes yes 10 2015
Ixia IxNetwork yes no 1 2007
Xena XenaBay yes yes 100 2014

Table 1: Usage of benchmarking methodologies

The BMWG is continuously working on the mentioned
disadvantages. The proposal of the RFC-4814 [62] consid-

ers the overlooked factors in network device benchmarking
and addresses the issues in the RFC-2544 and RFC-2889. In
the RFC-6815 [61], an applicability Statement for the RFC-
2544, the BMWG states that actual methods may vary from
the methodology described in the RFC-2544. Another pro-
posal [60] considers the issues related to conducting tests
similar to the RFC-2544 in a production network. The IETF
has addressed the scenario of production network perfor-
mance testing by commissioning a new working group by
the name of IP Performance Metrics (IPPM). [60]

9. CONCLUSION
The RFC-2544 defines a methodology for benchmarking the
data plane performance of networking devices. It measures a
networking device’s throughput, latency and frame loss rate
for specified frame sizes and further defines a system recov-
ery and reset test. On the basis of the RFC-2544, the RFC-
2889 defines benchmarking tests for an OSI-layer 2 LAN
switching device. While the ITU-T Y.1564 methodology
addresses issues of today’s Ethernet Services and SLA vali-
dations. The definition of the requirements, the test setup
as well as the reporting format ensures transparency and
therefore a fair comparison of different data plane devices.
These methodologies are widely accepted for benchmarking
data plane devices and for this reason established themselves
as a standards.

Since the RFC-2544 was written over a decade ago in
1999, the methodology does not assess all Ethernet services
that are available today. Further, the sequential approach
of testing is very time consuming. For this reason new stan-
dards were developed. The ITU-T Y.1564 and the MEF
14 methodologies attempt to overcome the disadvantages of
the RFC-2544. Both standards are used by test equipment
vendors. The BMWG itself is aware of the disadvantages of
the RFC-2544 and continuous to work at the topic of bench-
marking data plane devices. The RFC-6815 and RFC-4814
reference the RFC-2544 and are addressing the concerns of
industry and academic research.

Even if some sources testify that the RFC-2544 is dep-
recated in terms of testing today’s Ethernet services, it still
remains a foundation for the development of performance
benchmarking methodologies and will therefore continue to
contribute on how the performance of data plane devices is
measured.

10. REFERENCES
[1] L. Niu, G. Feng and M. Duan: Implementation of

Instrument for Testing Performance of Network Based
on RFC2544 Test, In International Journal of Hybrid
Information Technology Vol. 8, No. 2, pages 323-332,
2015.

[2] S. Bouckaert, J. V. V. Gerwen, I. Moerman, S. C.
Phillips, and J. Wilander: Benchmarking computers
and computer networks, EU FIRE White Paper, 2010.

[3] Meru Networks: Demystifying Software-Defined
Networking for Enterprise Networks, 2013.

[4] M. Brown and R., Burns: Cisco CCNA data center
DCICT 640-916 official certification guide, 2013.

[5] I. Pepelnjak: Management, Control and Data Planes
in Network Devices and Systems,
http://blog.ipspace.net/2013/08/management-

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

38 doi: 10.2313/NET-2016-07-1_05

control-and-data-planes-in.html, 2013.

[6] B. Salisbury: The Control Plane, Data Plane and
Forwarding Plane in Networks,
http://networkstatic.net/the-control-plane-

data-plane-and-forwarding-plane-in-networks,
2012.

[7] Open Networking Foundation: Software-Defined
Networking: The Norm for Networks, 2012.

[8] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve
Rothenberg, S. Azodolmolky, and S. Uhlig:
Software-Defined Networking: A Comprehensive
Survey, In Proceedings of the IEEE Vol. 103, No. 1,
2015.

[9] G. Schudel and D. J. Smith: Router Security
Strategies: Securing IP Network Traffic Planes, Cisco
Press, pages 24-30, 2008.

[10] N. Shamsee,Klebanov D., H. Fayed, A. Afrose and O.
Karakok: CCNA Data Center DCICT 640-916
Official Cert Guide, 2015.

[11] Savvius: Network Interconnect Devices: Repeaters,
Bridges, Switches, Routers,
http://www.wildpackets.com/resources/

compendium/interconnect_devices/overview, 2015.

[12] SCO OpenServer: Networking Guide, 2003.

[13] C. Wells: Network Interconnection Devices,
TechnologyUK, http:
//www.technologyuk.net/telecommunications/

networks/interconnection_devices.shtml, 2001.

[14] A. Groessler: Internetworking: Devices,
http://pi4.informatik.uni-

mannheim.de/pi4.data/content/courses/1996-

ss/rn96/CN-Title/form/intdevie.htm, 1995.

[15] ComputerNetwokringNotes: Networking Devices: Hub,
Switch, Router, Modem, Bridges, and Brouters
Gateways,
http://computernetworkingnotes.com/comptia-n-

plus-study-guide/network-devices-hub-switch-

router.html, 2013

[16] CISCO: Layer 2 and Layer 3 Switch Evolution, The
Internet Protocol Journal Vol. 1, No. 2, September
1998.

[17] H. Alvestrand: RFC-3935: A Mission Statement for
the IETF,
https: // www. ietf. org/ rfc/ rfc3935. txt , 2004.

[18] E. Huizer: RFC-1603: IETF Working Group
Guidelines and Procedures,
https://tools.ietf.org/rfc/rfc1603.txt, 1994.

[19] BMWG: Charter for Working Group,
http://datatracker.ietf.org/wg/bmwg/charter/,
2015.

[20] L. Yang, R. Dantu, T. Anderson and R. Gopal:
RFC-3746: Forwarding and Control Element
Separation (ForCES) Framework, IETF Network
Working Group, 2004.

[21] M. Fratto: What is the difference between Control
plane and Data plane in the context of networking
equipment like routers/switches?,
https://www.quora.com/What-is-the-difference-

between-Control-plane-and-Data-plane-in-the-

context-of-networking-equipment-like-routers-

switches, 2012.

[22] S. Bradner: RFC-1242: Benchmarking Terminology
for Network Interconnection Devices, IETF
Benchmarking Methodology Group, July 1991.

[23] S. Bradner and J. McQuaid: RFC-2544:
Benchmarking methodology for network interconnect
devices, IETF Benchmarking Methodology Group,
March 1999.

[24] R. Mandeville and J. Perser: RFC-2889:
Benchmarking Methodology for LAN Switching
Devices, IETF Benchmarking Methodology Group,
August 2000.

[25] Agilent Technologies: http://www.agilent.de/home,
November 2015.

[26] H. Pandya: RFC-2544 Network Performance Testing

with the Agilent FrameScope
TM

, Agilent Technologies,
January 2006.

[27] Albedo: http://www.albedo.com/, November 2015.

[28] Albedo: Ether.Giga, http://www.albedotelecom.
com/pages/fieldtools/src/ethergiga.php, February
2016.

[29] P. Fan: Ethernet RFC-2544 explained, Albedo, April
2003.

[30] Exfo: http://www.exfo.com/, November 2015.

[31] Exfo: Power Blazer
http://www.exfo.com/products/field-network-

testing/bu2-transport-datacom/ethernet-

testing/ftb-88100nge-power-blazer, February
2016.

[32] B. Giguère: RFC 2544: How it helps qualify a Carrier
Ethernet Network, Exfo, August 2004.

[33] Spirent: http://www.spirent.com/, November 2015.

[34] Spirent: Get There Faster with Spirent TestCenter
TM

,
May 2007.

[35] Spirent: Router Performance Tester: AX/4000,
September 2005.

[36] Viavi: http://www.viavisolutions.com/en-us,
November 2015.

[37] Viavi: Viavi Solutions
TM

Ethernet Testing, November
2015.

[38] Viavi: QT-600-10 10 Gigabit Ethernet Test Head,
June 2015.

[39] Xena Networks: http://www.xenanetworks.com/,
November 2015.

[40] Xena Networks: Xena
Scripting,http://www.xenanetworks.com/test-
software/xena-management-sw/xenascripting/,
February 2016.

[41] Ixia: Ultra Low Latency (ULL) Testing, June 2011.

[42] ITU-T: Ethernet service activation test methodology,
March 2011.

[43] T. Diallo and M. Dorais: EtherSAM: The new
Standard in Ethernet Service Testing, January 2014.

[44] Metro: Abstract Test Suite for Traffic Management
Phase 1, November 2005.

[45] C. Popoviciu, A. Hamza, G. V. de Velde and D.
Dugatkin: RFC5180: IPv6 Benchmarking Methodology
for Network Interconnect Devices, IETF
Benchmarking Methodology Group, May 2008.

[46] Ixia: http://www.ixiacom.com/, November 2015.

[47] Ixia: IxAutomate RFC Benchmarking Test Suites,

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

39 doi: 10.2313/NET-2016-07-1_05

July 2007.

[48] Ixia: Switch Testing: IxAutomate, Test Plan, April
2006.

[49] Eantc: Huawei Technologies Service Activation Using
RFC 2544 Tests, Mai 2008.

[50] Tolly: Araknis Networks AN-300 Series Gigabit PoE
Switch: Performance and Feature Comparison Versus
Cisco Systems and Pakedge Device & Software, Test
Report, March 2014.

[51] C. Both, C. Battisti and F. Kuentzer: FPGA
implementation and performance evaluation of an
RFC 2544 compliant Ethernet test set, In Int. J. High
Perform Systems Architecture Vol. 2, No. 2, pages
107-115, 2009.

[52] Y. Wang, Y. Liu, X. Tao and Q. He: An FPGA-based
high-speed network performance measurement for RFC
2544, In EURASIP Journal on Wireless
Communications and Networking, No. 1, pages 1-10,
2015.

[53] GL Communications Inc.: PacketExpert,
http://www.gl.com/packetexpert-rfc-2544-ber-

loopback-testing.html, February 2016.

[54] SoftDevTeam: LAN Tornado RFC 2544,
http://lan-tornado-rfc-2544.soft112.com/,
August 2012.

[55] iPerf: https://iperf.fr/iperf-doc.php, February
2016.

[56] Ostinato: http://ostinato.org/, February 2016.

[57] P. Emmerich, F. Wohlfart, D. Raumer and G. Carle:
MoonGen: A Scriptable High-Speed Packet Generator,
ArXiv e-prints, October 2014.

[58] A. Botta, A. Dainotti and A. Pescapé: Do You Trust
Your Software-Based Traffic Generator?, IEEE
Communications Magazine, IEEE 48 No. 9, pages
158-165, 2010.

[59] MoonGen:https://github.com/emmericp/MoonGen/
tree/master/rfc2544/benchmarks, December 2015.

[60] R. Bonica and S. Bryant: RFC2544: Testing in
Production Networks, IETF Benchmarking
Methodology Group, October 2012.

[61] S. Bradner, K. Dubray, J. McQuaid and A. Morton:
RFC6815: Applicability Statement for RFC 2544: Use
on Production Networks Considered Harmful, IETF
Benchmarking Methodology Group, November 2012.

[62] D. Newman and T. Player: RFC-4814: Hash and
Stuffing: Overlooked Factors in Network Device
Benchmarking, IETF Benchmarking Methodology
Group, March 2007.

[63] Exfo: Are You Still Testing to RFC 2544?,
http://www.exfo.com/corporate/blog/2013/still-

testing-rfc-2544-really, December 2015.

[64] Ixia: Is RFC2544 Enough to Benchmark the Data
Center Switching Fabric Performance?,
http://www.ixiacom.com/about-us/news-

events/corporate-blog/rfc2544-enough-

benchmark-data-center-switching-fabric,
December 2015.

[65] MRV: Why RCF2544 is not sufficient anymore,
http://www.mrv.com/blog/why-rcf2544-not-

sufficient-anymore, December 2015.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

40 doi: 10.2313/NET-2016-07-1_05

MoonGen Tutorial

Jonas Jelten
Betreuer: Paul Emmerich, Daniel Raumer

Seminar Innovative Internet-Technologien und Mobilkommunikation WS2015
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: jelten@in.tum.de

ABSTRACT
This paper provides a short introduction into the usage of
MoonGen, a high performance packet generation framework
written in Lua. It is based on DPDK which mediates the
hardware access. You will learn how you can interact with
the MoonGen API to craft and send custom packets, gather
statistics and verify received data. Communication between
tasks running in parallel is demonstrated. The usage of
hardware features like queues and rate control is illustrated
and explained. You will see that MoonGen is simple to use
for many load generation use cases.

Keywords
networking, MoonGen, tutorial, howto, Lua, Linux

Version
This is the tutorial version v1.0.

1. WHAT’S MOONGEN?
After reading this tutorial, you will be able to use MoonGen
to benchmark and test your network setup in any way you
like. You’ll learn the concepts, the architecture and basics
of the MoonGen API.

MoonGen [2] is a software based packet generator frame-
work, designed for easy use and high speeds at 10Gbit and
more. Executed on common hardware, it can be used for
just load generation in benchmarking applications, or to
check the response validity for error detection by execut-
ing custom code for each packet without expensive special
hardware. This way, firewalls, network address translation
and quality of service setups can be tested and verified to op-
erate correctly even under enormous load. Sub-microsecond
latency and packet drops can be measured and checked if
they match the expected behavior in benchmarks.

MoonGen is based on Data Plane Development KitDPDK [1],
which is granting direct hardware access via DMA, thus al-
lowing the LuaJIT [6] machine to interact with the network
interface at maximum speeds. In order to use MoonGen,
you should have a basic knowlege of Lua, for example from
a quick tutorial at
https://learnxinyminutes.com/docs/lua/ [4].

2. SETUP
MoonGen is intended to run on any GNU/Linux distribu-
tion. This guide was created on Ubuntu 14.04.

To install, clone the git repository from the upstream url
at https://github.com/emmericp/moongen [5], then follow
the prerequisite requirements and installation directions in
the README file.

After you built the project successfully, try if you can ex-
ecute ./MoonGen and get the usage information printed. If
that works, you may continue with the tutorial.

3. ARCHITECTURE
In principle, MoonGen is a high-level frontend for DPDK.
DPDK provides a low-level API for hardware access, packet
generation and response processing, mainly designed for data
plane development [1]. MoonGen’s core is a convenient lua
wrapper for that API. To use it, you create custom lua files
containing code instead of config files: This allows much
more flexibility for any measurement application you intend
to conduct.

The entry point for all the custom code is a control script,
containing a master function. It is called by MoonGen,
should set up the interfaces and request the desired settings.
Internally, configuration is then passed to dpdk, which per-
forms the actual hardware setup.

This control script can spawn new tasks as separate LuaJIT
VMs. That way, packet generation, receive measurements,
verifications, etc. can easily be implemented apart and exe-
cuted in parallel.

After packet fields are composed in some task, they’re passed
to dpdk which crafts the payload and sends it out of the de-
vice. Data received from the hardware is mediated through
dpdk to the lua script which can then do any verification
and processing.

The running tasks can only communicate through the Moon-
Gen API, for example via pipes and namespaces, as tasks
are separate Luajit VMs in a different address space.

A graphical representation of the just described data and
control flow can be seen in Figure 1. Only the custom scripts
(“Userscript”) are visible to the user, which then communi-
cates with the config or data api with the hardware device.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

41 doi: 10.2313/NET-2016-07-1_06

Figure 1: MoonGen architecture [2]

4. USAGE INTRODUCTION
After successful compilation of MoonGen, the invocation is
very simple:

./MoonGen yourscript.lua [yourargs...]

yourscript.lua is your lua file is the entry script. It must
contain a function master(...) which then performs the
device setup, described in Section 4.1. Once this is done,
worker tasks can be spawned as explained in Section 4.3,
which then perform their duty to generate packets (Sec-
tion 4.2), receive and count them (Section 4.4), communicate
with each other (Section 4.6) or do whatever is appropriate
for your use case.

4.1 Device setup
Before a NIC (network interface card) can be used, it must
be taken away from the Linux driver so that dpdk can use
it. The Python script deps/dpkg/tools/dpdk_nic_bind.py
can detach PCI devices and set their driver to e.g. igb_uio

or vfio-pci to use them with MoonGen.

Modern network interfaces have hardware features that al-
low a huge speedup by parallelization: They have send and
receive queues, around 32 to 128 each (depending on NIC
model) which allow to prepare sending out packets in paral-
lel or assign received packets already on hardware by custom
filter rules like hashing protocol header fields. This comes
in handy for multicore processing, as the queues can be as-
signed to processors or threads independently [3].

In MoonGen, the queues are used independently and are
usually requested in the entry point script. The devices are
aquired and set up, queues registered and then, for example,
used to send some packets.

local device = require "device"

function master(txNum)

-- use specified NIC number with

-- no listening and one transmission queues

txDev = device.config{

port = txNum,

rxQueues = 0,

txQueues = 1,

}

device.waitForLinks()

send(txDev:getTxQueue(0))

end

To interact with an allocated queue, it is fetched from the
device object by calling queue = txDev:getTxQueue(nr) or
getRxQueue. You’ll see this in Section 4.2.

To use the receive filter configuration mentioned earlier, con-
figure the device upon creation. When calling device.config,
set rssNQueues = N to the number of queues where pack-
ets shall be placed in. This enables automatic hashing by
IPv4/6 and TCP/UDP headers to place same-header pack-
ets (from the same “flow”) into the same queue selected from
0 to N-1.

The optional rssFunctions parameter controls which of the
hash functions are enabled. If you don’t specify it, all sup-
ported hashes are enabled. You can create a list of meth-
ods you want to use out of RSS_FUNCTION_IPV4, .._IPV6,

.._IPVX_TCP, .._IPVX_UDP:

local device = require "device"

txDev = device.config{

port = 0,

rxQueues = 4,

rssNQueues = 4,

rssFunctions = {

device.RSS_FUNCTION_IPV4,

device.RSS_FUNCTION_IPV4_TCP,

}

}

4.2 Packet generation
To compose the data to send, a memory buffer is required
first. As packets are sent out asynchronously, the buffers
where you are crafting them must be allocated indepen-
dently, in a buffer array. The array manages many alloca-
tions of same-sized packets, maintained in a memory pool.
When the data was actually sent out, the allocated buffer
can be freed from the array.

In such a buffer, most data will stay the same though, so the
skeleton is defined via a function previously. It’s important
to set up the default values of the packet in this function for
the memory pool and not in the generation loop. Otherwise,
performance problems will arrise.

In this example, the most simple-stupid way is used to man-
ually set up an ethernet header in a char buffer.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

42 doi: 10.2313/NET-2016-07-1_06

local dpdk = require "dpdk"
local memory = require "memory"

function send(queue)
local mem = memory.createMemPool(function(buf)

local data = ffi.cast("uint8_t*", buf.pkt.data)
for i = 0, 11 do

data[i] = i -- fill in mac addresses
end

data[12] = 0x12 -- set type to ethernet
data[13] = 0x34

end)
local bufs = mem:bufArray()
while dpdk.running()

bufs:alloc(60) -- size of each packet
-- ⇑ sets up each packet with the function above
-- ← here, single packets could be modified
queue:send(bufs) -- schedule sending

end
end

To simplify crafting of packets, the raw buffer can be casted
into easy-to-use protocol header objects. Those conversions
are defined in lua/include/proto/ for all kinds of protocols,
for example getIP6Packet() or getUdp4Packet().

local mem = memory.createMemPool(function(buf)

buf:getEthernetPacket():fill{

ethSrc = txDev, -- use device mac

ethDst = "00:01:02:03:04:05",

ethType = 0x1234,

}

end)

If you want to implement a new protocol packet format,
please copy and adapt the template file provided in
lua/include/proto/newProtocolTemplate.lua.

To change some data for single packets, perform your oper-
ation after allocating the buffer array and before enqueuing
the send-out. You can change any data of the packet and
again use the convenience casts for implemented protocols.
To configure the hardware transmission rate of a queue, use
queue:setRate(Mbit/s).

If you need to to pause the LuaJIT VM for some time period,
call the dpdk.sleepMillis(time) function.

The following send function will only transmit data for 10
seconds, then it terminates. It creates UDP on IPv4 packets
with a randomized source address.

local timer = require "timer"

function send(queue)
queue:setRate(100) -- hardware rate in Mbit/s
dpdk.sleepMillis(1000) -- wait one second
local mem = memory.createMemPool(function(buf)

buf:getUdp4Packet():fill{
pktLength = 124,
ethSrc = queue, -- device mac
ethDst = "10:11:12:13:14:15",
-- ipSrc will be randomized
ip4Dst = "10.13.37.1",
udpSrc = 4321,

udpDst = 1234,
-- payload = \x00 (mempool initialization)

}
end)

local bufs = mem:bufArray()
local runtime = timer:new(10) -- 10 seconds

while runtime:running() and dpdk.running() do
bufs:alloc(250)
for _, buf in ipairs(bufs) do

local pkt = buf:getUdpPacket()
-- select a randomized source IP address
pkt.ip4.src:set(

parseIPAddress("10.0.42.1")
+ math.random(235))

end
bufs:offloadUdpChecksums() -- harware checksums
queue:send(bufs)

end
end

4.3 Running parallel tasks
While running, MoonGen often needs parallel tasks: To send
and receive packets, to create and write out statistics and
counters or to do response verification. To achieve this,
“slave” tasks are spawned.

The function used for this is dpdk.launchLua("funcname",

arg0, ...), which spawns a single slave task as a new Lu-
aJIT VM. The task can then execute any code within the
called function. Arguments are passed, this allows you to
access e.g. the devices or queues within the task. The slave
tasks can also be created dynamically on demand, although
this should be used rarely to avoid spawning new VMs too
quickly and often.

local dpdk = require "dpdk"

dpdk.launchLua("somefunctionname", arg0, arg1, ...)

dpdk.launchLua("otherfunction", txDev, ipaddr)

dpdk.waitForSlaves() -- wait for child termination

In such a task, contents of every single received packet can
be processed. The data arrives in batches, so the analysis
has to loop over all packets in that batch.

local dpdk = require "dpdk"
local memory = require "memory"

function master(txPort, rxPort)
local txDev = device.config{port = txPort}
local rxDev = device.config{port = rxPort}
device.waitForLinks()
dpdk.launchLua("send", txDev:getTxQueue(0))
dpdk.launchLua("recv", rxDev:getRxQueue(0))
dpdk.waitForSlaves()

end

function recv(queue)
local bufs = memory.bufArray()
while dpdk.running() do

local rx = queue:recv(bufs)
for i = 1, rx do

local pkt = bufs[i]:getUdp4Packet()
print("Packet: " .. pkt.ip4:getString())

end
bufs:freeAll()

end
end

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

43 doi: 10.2313/NET-2016-07-1_06

4.4 Statistics
The stats module allows counting packets for statistics. Af-
ter statistics were gathered, they can be written to stdout

or to some file. The supported formats are "plain", "csv"
and "ini".

To create a new packet counter that is attached to a de-
vice, call local rxCtr = stats:newDevRxCounter(device,

"plain") or newDevTxCounter(..). Information is gathered
automatically by performing queries to the harware counters
of the NIC.

The newPktRxCounter("your counter name", "plain") or
newPktTxCounter(..) can be updated by passing packet
buffers to them via its countPacket(singleBuffer) method.

The newManualTxCounter("your counter name", "plain")

is suitable for counting packets and other data manually. up-
dateWithSize(packet_count, each_size) must be called
to increase the datameter internally.

For all those counters, their :update() method should be
called regularly, as it will show current statistics at runtime.

The histogram module allows gathering statistics about a
frequency distribution.

The next example incorporates the device and package coun-
ters, it just listens for packets on the given hardware port
and counts the occurrences of UDP ports. The packet sizes
are logged in a histogram.

local dpdk = require "dpdk"
local device = require "device"
local histogram = require "histogram"
local memory = require "memory"
local stats = require "stats"

function master(rxPort, saveInterval)
local saveInterval = saveInterval or 60
local rxDev = device.config{

port = rxPort,
dropEnable = false,

}
device.waitForLinks()

local queue = rxDev:getRxQueue(0)
local bufs = memory.bufArray()

-- create the device receive counter
local rxCtr = stats:newDevRxCounter(queue.dev)
-- and the packet receive counter to detect
-- packets that were dropped on the NICNIC
local pktCtr = stats:newPktRxCounter("pkts", "plain")

local hist = histogram:create()
local timer = timer:new(saveInterval)
while dpdk.running() do

-- wait max 100ms for new data
local rx = queue:tryRecv(bufs, 100)
for i = 1, rx do

local buf = bufs[i]
local size = buf:getSize()
hist:update(size)
pktCtr:countPacket(buf)

end
bufs:free(rx)

rxCtr:update()
pktCtr:update()
if timer:expired() then

timer:reset()
hist:print()
hist:save("packet_sizes.csv")

end
end

-- and print statistics, those should be the same.
rxCtr:finalize()
pktCtr:finalize()

end

To use the manual counter, the return value of queue:send()
can be used. Note here that the send call is asynchronous,
but the return value can still be recorded for statistics. As
in the previous example, the finalize() call actually prints
the final result, and updateWithSize prints the runtime sta-
tus every second:

function send(queue)
local mem = ...
local packetSize = 250

-- create manual counter
local txCtr = stats:newManualTxCounter(port, "plain")
local bufs = mem:bufArray()

while dpdk.running() do
bufs:alloc(packetSize)
bufs:offloadUdpChecksums()
local sentCount = queue:send(bufs)

-- register new data: sentCount * packetSize
txCtr:updateWithSize(sentCount, packetSize)

end
txCtr:finalize()

end

It’s also easily possible to collect statistics about packet con-
tents, for example their UDP destination port. The task is
blocked until some data is received. Then, all packet buffers
received are casted to UDP in IPv4 packets, which then
trigger a counter creation, if it doesn’t exist already. This
demonstrates that counters can be created and updated dy-
namically as well.

function recv(queue)
local bufs = memory.bufArray()
local counters = {}

while dpdk.running() do
-- block until some data was received
local rx = queue:recv(bufs)
for i = 1, rx do

local buf = bufs[i]

-- cast the buffer to a known protocol
local port = buf:getUdpPacket().udp:getDstPort()
local ctr = counters[port]

-- create counters dynamically
if not ctr then

ctr = stats:newPktRxCounter(port, "plain")
counters[port] = ctr

end

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

44 doi: 10.2313/NET-2016-07-1_06

-- record the packet
ctr:countPacket(buf)

end
bufs:freeAll()

end

-- for each observed destination port, print stats:
for _, ctr in pairs(counters) do

ctr:finalize()
end

end

4.5 Timestamping
To measure sub-microsecond delays in fiber and copper ca-
bles, MoonGen can utilize hardware timestamping features
from modern NICs. The packets sent are defined in the
lua/include/proto/ptp.lua, the precision time protocol.
You can create a timestamper to use either as a layer 2 (via
timestamping:newTimestamper(txq, rxq) or transfer it as
PTP via UDP in IPv4 with timestamping:newUdpTimestamper.

This example measures the latency between both queues
via hardware timestamping every 0.01 seconds. The queues
have to be connected at the peer side, so the sent packet can
take a round trip.

local ts = require "timestamping"

function timerTask(txq, rxq, size)
-- create the timestamper for measuring
-- between those queues
local timestamper = ts:newTimestamper(txq, rxq)
local hist = histogram:new()
local rateLimiter = timer:new(0.01)
while dpdk.running() do

rateLimiter:reset()
hist:update(timestamper:measureLatency(size))
rateLimiter:busyWait()

end
hist:print()
hist:save("histogram.csv")

end

4.6 Task communication
The simplest inter-task communication API provided by
MoonGen are pipes. For example, you can send rate ad-
justment messages, pass statistics or transfer any communi-
cation that is not performance-critical through a pipe shared
by two tasks. To use, create the pipe in a common context,
for example the master function. This pipe can communi-
cate accross LuaJIT VMs and can send arbitrary data, which
is serialized and unserialized using the “serpent” library.

local pipe = require "pipe"

-- create a new pipe in the parent task
local p = pipe:newSlowPipe()
p:send(0, 13, 37, 42) -- send array
p:send("the cake is a lie") -- send string
-- or send a table
p:send({235, lol = "rofl", subtable = {1}})

-- number of waiting messages
local enqueued = p:count()

-- receiving
local a, b, c, d = p:recv() -- equals tryRecv(10)

local txt = p:tryRecv(100) -- wait time microseconds
-- and return answer

-- pass this pipe when creating another task
-- it can then access it like above.
dpdk.launchLua("somefunction", p)
dpdk.waitForSlaves()

The alternative to pipes are namespaces, which are global
variables between LuaJIT VMs, implemented as lua table.
They are also slow like the pipes from above, as data is
transferred between VMs.

local space = namespaces::get("name") will create or fetch
an already existing global namespace, which can then be ac-
cessed like this:

local dpdk = require "dpdk"

local namespaces = require "namespaces"

function master()

local space = namespaces:get("mine")

space.string = "data!"

space.answer = 42

space.table = { black = "mesa", { 1 } }

dpdk.launchLua("slave"):wait()

end

function slave()

-- can access the same namespace!

local slavespace = namespaces:get("mine")

print("data? " .. slavespace.string)

end

4.7 Traffic patterns
The hardware rate control feature of some NICs can only be
set to a constant rate. To send non-constant traffic patterns
of valid packets, MoonGen fills the gaps between the packets
with invalid data. That way, the sending card is kept busy
and times sends correctly, but devices along the tested way
will hopefully drop the broken packages and process only the
correct ones. The send delay is configured in bytes, which
equals the amount of garbage, as seen in Figure 2. Various
traffic patterns like exponential distributed bursts are easily
possible with that approach.

Figure 2: MoonGen rate control [2]

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

45 doi: 10.2313/NET-2016-07-1_06

A MoonGen packet buffer can be set a waiting gap dura-
tion by buf:setDelay(bytes). On 10GbE one byte would
have a delay of 0.8 nanoseconds. A randomly exponentially-
distributed delay can be generated with the poisson pro-
cess by poissonDelay(average_wait), where the parameter
specifies the average wait time between two packets. The
exponentially-distributed wait time can directly be fed into
setDelay(poissonDelay(..)), this will then be the amount
of garbage sent out between real packets.

function send(txDev)

local mem = ...

local bufs = mem:bufArray()

while dpdk.running() do

bufs:alloc(size)

for _, buf in ipairs(bufs) do

local avg = rateToByteDelay(rate, size)

local delay = poissonDelay(avg)

buf:setDelay(delay)

end

queue:sendWithDelay(bufs)

end

end

5. CONCLUSION
This introduction should have prepared you to achieve any
measurement task in MoonGen. Complete and directly ex-
ecutable examples are shipped with MoonGen in its exam-

ples/ subfolder. This tutorial should have prepared you to
implement your particular test setup and understand com-
plex examples like router.lua. With namespace, you can
try implementing an ARP lookup task that figures out peer
addresses for your packet crafting.

If you encounter any issue while using MoonGen and think
it’s not your or your setup’s fault, please create an issue
at https://github.com/emmericp/MoonGen.git/issues so
the developers can assist you or fix the bug you may have
discovered. We hope you enjoy using this tool and encourage
you to improve it further and adapt it to your needs, as it’s
free software for a reason.

References
[1] Data Plane Development Kit. http://dpdk.org/. Ac-

cessed: 2015-12-05.

[2] Paul Emmerich, Sebastian Gallenmüller, Daniel
Raumer, Florian Wohlfart, and Georg Carle. MoonGen:
A Scriptable High-Speed Packet Generator. In Internet
Measurement Conference 2015 (IMC’15), Tokyo, Japan,
October 2015.

[3] Linux network stack scaling. https://www.kernel.org/
doc/Documentation/networking/scaling.txt. Ac-
cessed: 2015-12-19.

[4] Lua tutorial. https://learnxinyminutes.com/docs/

lua/. Accessed: 2015-12-19.

[5] MoonGen repository. https://github.com/emmericp/

moongen. Accessed: 2015-12-10.

[6] Mike Pall. Luajit. http://luajit.org/. Accessed:
2015-12-05.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

46 doi: 10.2313/NET-2016-07-1_06

Middlebox Models in Network Verification Research

Julius Michaelis
Advisor: Cornelius Diekmann

Seminar Innovative Internettechnologien WS2015
Chair for Network Architectures and Services

Fakultät für Informatik, Technische Universität München
Email: michaeli@in.tum.de

ABSTRACT
To address the challenges arising from the development of
computer network management over the past decades, re-
searchers have developed a number of tools to assist the op-
eration of networks and help administrators avoid mistakes.
These tools often follow the approach to verify an exist-
ing network configuration. This poses the problem that the
behavior of a lot of potentially complex networking device
configration has to be supported. The usual approach to
this is to develop simple models that only reflect the aspects
of the system that the tool can understand. We survey the
related literature for the use of this type of model.

Keywords
Computer Networks, Formal Models, Network Verification

1. INTRODUCTION
Over the past decades, computer networks have grown con-
siderably in size and complexity. Attempts to fulfil the re-
sulting complicated service requirements has given rise to
more and more complicated middleboxes (switches, routers,
firewalls, etc. . .). Configuring these middlboxes poses an
enormous challenge to network operators, who have to be
able to understand numerous configuration languages and
manage interoperating distributed configuration. While this
earned network operators the title“masters of complexity”[24],
it is generally seen as problematic.

Computer networks researchers have recognized that other
fields, e.g., programming languages, have developed high
level approaches to mitigate complexity and present users
with simple ways of detecting and avoiding errors. In the
past decade, research transferring these approaches to net-
working has gained traction. A number of tools have been
developed that can be invoked to analyze an existing net-
work configuration. The usual approach of these tools is to
have the user collect the configuration of his network on a
single machine. This configuration is complex and can thus
not be directly and likely not fully understood. A tool will
parse the configuration and translate it into a representa-
tion it can reason about: a model. Depending on the type
of the tool, different reasoning is possible; a very common
application is to find all possible routing loops — or, if none
are found, to prove the absence. However, the development
of such tools holds the same challenges that network man-
agement holds: a lot of diverse configuration languages and
devices has to be supported. Software Defined Network-
ing (SDN) attempts to alleviate this burden for operators

by proposing a central, programmable controller. This con-
troller is connected to all network devices and can configure
them. The devices can notify the controller when they re-
ceive a certain type of packet, e.g., packets belonging to a
new connection. The controller hands these notifications to
a program written by the user. This program can then con-
figure the devices accordingly, e.g., create a path for the new
connection. SDN allows to manage nearly all configuration
in a single language and logically on a single host.1 This
greatly simplifies the operators tasks and can simplify the
verification of the configuration by automated tools.

The crucial steps when attempting to verify a configura-
tion are defining a model of how the configuration is going
to be understood, and how to translate real configuration
into a representation in the model. This holds various chal-
lenges, some of them are intrinsic to modeling: if the model
is too simple, it may not be able to represent reality. If it is
too complex, it may lose its purpose, as reasoning about it
becomes as complicated as reasoning about the original ob-
jects. Other challenges are specific to the problem at hand:
no tool can possibly understand all the different configura-
tion languages. Typical tools, such as Anteater [18], Has-
sel [16], VeriCon [5], or Exodus [23] are able to understand
subsets of a few configuration languages, such as Cisco IOS
or Juniper configurations. This is usually accompanied by
the claim that other configuration languages can be easily
translated in the same manner, without giving further con-
siderations to the subtleties of such a translation.

In this paper, we survey the related work for the use of mod-
els. We focus on the analysis of how systems are modelled.

The rest of this paper is organized into two parts: Section 2
contains the survey of the different models and what aspects
they model. We have grouped the models into subsections
by the type of the device that is modelled. Section 3 con-
tains a short overview of what purpose the models serve and
whether they could be repurposed.

2. BOX MODELS
We continue with the different box models. Section 2.1 sur-
veys link layer switches, Section 2.2 routers, Section 2.3 SDN
switches, and Section 2.4 Firewalls. Section 2.5 looks at
models of devices that do not only provide a single function.
Additionally, Section 2.6 shows the big switch model.

1Note that this reflects the understanding of SDN from the
view of OpenFlow [20], variants exist.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

47 doi: 10.2313/NET-2016-07-1_07

Packet Arrives LocalSwitching

Packet Departs

 Fwd

PolicyRouting

 Pass

 Fwd

StaticRouting

 Pass

NetworkSwitching

 Route Fwd

DefaultPolicyRouting

 Pass

 Route

 Fwd

 Route

 Fwd

Figure 6: Internal flow of packets within a router. Edges are labeled with decisions rendered by the policies at the
Figure 1: Margrave’s router model, taken from [22].

2.1 Link Layer Switches
When considering only the basic switching functionality, Link
layer switches become relatively simple devices. They nei-
ther offer many opportunities for modeling, nor are they very
interesting as a target for verification, since most switches
simply have no configuration to verify. Accordingly, there is
not much material in the related literature.

There is one problem that arises when verifying networks
that contain switches among other devices. Switches are
stateful devices, while some verification systems do not sup-
port state. A simple modeling solution for that is presented
in Header Space Analysis [16]:

When we generated box transfer functions, we
chose not to include learned MAC address of end
hosts. This allowed us to unearth problems that
can be masked by learned MAC addresses but
may surface when learned entries expire.

While this modelling decision has consequences for the mod-
els of a variety of devices, it implies that switches are always
in their learning phase, i.e. are effectively replaced by broad-
cast devices.

2.2 Routers
For this section, we will focus solely on layer 3 forwarding.

While Margrave [22] is originally a tool for the analysis of
firewalls, it also has a detailed understanding of the packet
forwarding process in Cisco IOS to be able to accurately
perform its tasks. The model that Margrave uses is shown
in Figure 1. The process of forwarding is described as fol-
lows. First, packets destined to locally attached subnets are
filtered out and directly forwarded. All other packets are
subjected to routing. The second step is thus to handle
policy routing — packets with special routing rules that do
not only depend on the destination address but e.g., on the
source address, too. The third step is to consider statically
configured routes. All remaining packets are processed using
the default policy.

A more abstract model of routing is presented by Xie et
al. [25].2 They model a network of routers to be an an-
notated graph (V,E,F) where the nodes V represent the
routers, E contains two directed edges for each physical
link, and the edge labels Fu,v ∈ F express which packets
are allowed to flow over an edge u, v. The routing process
is modelled using F : a flow over an edge u, v will only be
permitted by Fu,v if the router u has a route to v for that
specific flow.

To summarize, the Margrave’s model [22] describes the rout-
ing process while the model in [25] abstracts it away to be
a property of a graph.

2.3 SDN Switches
This section surveys selected works on switches in software
defined networking (SDN). Various approaches to SDN exist.
This section focuses on OpenFlow [20] since it is currently
the most actively researched variant. We assume that the
reader is familiar with its basics. While it could be said
that the OpenFlow switch specification [3] itself is based on
a model of a generic networking device, we are not going
to explore this and instead examine models of OpenFlow
switches. We will continue to denote OpenFlow switches as
switches in this section for succinctness. The term datapath
element would be more accurate since the switches can take
arbitrary functions.

Guha et al. [14] present a fully machine-verified implemen-
tation of a compiler for the NetCore controller programming
language. For this purpose, they give a detailed model of an
OpenFlow switch that adheres closely to version 1.0 of the
OpenFlow switch specification [2], including packet process-
ing and switch-controller interaction. We will examine the
most important details and begin with the flow table evalu-
ation semantics: Guha et al. dedicate significant attention
to how a packet is matched against a flow table entry. Their
main concern there is related to behavior that was only made
explicit in later versions of the specification, e.g. [3, §7.2.3.6]:

2The Anteater tool [18] mentioned in Section 1 is based on
this work.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

48 doi: 10.2313/NET-2016-07-1_07

K

∃(n, pat , {|pt1 · · · ptn|}) ∈ FT .
pk#pat = true

∀(n ′, pat ′, pts ′) ∈ FT . n ′ > n ⇒
pk#pat ′ = false

JFT K pt pk ({|(pt1) · · · (ptn)|}, {||})
(MATCHED)

∀(n, pat , pts) ∈ FT pk#pat = false
JFT K pt pk ({||}, {|(pt, pk)|}) (UNMATCHED)

Figure 2: Flow table semantics by Guha et al., taken
from [14].

The presence of an [OpenFlow match] with a
given [type] may be restricted based on the pres-
ence or values of other [matches], its prerequi-
sites. Matching header fields of a protocol can
only be done if the OpenFlow match explicitly
matches the corresponding protocol.

For example, to match an outgoing SSH connection, a match
must check for at least layer 4 destination port 22, layer 4
protocol TCP, and layer 3 protocol IP. If only the match for
layer 4 destination port is included, some implementations
of an OpenFlow switch return an error as required by the
specification [3, §7.5.4.3]. Others, including the reference
implementation [1], silently drop them, which has led to
several severe bugs, according to [14]. Guha et al. specify
their packet matching semantics to only evaluate matches
when a previously executed match on the preconditions has
assured that the necessary header fields are present.

Next, they specify a flow table to be a multiset of triples of
priority, a match condition, and a multiset of output ports.
Although a multiset allows for uncountably many flow ta-
ble entries instead of a bounded number thereof, the im-
plications for the validity of the model are minimal. The
semantics JFT K pt pk (o, c) for evaluating such a table
is shown in Figure 2. The semantics describes the decision
for a flow table FT and a packet pt arriving on a port p.
It can specifiy to forward the packets on the port set o or
to send the messages c to the controller. The operator #
matches a packet against a rule. Note that this semantics is
nondeterministic: if there are multiple matching flow table
entries with the same priority, it can be said that all of their
actions are executed nondeterministically. This is used to
model the fact that the specification [2, §3.4] says that the
switch is free to choose any order between overlapping flow
entries. For this paper, we have verified that determinism
can be enforced by adding the following precondition on the
flow table:

∀(n, pat , pts) ∈ FT . ∀
(
n′, pat ′, pts ′) ∈ FT \ {(n, pat , pts)} .

n = n′ =⇒ @pk. pk#pat ∧ pk#pat′, (1)

i.e. for two rules with the same priority, no packet matches
both. Note that this is slightly stronger than necessary to
make the semantics deterministic: overlapping entries could
be shadowed by a rule with higher priority.

Guha et al. also specify a semantics for the message pro-
cessing and passing between switches and controllers. They

model it as an inductively defined relation on the states of
switches, controller(s) and links between them. The seman-
tics of this is comparatively large: its 12 rules span an en-
tire page. There is one important modelling detail that can
be singled out: Switches are modelled as a tuple of their
unique identifier, their ports, one flow table, and four mes-
sage queues, one for each combination of in/out and con-
troller/switch to switch. These message queues are multi-
sets. On the receipt of a message through a link, or when
obtaining a message through processing at a switch, the mes-
sage is first enqueued in one of these queues. The seman-
tics is non-deterministic and allows to accumulate arbitrary
many messages and dequeue them in an arbitrary order.
This models the option for switches to reorder messages.
The only exception is a BarrierRequest, which is never en-
queued but, given that the input queue is empty, directly
processed. It can thus be used to ensure that all messages
have been sent before it is processed.

Orthogonal to the work of Guha et al. stands VeriCon [5].
It is not a verified compiler for controller programs but a
verifying tool for controller programs. It does not have
a detailed model of single switches against which it veri-
fies the output of its compiler. Instead, it checks its re-
sult on a high-level model of a network of switches. Its
authors, Ball et al., begin by presenting a simple exam-
ple programming language for controllers, called CSDN, and
give a formal semantics for this language. VeriCon allows to
prove correctness of programs within these semantics but it
does not establish the correctness of the compiler. VeriCon
takes three inputs: a CSDN program, a topology invari-
ant, and a correctness condition. The topology invariant
allows to limit the possible changes in topology, e.g., the
user can define that they will always ensure that no path in
the network has more than 3 hops. The correctness con-
dition is then verified to hold for all possible states and
topology changes. To achieve that, VeriCon uses the fol-
lowing high-level model of a network of switches: Its state
is modelled as 5 relations. The first relation contains the
links between switches, or switches and hosts, the second
one all paths that are possible over those links. These two
relations are mainly used to formulate topology invariants.
The third relation S.ft (Src → Dst , I → O) records whether
switch S has a rule in its forwarding table to forward packets
from host Src to Dst from input port I to output port O.
Similar to that S.send (Src → Dst , I → O) records whether
such a packet has actually been sent. Lastly, the relation
S.rcv this (Src → Dst , I) models whether a packet has been
received at input port I. With these, given a desired post-
condition Q, VeriCon can compute the weakest precondition
wpJcK(Q) for executing a command c in CSDN. For example:

wp JpktIn (s, p, i)⇒ cK (Q) :=
(
s.rcv this (p, i) ∧ s.ft (p, i→ o)

)
=⇒ wpJcK (Q) . (2)

This is the precondition semantics for the event handler
specification pktIn(s, p, i) ⇒ c. In the event of receiving a
packet p at port i of switch s, c is executed. The semantics
expresses the following: given that such a packet is actually
received and a forwarding rule is installed, the handle has
to satisfy the weakest precondition of its command.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

49 doi: 10.2313/NET-2016-07-1_07

Similar to VeriCon is NICE [8]. It uses model checking and
other techniques to verify the correctness of a controller pro-
gram at runtime. It models an SDN as a system of stateful
“components” that communicate in a first-in first-out man-
ner. Communication between the components is, among
other things, modelled by state transitions in the system.
The controller programs are modelled accordingly: as a set
of event handlers that trigger state changes in the controller.
For model checking, NICE executes these handlers to explore
the state space and see if any of the transitions can violate
correctness invariants.

NICE notes that, for model checking, it would also need to
explore the state space of the switches. Since even the ref-
erence implementation Open vSwitch [1] has multiple hun-
dred KB of state when executed, this is not directly feasible.
NICE thus presents a simple model of a switch with a re-
duced amount of state. A switch is modelled as a set of
communicating channels, two state transitions and a single
flow table. Except for the control channel, which operates
strictly in a first-in first-out manner, these channels may
also drop or reorder messages3. On the receipt of at least
one message, a state transition is executed. To reduce the
amount of state transitions necessary, all packets present in
a state are modelled as being processed as a single tran-
sition. NICE also makes an important remark on the flow
table: two flow tables can be syntactically different, i.e. have
a different entry structure, but be semantically equivalent,
i.e. lead to the same forwarding decisions. This observation
is true for all three models here. For example, a table that
contains only exact flow matches (flow entries without any
wildcards) makes decisions independent of the priority of the
rules (i.e. the order in which they are considered)4. NICE
uses heuristics to merge semantically equivalent states.

2.4 Firewalls
The term firewall is used for a diverse variety of devices
and software. Devices by different vendors, such as Cisco,
Sun Microsystems, or Sophos have a largely different set of
features and purposes. Even the Linux kernel has two dif-
ferent firewall implementations (iptables and nftables). This
means that a large number of different models exists. Nev-
ertheless, a common principle can be factored out: most
firewalls and all models considered here consist of rules,
which in turn consist of at least a match and an action.
The match decides whether the action is to be applied to a
given packet. The firewalls’ types differ in how rules are or-
ganized, i.e. in which order they are applied, and what kind
of match expressions and actions are supported. Another de-
tail of interest is how connection state tracking is modelled,
i.e. how packets that belong to established connections are
treated differently from packets for new connections. Many
real world firewalls begin by accepting packets that belong
to or are related to an established connection. Finding a
simple but powerful model for state is hence important.

Accompanying a model of a firewall, there always has to be
a model of packets on which the firewall operates, albeit this

3Note the difference to [14] where the control channel does
also not operate in a first-in first-out manner and can reorder
messages.
4Assuming that the switch does not accept overlapping
rules.

is often left implicit. One of the few works that explicitly
specifies the packet model is [6]:

(α, β) packet :=

(id× protocol × α src× αdest× β content) . (3)

This can be read as: given arbitrary types α and β, a packet
consists of a record of a unique identifier, the used protocol
(http, ftp, . . .), a source and destination address of type α
and packet content of type β.5 It is obvious that this format
does not model real packets very closely, since neither the
used (application layer) protocol is usually stated directly,
nor is every connection associated with a unique ID. Nev-
ertheless, the ID hints to how state is modelled by Brucker
et Wolff in [6]. They model state by allowing the match to
consider a list of all packets that the firewall has accepted
so far. The ID can be used to determine if a packet is the
first of its connection.

A less complicated model of state, which is also based on
the packet format, can be found in ITVal [19] (however, not
in a strongly formal manner). Whether a packet is part of
an established connection is simply treated to be another
packet field. The theory files accompanying [12] contain
a proof that that model is not weaker than querying an
internal state table when performing a stateful match.

The packet model is often tightly tied to which types of
match expressions the firewall supports. A very common
subset that can be found in many real firewalls and models
is to support equality matches on (OSI) layer 4 protocol,
source, destination (“ports”), the physical ingress port and
additionally prefix matches on the layer 3 addresses. Some
models extend this by fields for TCP flags [19, 26], or con-
nection state [6, 22].

Besides the set of supported match expressions, firewalls and
models also differ in how these expressions can be combined
and how these combinations are represented. Margrave [22]
supports conjunctions of disjunctions, i.e. it allows to spec-
ify several possible values for one field and allows combining
fields while requiring all of them to match. Iptables Seman-
tics [12] by Diekmann et al. allows for more complicated
expressions: given match is a match on a single field, it sup-
ports the following match expressions mexpr :

mexpr := match | ¬mexpr | mexpr ∧mexpr | True (4)

This model is a superset of what iptables supports: iptables
supports negation of matches only on the lowest level, i.e. it
only supports constructing ¬match but not ¬mexpr . This
is an example (but not the only one) of a model that could
have been easily made to mirror a system more closely but
instead was made more powerful. In this case, mexpr allows
to express arbitrary boolean functions, which can be used
to compute the expression for packets that are not matched
by a rule.

Packet and match models that are tailored to be suitable for
the implementation of an analysis can be found in FIRE-
MAN [26] and ITVal [19]. FIREMAN models a packet as a

5Brucker et Wolff later specify α to be a four-tuple of inte-
gers to represent the IP-address in dotted-decimal notation
and a port, also represented by an integer (i.e. a number
from Z).

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

50 doi: 10.2313/NET-2016-07-1_07

1st Octet 0. . . 191 192 193. . . 255

2nd Octet 0. . . 167 168 169. . . 255 0. . . 255

3rd Octet 0. . . 159 160. . . 191 192. . . 255 0. . . 255

4th Octet 0. . . 255 0. . . 255

Inside Outside

Figure 3: Example of how ITVal [19] would repre-
sent a match for 192.168.160.0/19, given that the
packet consists only of a single IP address to match
on.

vector of bits that represent its header. Match expressions
are boolean expressions that can be efficiently represented by
Reduced Ordered Binary Decision Diagrams (ROBDD) [7].
ITVal [19] extends this to MDDs [17], a structure that is
similar to a ROBDD but allows continuous values for its
variables. Consequently, ITVal models packets as the vector
of bytes that represent source and destination for IP address
and layer 4 port. Additionally, it keeps separate fields for
the layer 4 protocol type, the TCP flags and the connection
states. Each byte and field is then represented by one level
in the MDD. Figure 3 shows an example of how an MDD is
used to match a single IP prefix. The purpose of this sub-
division of the packet header is to create a balance between
too many levels and too much information on a single level
of the MDD.

After considering the match of a rule, the action has to be
modelled. The common subset of actions that can be found
in all models we analyzed is to either let packets pass the
firewall or to stop them. Iptables supports a number of other
actions that are directly executed, such as LOG, which will
generate debug output but have no effect on forwarding, or
REJECT, which will stop the packet and additionally send an
error message. The semantics by Diekmann et al. [12] shows
a way to translate action types with behavior unkown to
the system back to only forwarding or discarding the packet.
The model of actions given by Brucker et Wolff [6], allows for
something more complicated: the action returns a packet.
This allows to model packet modification by firewall rules.

The last important property of a firewall model is how rules
are combined to form the firewall. Most models can be cate-
gorized to either use what Yuan et al. [26] call the simple list
model (used e.g. in [22]) and the complex chain model (used
e.g. in [19]). The list model states that the firewall rules are
written as one list that is traversed linearly. Each rule either
applies and the execution terminates or the execution con-
tinues with the next rule. The chain model extends this by
allowing for multiple lists and the possibility to conditionally
jump to the start of such a list and to conditionally return
to the origin of the jump. Diekmann et al. [12] formalized

both and present a translation from the chain model to the
list model.

If a firewall is an actual networking device, it also needs to
decide on which port to forward packets, i.e. become a switch
or router additionally to its firewall function. This type of
combined functionality is considered in the next section.

2.5 Complex devices
Real network devices often fulfil more than one of the func-
tions described above. A common example of this is a Cisco
IOS router, which is usually configured with both an ACL
(i.e. its firewall function) and routing information.

An important insight is that these functions usually have
very little or no relevant shared state. The key implication
of this is that the different stages of such a system can be
analyzed separately and then pipelined together. In the ex-
ample of the IOS router, this would mean to first analyze
the incoming ACL, then the routing configuration and then
the outgoing ACL.

Dobrescu and Argyraki [13] have realized that this holds true
even for controller software that is written for SDN swit-
ches. When attempting verification of software in general,
one has to deal with the path explosion problem. By di-
viding a network system into m independent elements with
maximally n branches each, pipelined analysis can reduce
the amount of paths that has to be analyzed exponentially
from O (2mn) to O (m2n). Combined with further optimiza-
tion for relevant data structures and symbolic computation,
their tool ClickVerifier is able to verify controller programs.
Dobrescu and Argyraki make an explicit point of using the
pipeline model only to explain why their system has the de-
sired performance. For the verification, the actual generated
controller program bytecode is passed to the analysis engine
S2E [10] to avoid any abstraction errors that might happen
when modeling OpenFlow switches.

Another interesting instance of the pipelining model can be
found in the tool Margrave by Nelson et al. [22]. A schematic
representation of how it is used to decompose a Cisco IOS
configuration can be found in Figure 4. Each element of
the pipeline is used to provide the further elements of the
pipeline with necessary information to continue the analy-
sis, e.g., the Internal Routing step is used to decide which
outbound NAT and ACLs apply.

A very similar approach to this is taken in Hassel, the tool
that implements Header Space Analysis by Kazemian et
al. [16]. Hassel translates dumped Cisco IOS configurations
into functions represented in a model on which symbolic
computation is possible. Representing the full function of a
router with a single function of this model would result in
very large representations. The transfer through one Cisco
IOS router is thus modelled as traversing three layers in the
model, one input ACL and VLAN untagging step, one rout-
ing step, and one output processing step. The difference to
how Margrave uses the pipeline model is that Header Space
Analysis reuses the exact same model for each step.

This solution of size reduction is also applied by Exodus [23].
It translates Cisco IOS configurations into controller config-

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

51 doi: 10.2313/NET-2016-07-1_07

exit−interface
next−hop src−addr−out

dest−addr−out
src−port−out
dest−port−out

protocol
src−addr−in
dest−addr−in
src−port−in
dest−port−in
tcp−flags

PACKET HEADER

InsideNAT Internal Routing OutsideNAT OutboundACL

NOT int−dropped

internal−result

passes−firewall

entry−interface
hostname
length
message

ADD’L INFO

InboundACL

src−addr_
dest−addr_
src−port_
dest−port_

Figure 4: Margrave’s decomposition of firewall configurations
Figure 4: Margrave’s decomposition of IOS configurations, taken from [22]

uration for an OpenFlow switch (cf. Section 2.3). Much of
the available OpenFlow capable hardware only supports a
single table of matches and output ports. Similar to the
functions of Hassel, compressing the entire functionality of
a Cisco switch into a single table would create very large
representations through the use of cross products. Exodus
thus uses multiple switches (i.e. physically multple devices).
Their pipeline steps are, in order, VLAN untagging, input
ACLs, routing, NAT, routing (2), layer 2 rewriting, output
ACLs, and VLAN tagging.

2.6 Big Switch Model
While the big switch model is not strictly speaking a model
of a networking device but a model of the entire network,
we feel that it is important enough to mention it here. It is
used in various places, first and foremost in SDN [9, 15, 21]
programming languages, but also e.g., for network verifica-
tion [4]. The general idea is that a network or subnetwork
of switches, routers, firewalls displays a forwarding behavior
to all attached devices that are not part of the subnetwork.
The subnetwork usually has a complicated distributed con-
figuration that defines its forwarding behavior. Even in SDN
programming languages, this state is often exposed to the
programmer. Proponents of the big switch model usually
attempt to represent this state as if it was the configuration
of a single switch with each of its ports representing one
connection from the subnetwork to something outside of it.
The rationale for this is that a representation for the con-
figuration of the big switch could be smaller and thus easier
to understand or verify.

Anderson et al. [4] propose a slightly different interpretation
of the big switch model: for a network to be an instance of
the big switch model, they require that the network dis-
plays the behavior of a big learning switch, i.e. implements
all-pairs reachability. Since NetKAT [4] allows testing the
equality of two network descriptions, they formulate a formal
condition for this to be true. Showing this condition here
would require explaining the formalism used by NetKAT
and is thus out of scope.

3. COMPARISONS
In the previous section, we surveyed for existing models and
what they express. This section gives an overview of what
type of model they are, i.e. how they are used and inte-

Work Pro
of

Im
pl

em
en

ta
tio

n

R
eu

sa
bl

e

NetKAT [4] 4 4 4
VeriCon [5] 4 4 8
HOL-TestGen [6] 4 4 4
NICE [8] 8 4 8
Iptables Semantics [12] 4 4 4
(Dobrescu and Argyraki) [13] 8 8 8
(Guha et al.) [14] 4 4 4
HSA / Hassel [16] 8 4 8
ITVal [19] 8 4 8
Margrave [22] 8 4 4
Exodus [23] 8 4 8
(Xie et al.) [25] 8 8 4
FIREMAN [26] 8 4 8

Table 1: Usage of models in the surveyed work

grated in their environment. The results of this section are
summarized in Table 1. For the table, we differentiated be-
tween two types of model usage: are the models used in a
proof that establishes correctness properties of the system,
or are they used when implementing a surrounding system.
Additionally, we checked if some kind of formalization was
available and ready for reuse. Some of the attributions are
not entirely clear. We will explain them in the following
paragraphs.

Most of the models considered here fall into one of two us-
age categories. Members of the first category [8, 16, 19, 22,
23, 26] propose a model of networks or networking devices
that simplifies reality significantly. This model is then used
to justify and explain the steps that have been taken in the
implementation of an accompanying tool. The level of for-
mality of these models varies. Also, the models are usually
tightly tied to the implementation and not suitable for reuse
in other projects. Margrave is a notable exception to this as
its model is a relatively generic representation of Cisco IOS
configuration.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

52 doi: 10.2313/NET-2016-07-1_07

Members of the second category [6, 12, 14] give a model
that has a high degree of formality and is accompanied by a
semantics that aims to closely mirror the behavior of the real
system. This semantics of all of the models from the second
category is available in form of code for theorem proving
software.

Some models could not be sorted into either of these cate-
gories.

• VeriCon [5] explicitly formalizes the model it uses and
includes a semantics. However, its semantics does not
mirror the behavior of any real device. Nevertheless,
the use of the Satisfiable Modulo Theories solver Z3 [11]
does provide proof that the programs checked with
VeriCon are indeed correct wrt. the semantics. Veri-
Con’s authors also claimed that the semantics would
be made available online. To this date, it is marked as
“pending”.

• Similar to VeriCon’s case is NetKAT [4], except the
formalization is available.

• While Dobrescu and Argyraki [13] do propose a model,
they do not use it in their implementation. This is,
as mentioned, to avoid carrying any discrepancies be-
tween the model and reality into the implementation.
The model is merely used to justify why the implemen-
tation can terminate quickly.

• The work by Xie et al. [25] gives a model of a network
of routers but does not implement anything based on
it. An implementation that is based on that network
model has later been given with Anteater [18] by differ-
ent authors. As such, the model by Xie et al. proved to
be (re-)usable even though there is no readily available
formalization of it other than the publication itself.

4. CONCLUSION
We surveyed related work for the use of models of network-
ing boxes. We included models of learning switches, routers,
OpenFlow switches, firewalls, and devices that include mul-
tiple of these functions. This work can provide a reference
for further works in the area that want to use strong for-
malism and thus have to use models of networking boxes. It
can answer the questions of which models have already been
constructed, how they are used, and how their properties
make them qualified for the specific use-case.

5. REFERENCES
[1] Open vSwitch. http://openvswitch.org/.

[2] OpenFlow Switch Specification v1.0.0, December 2009.

[3] OpenFlow Switch Specification v1.5.1, March 2015.

[4] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin,
D. Kozen, C. Schlesinger, and D. Walker. NetKAT:
Semantic foundations for networks. ACM SIGPLAN
Notices, 49(1):113–126, 2014.

[5] T. Ball, N. Bjørner, A. Gember, S. Itzhaky,
A. Karbyshev, M. Sagiv, M. Schapira, and
A. Valadarsky. VeriCon: Towards verifying controller
programs in software-defined networks. In ACM
SIGPLAN Notices, volume 49, pages 282–293. ACM,
2014.

[6] A. D. Brucker and B. Wolff. Test-Sequence Generation
with HOL-TestGen with an Application to Firewall
Testing. In Tests and Proofs, pages 149–168. Springer,
2007.

[7] R. Bryant. Graph-based algorithms for boolean
function manipulation. Computers, IEEE
Transactions on, C-35(8):677–691, August 1986.

[8] M. Canini, D. Venzano, P. Peresini, D. Kostic,
J. Rexford, et al. A NICE way to test OpenFlow
applications. In NSDI, volume 12, pages 127–140,
2012.

[9] M. Casado, T. Koponen, R. Ramanathan, and
S. Shenker. Virtualizing the Network Forwarding
Plane. In Proceedings of the Workshop on
Programmable Routers for Extensible Services of
Tomorrow, PRESTO ’10, pages 8:1–8:6, New York,
NY, USA, 2010. ACM.

[10] V. Chipounov, V. Georgescu, C. Zamfir, and
G. Candea. Selective symbolic execution. In Workshop
on Hot Topics in Dependable Systems. Citeseer, 2009.

[11] L. de Moura and N. Bjørner. Z3: An Efficient SMT
Solver. In C. Ramakrishnan and J. Rehof, editors,
Tools and Algorithms for the Construction and
Analysis of Systems, volume 4963 of Lecture Notes in
Computer Science, pages 337–340. Springer Berlin
Heidelberg, 2008.

[12] C. Diekmann, L. Hupel, and G. Carle.
Semantics-Preserving Simplification of Real-World
Firewall Rule Sets. In N. Bjørner and F. de Boer,
editors, FM 2015: Formal Methods, volume 9109 of
Lecture Notes in Computer Science, pages 195–212.
Springer International Publishing, 2015.

[13] M. Dobrescu and K. Argyraki. Software dataplane
verification. In Proceedings of the 11th Symposium on
Networked Systems Design and Implementation
(NSDI), Seattle, WA, 2014.

[14] A. Guha, M. Reitblatt, and N. Foster.
Machine-verified Network Controllers. In Proceedings
of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’13, pages 483–494, New York, NY, USA, 2013.
ACM.

[15] N. Kang, Z. Liu, J. Rexford, and D. Walker.
Optimizing the ”One Big Switch” Abstraction in
Software-defined Networks. In Proceedings of the
Ninth ACM Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’13, pages
13–24, New York, NY, USA, 2013. ACM.

[16] P. Kazemian, G. Varghese, and N. McKeown. Header
Space Analysis: Static Checking for Networks. In
Presented as part of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
12), pages 113–126, San Jose, CA, 2012. USENIX.

[17] H.-T. Liaw and C.-S. Lin. On the
OBDD-representation of general Boolean functions.
IEEE Transactions on computers, (6):661–664, 1992.

[18] H. Mai, A. Khurshid, R. Agarwal, M. Caesar,
P. Godfrey, and S. T. King. Debugging the data plane
with anteater. ACM SIGCOMM Computer
Communication Review, 41(4):290–301, 2011.

[19] R. M. Marmorstein and P. Kearns. A Tool for
Automated iptables Firewall Analysis. In Usenix

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

53 doi: 10.2313/NET-2016-07-1_07

annual technical conference, Freenix Track, pages
71–81, 2005.

[20] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, 2008.

[21] C. Monsanto, J. Reich, N. Foster, J. Rexford,
D. Walker, et al. Composing Software Defined
Networks. In Networked Systems Design and
Implementation, pages 1–13, 2013.

[22] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and
S. Krishnamurthi. The Margrave Tool for Firewall
Analysis. In Proceedings of the Large Installation
System Administration Conference, 2010.

[23] T. Nelson, A. D. Ferguson, D. Yu, R. Fonseca, and
S. Krishnamurthi. Exodus: toward automatic
migration of enterprise network configurations to

SDNs. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research,
page 13. ACM, 2015.

[24] S. Shenker, M. Casado, T. Koponen, and
N. McKeown. The future of networking, and the past
of protocols. Talk at Open Networking Summit, 2011.

[25] G. Xie, J. Zhan, D. Maltz, H. Zhang, A. Greenberg,
G. Hjalmtysson, and J. Rexford. On static reachability
analysis of IP networks. In INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings IEEE,
volume 3, pages 2170–2183 vol. 3, March 2005.

[26] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and
P. Mohapatra. Fireman: a toolkit for firewall modeling
and analysis. In Security and Privacy, 2006 IEEE

Symposium on, pages 15 pp.–213, May 2006.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

54 doi: 10.2313/NET-2016-07-1_07

Topology Discovery in controlled environments

Maximilian Pudelko
Betreuer: Florian Wohlfart, Sebastian Gallenmüller

Seminar Future Internet WS2015
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: maximilian.pudelko@tum.de

ABSTRACT
This paper describes a method to collect data about the
topology of networks. Further on the data is used to generate
images representing the links between the hosts giving a
broader overview over the network. The single steps of the
process are fully automated to reduce manual interaction
with the system.

Keywords
topology discovery, test environment, lldp

1. INTRODUCTION AND SCENARIO
A research networking testbed can be a rapidly changing
environment as some experiments require different setups.
This leads to a constantly changing wiring and positioning
of the single testbeds. These changes done must be documen-
ted manually and merged into the existing documentation.
As this is seen as a cumbersome process it is often skipped
leading to an outdated information base. It is the goal of this
paper to develop a program which aids this documentation
process by utilizing existing technologies and software to de-
tect the physical topology of the testbed. With this goal set
the program has to meet the following requirements:

• The detected topology should be a correct represen-
tation of the hosts and their interconnection at the
link layer of the network. Detailed information about
speeds and type, in case of links, and hardware confi-
guration in case of hosts should be collected.

• Usage of the tool should result in reduced human in-
volvement compared to collecting the data manually.

• The output must be graphical in a way that presents
the topology suitably.

• The program should integrate into the existing test-
bed setup. Specifically it must not interfere with other
running experiments.

The reminder of this paper is organized as follows: Section
2 describes existing technologies and how they apply here,
Section 3 illustrates the developed solution of which the re-
sults on the Baltikum testbed are presented in Section 4.

2. RELATED WORK
As the idea of developing a method to discover present de-
vices and their physical topology on a Local area network,

IEEE 802 (LAN) is not new, several solutions have been al-
ready developed by different parties and organisations. The
following chapter will give a short overview over some of the-
se protocols, compares them and explains why Link Layer
Discovery Protocol (LLDP) was chosen as the base to sol-
ve the problem at hand. Additionally the basic operation of
LLDP will be clarified as needed for the understanding of
the solution as it builds on it.

2.1 Proprietary Protocols
Introduced in 1994 the Cisco Discovery Protocol (CDP) aims
to provide a mechanism to discover devices connected to a
network at the Link Layer (L2) by broadcasting informati-
on about itself. This enables any device wanting to collect
information to simply listen for this broadcasts without any
prior configuration [3]. As the usefulness of such a tool for
network administration became evident, it was included in
the OS of Cisco’s networking hardware and over the time
developed further to e.g. set-up VoIP telephones.
Similar the Link Layer Topology Discovery Protocol (LLTD)
was developed by Microsoft which too operates on any IEEE
802 network [4]. Contrary to the CDP it was not included
in networking hardware, but in the network stack of Micro-
soft’s OS starting with Windows Vista to display a graphical
Network Map of home networks and to detect connectivity
problems of wireless networks.
While for both protocols free Linux implementations exist,
neither of them are a viable solution as they are either li-
mited to vendor specific hardware, which would result in
incomplete topologies in case of mixed setups, or require the
signing of a license agreement to use them.

2.2 Link Layer Discovery Protocol
In 2005 a IEEE task force created a vendor neutral protocol
called LLDP to unify the up to then incompatible vendor
specific protocols. In the following the basic operation will
be explained.

Like its predecessors LLDP operates on the Link-Layer of
LANs, which gives it the benefit of low configuration prere-
quisites. In particular no IP addresses are needed as commu-
nication happens via Ethernet with vendor-set or manually
administered MAC addresses. A participant, referred to as
chassis, may be active and/or passive depending on con-
figuration. An active chassis will broadcast LLDP frames
on all of its ports in regular intervals to inform potential
listeners of its presence. If a passive chassis retrieves this
frame it will store this information in a local Management

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

55 doi: 10.2313/NET-2016-07-1_08

LLDP Multicast
address

Chassis MAC
address

88-CC LLDPDU FCS

6 octets 6 octets 2 octets up to 1500 octets 4 octets

DA SA
LLDP

Ethertype Data (+ pad)

Figure 1: IEEE 802.3 LLDP frame format[2]

Information Base (MIB). While two hosts may be able to re-
ach each other, no direct communication happens between
them. Particularly it’s not possible to make requests to other
chassis asking for the content of their databases, as LLDP
is designed as a one way protocol [2] using only broadca-
sted and not directly addresses frames frames. As LLDP
operates on L2 every frame has to be wrapped in a Ether-
net frame as shown in figure 1. Since these frames are not
directed to one specific host a broadcast address has to be
used in the destination address field. As normal broadcasted
frames with target FF-FF-FF-FF-FF would get forwarded
by bridges and switches, which would lead to an inclusion of
equipment beyond the physical link of a chassis, the standard
suggests a set of three reserved addresses 1 to limit frames to
one link on conforming switches. The source address is filled
out with the MAC of the interface (port) on which the frame
goes out. To distinguish LLDP frames from other protocols
like IP a separate Ethertype of 88-CC is used. Next follows
the actual payload in form of the LLDP Data Unit (LLDP-
DU). Each LLDPDU consists of a concatenation of TLVs of
which some are mandatory and some optional. The Chassis
ID TLV contains the identifier of the chassis that send out
the frame and has to remain constant for the time of opera-
tion of the LLDP service. This property is important as it
enables us to compile a list of the available hardware in the
network as explained in 3.2. The likewise mandatory Port
ID TLV uniquely identifies the sending port of a chassis.
With this value it becomes possible to distinguish between
multiple links between two chassis or to determine the ex-
act port number on a connected switch. Among the optional
ones the organizationally specific 2 System Capabilities TLV
and the MAC/PHY Configuration/Status TLV are of spe-
cial interest, as they indicate the type of networking device
(router, switch or simple station) and the bandwidth/type
of the physical link respectively.

As this standard has been implemented by all major networ-
king hardware manufacturer and is usable without restric-
tions, it is chosen as the protocol to use in the Baltikum
testbed. To enable this functionality on the Linux hosts the
FOSS program lldpd is employed, which additionally also
implements a client for most vendor specific protocols [1]
and thus ensures maximum coverage.

2.3 Other, higher layer protocols
While several other protocols like Open Shortest Path First,
a IP link-state routing protocol (OSPF) and Neighbor Disco-
ver Protocol, part of IPv6 (NDP), which operate in a similar
domain, exist, they are not applicable to the scenario of a
testbed because of the layer they operate on. The require-

101-80-C2-00-00-0E, 01-80-C2-00-00-03 and 01-80-C2-00-00-
00. Each with different meanings to provide further control
2Vendors and organizations can define custom TLVs and
apply for inclusion into the standard

A

R

B

m0

t0

t1

p0 p1

p0
p1 p1

p2 p2

p0

Figure 2: Example topology consisting of the mana-
gement router R and testbeds A, B

ment of getting a link layer topology can not be satisfied with
protocols operating at network layer, as they, by design, ab-
stract single links away. Also is the required knowledge and
organization to set them up often too much of an overhead
or not even possible at all.

3. PROPOSED ARCHITECTURE
Despite being favorable over the other protocols, LLDP co-
mes with several shortcomings by not providing any means
to solicit information from other chassis and operating on the
link-layer (L2) only. On this layer communication is most-
ly limited to direct, neighbor-to-neighbor messages without
any routing over other machines involved. The example in
Figure 2 demonstrates this limitation. With R being the ma-
nagement router and the only host which MIB we consult,
we would get correct information about the testbeds A and
B and their management connections m0R,A, m1R,B respec-
tively, but the, usually more interesting, test links t0 and t1
would stay hidden. This leads to the conclusion that for a
complete view of the network the content of all MIBs of the
relevant testbeds, e.g. A and B too, has to be collected. This
in turn complicates the setup process a bit as shown in figure
3, as it has to be ensured that every host has completed the
setup step and is ready to receive/send messages or parts of
the network will remain uncharted. Additionally there will
be a high ratio of duplicate entries which will be dealt with
in chapter 3.2.

3.1 Setup and Data gathering
The first step in the discovery process is to enable LLDP
or vendor specific equivalents on the deployed hardware like
switches or router and the testbeds. Depending on firmwa-
re or configuration these services may normally be disabled
since they may influence experiments negatively or are ge-
nerally not needed. It should be noted that they are only
required during the discovery process and can safely be di-
sabled again afterwards. On the Baltikum testbed this can
be launched over the existing Command and Control (C&C)
interface on the management host. Since the setup process
may take a different amount of time on the hardware a syn-
chronization barrier is employed as show in figure 3. In case
of the Baltikum testbed of the TUM this is done over the
management network, to which all test devices are connec-
ted, but different local viable solutions are thinkable. This
barrier may only be passed once every participating host is

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

56 doi: 10.2313/NET-2016-07-1_08

Setup
hosts

Survey
network

Upload
data

Refine data /
Output

Ready Barrier

Convergence
Barrier

On every chassis

On management
host only

Figure 3: Proposed flow

ready, which marks the beginning of the data gathering pha-
se.
Now every host sends the LLDP frames over its interfaces
and collects information over its adjacent neighbor testbeds
or hardware. The physical network should be stable at this
point, so no more replugging should happen. Experiments
on the Baltikum testbed have shown that this discovery pro-
cess only takes a few milliseconds, but non-ideal conditions
in networks spanning large distances or including wireless
links may lead to dropped frames and delays. So a conver-
gence timer of 10 sec to minimize this risk is employed with
the second barrier. After this every host shuts down the
discovery service and saves the gathered data locally to be
collected in the next step. Additionally every chassis collects
information about its hardware such as number and type of
CPUs, amount of RAM and built in mainboard to enrich
the dataset. As this kind of information is not part of the
LLDP specification, it is done at last and simply added to
the dataset.

3.2 Data aggregation and refinement
Now the collected data has to be aggregated and refined to
make it usable. On the Baltikum testbed this has been reali-
zed over the already existing infrastructure for the upload of
normal experiment results, but this may be solved as needed
depending on the actual setup. Once the collection is com-
pleted the filtering phase begins on the management host.
The need for this step can be explained with the example
topology in figure 2 as we look at the theoretically collected
data:

links = {(Ap1, Bp1), (Bp1, Ap1), (Ap2, Bp2), (Bp2, Ap2)}3

3The management links m0, m1 have been excluded for cla-
rity. lldpd includes filter to ignore certain interfaces.

Where a tuple (Xi, Yj) stands for a link from X on port i
to Y on port j. And

chassis = {AA, AB , AB , BA, BA, BB}4

where a value XY represents a chassis X as seen by Y .

The seemingly duplicate values come from the drawbacks of
using a link layer protocol. As e.g. A is connected to B over
multiple links, B will receive multiple frames from A only
distinguished by the port IDs. The program will therefore
detect multiple entries about the same chassis, as identified
by identical chassis IDs, and merge them. The same principle
applies to the set of links as each side reports the existence of
a link from its Point of View (PoV), the program will try to
find links with common endpoints and join them together to
bidirectional ones. In the example above this would lead to
the aggregation of e.g. the links (Ap1, Bp1) and (Bp1, Ap1) as
they have matching chassis and ports to one link {Ap1, Bp1}.

3.3 Data presentation
To keep the output as flexible as possible the JavaScript
Object Notation (JSON) was chosen to store the results for
further use such as generating topology graphs later. The
dataset is organized in two list. The first one contains all
connections with associated metrics like link speed as detec-
ted by the LLDP:

[{ ”endpointA ” : {
” inte r face name ” : ”p1 ” ,
”device name ” : ”A” ,
”d ev i c e i d ” : {

”type ” : ”mac” ,
”va lue ” : ”ab : cd : e f : 0 0 : 0 0 : 0 1 ”

}
} ,
”endpointB ” : {

” inte r face name ” : ”p1 ” ,
”device name ” : ”B” ,
”d ev i c e i d ” : {

”type ” : ”mac” ,
”va lue ” : ”ab : cd : e f : 0 0 : 0 0 : 0 2 ”

}
} ,
”speed ” : ”10GigBaseX”

}]

While the seconds list contains all discovered chassis identi-
fied by an ID and further described by a description string
and fields containing their hardware info obtained by the
local data collection:

[{ ”A” : {
”id ” : {

”type ” : ”mac” ,
”va lue ” : ”ab : cd : e f : 0 0 : 0 0 : 0 1 ”
} ,
”de sc r ” : ”Debian GNU/Linux 3.16.0−1−grml−amd64” ,
”cpu ” : ”E3−1230 V2 @ 3.30GHz” ,
”cpu count ” : 8 ,
”ram” : 17179869184

}
}]

The plotting process then becomes a matter of drawing all
chassis and connecting them.
4A chassis always ”discovers” itself, as it can supply the most
information about it.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

57 doi: 10.2313/NET-2016-07-1_08

4. RESULTS ON THE BALTIKUM TESTBED
In this chapter the results of a prototype implementation of
the strategy proposed in 3 will be presented. The program
is divided in a bash script for the set-up phase which relies
heavily on the existing infrastructure to start and control ex-
periments, as the whole topology discovery process is defined
as a regular experiment. For the refinement process and the
image generation a Python script incorporating the graph
drawing library pyGraphViz was developed. The Baltikum
testbed consist of 10 Linux hosts, one switch, one router and
the management network. Figure 4 shows a generated topo-
logy of the partial testbed as at the time of the discovery
not every host was available. While the correctness of all the
interconnections between the hosts could be confirmed via
manual inspection of the interfaces, it became evident that
LLDP did not detect links which start and end on the same
chassis. In particular the testbeds Cesis and Nida are mis-
sing each two of these ”short circuits” as seen in Figure 4.
Inspection of the source code of lldpd revealed that frames
that come from the same host are discarded silently to de-
al with faulty NIC drivers which relay broadcasted frames
back. About the overall performance can be said that it’s
largely dependent on the boot time of the machines which
can be as long as 5 minutes, while the experiment itself only
takes a few seconds.

5. CONCLUSION & FUTURE WORK
While a the process of collecting the required information
about a topology could be nearly automated, the goal of a
complete automation could not be archived, as the process is
not yet completely error free and the generated images often
need manual adjustments to be prevent overlapping labels.
In total this program still can provide a value help in the
documentation process as a base to extent from. While the
program it its prototype state is usable, certain areas need
further research. In its current state the topology discove-
ry still has to be explicitly run by the researcher and then
inserted into the documentation, which can be forgotten. A
possible way to solve this would be to let the LLDP service
run continuously instead of running it on-demand. While it
has to be determined that this does not interfere with the
experiments it would provide some benefits, as now tracking
changes over longer time intervals and the utilization of a
central database would be possible. This would shift the re-
sponsibility to the network administrator and away from the
single researcher, who could then, even retroactively, query
this database to get information about the systems state at
the time of his experiment. This interface again could be
provided via the existing wiki to keep information central
and generally available.

6. REFERENCES
[1] lldpd Development Homepage

https://vincentbernat.github.io/lldpd/features.html
Accessed: 2015-12-03

[2] IEEE standard for local and metropolitan area
networks: Station and media access control connectivity
discovery, ieee std 802.1ab, 2009.

[3] Cisco Systems, Inc. LLDP-MED and Cisco Discovery
Protocol, Jun 2006.

[4] Microsoft Corporation. Link Layer Topology Discovery
(LLTD) Protocol Specification, Aug 2010.

Glossary
C&C Command and Control

CDP Cisco Discovery Protocol

chassis A physical component incorporating one or more
IEEE 802 LAN stations and their associated applicati-
on functionality.

JSON JavaScript Object Notation

L2 Link Layer

LAN Local area network, IEEE 802

LLDP Link Layer Discovery Protocol

LLDPDU LLDP Data Unit

LLTD Link Layer Topology Discovery Protocol

MIB Management Information Base

NDP Neighbor Discover Protocol, part of IPv6

OSPF Open Shortest Path First, a IP link-state routing
protocol

physical topology Physical topology represents the topo-
logy model for layer 1 of the OSI stack - the physical
layer. Physical topology consists of identifying the de-
vices on the network and how they are physically inter-
connected. Note that physical topology is independent
of logical topology, which associates ports based on hig-
her layer attributes, such as network layer address.

PoV Point of View

TLV type, length, value. A short, variable length encoding
of an information element consisting of sequential type,
length, and value fields where the type field identifies
the type of information, the length field indicates the
length of the information field in octets, and the value
field contains the information, itself.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

58 doi: 10.2313/NET-2016-07-1_08

Figure 4: Generated partial topology map of the Baltikum testbed, 20.12.2015

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

59 doi: 10.2313/NET-2016-07-1_08

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

60

Comparing PFQ: A High-Speed Packet IO Framework

Dominik Schöffmann
Betreuer: Sebastian Gallenmüller

Seminar Innovative Internet Technologies and Mobile Communications (IITM) WS2015/16
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: schoeffm@in.tum.de

ABSTRACT
This paper discusses the PFQ framework built for high-
speed data transfers on an x86 platform. In order to fa-
cilitate the understanding of such a framework the low level
mechanics of the Linux kernel are discussed. This includes
historic approaches and the state-of-the-art situation. PFQs
internal workings are discussed including its functional en-
gine which is unique to this framework. The main con-
cepts of similar frameworks are explained and compared to
PFQ. Conducted measurements of PFQs performance are
reviewed and compared to other measurements done by the
frameworks creator.

Keywords
PFQ Linux network Internet framework

1. INTRODUCTION
The Internet is transferring more and more data by the
minute. Traditionally middle boxes such as routers and fire-
walls were built using specialized hardware in order to speed
up the processing and hence be able to handle the growing
load.

A more recent approach is to use commodity hardware such
as Intel x86 platforms. However normal Operating Systems
(OS) kernels are not able to provide the speed needed to
fully exploit the hardware provided network link speed.

Furthermore modern networking hardware is able to take
away load from the CPU, for example by computing the
ethernet CRC32 checksum in hardware. Another improve-
ment is the support of multiple packet queues which allow
better utilization of multi-core processors.

In order to actually use all these new possibilities, high per-
formance frameworks need to be developed, tested and used.

The purpose of this paper is to test a framework called
PFQ and compare it against other frameworks. In Section 2
the low-level mechanics of the existing network stack of the
Linux kernel in which PFQ partly lives are explained. The
framework itself is discussed in Section 3. Comparing PFQ
to other frameworks is done in Section 4. Section 5 presents
the conducted measurements and evaluates the result with
respect to previous performance tests.

2. THE LINUX KERNEL
The PFQ framework mostly works inside of the Linux ker-
nel. Also the packet retrieval from the network interface
is handled in the standard Linux way. This section covers
the communication between the Linux kernel and the Net-
work Interface Controller (NIC), by explaining how this was
achieved in the past and today.

2.1 Softnet
In the early days of the Linux kernel the Internet did not
consist of networks capable of transferring as much data in
a short period of time as it does nowadays. As an addition,
the hardware design was much simpler. Most notably there
were not as much multi-core processors, as today. As a result
multithreading the network stack inside of the Linux kernel
was no priority, even thread safety was not given until it
was introduced in Linux 2.0 [1]. Thread safety was provided
by using a mutex which only allowed one thread to operate
inside of the network context.

All this changed with the Linux kernel version 2.3.43 in
which multi-core support was added allowing multiple pro-
cessors to concurrently work on network traffic as it came
in from a NIC. The patchset which contained these changes
was called “Softnet” [1].

One problem which led to excessive packet loss in high traffic
situations however remained. At some point the hardware
has to inform the OS, that there are one or more packets to
be handled. Meanwhile the network card stores the pack-
ets in a DMA memory ring. Up to this point a hardware
interrupt was used to signal this event for every incoming
packet. This behavior is suitable when packets only arrive
every once in a while, but needless and even harmful if lots
of packets get received. As soon as a hardware interrupt
is caught by the processor it needs to be handled imme-
diately, delaying the work which is currently being done.
As observed by Salim et al. [1] this could lead to an un-
equal usage of computing resources between the kernel and
the user space. Therefore packets may have been queued,
but never actually been processed by a process interested in
these packets in the first place.

2.2 NAPI
As seen in chapter 2.1 issuing an interrupt for every single
packet which arrives at the network card does not yield a
very good performance for high traffic environments. The
exact opposite of this approach would be to use no interrupts

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

61 doi: 10.2313/NET-2016-07-1_09

at all, but to periodically poll the network card for packets.
Obviously the second way will oftentimes add unnecessary
latency to the further usage of the transmitted data [1].

The “New API” (NAPI) as presented by Salim et al. [1] pro-
vides a hybrid of these two worlds. When the network card
is initialized, it is configured to emit an interrupt as soon
as a packet arrives. Once this event occurs the interrupt for
incoming packets gets disabled and the NIC is inserted into
a queue of NICs having unprocessed packets. At some point
in time the OS decides to handle the queued interfaces and
thus the waiting packets. After all the packets from this in-
terface are retrieved, the interrupt is re-enabled. Packets get
dropped if the OS is not capable to schedule the processing
of the DMA ring while it has still space left. As soon as it
runs out of space no further packets can be written into the
RAM, these newly arriving packets are therefore lost.

This behavior mimics the two extremes outlined before in
extremely high or low traffic situations. If only a few pack-
ets arrive with a long enough time distance an interrupt is
send for each packet. When a lot of packets are arriving in
a rapid succession the system basically reverts to polling.
Thus a good middle ground was found between these two
mechanisms.

Up to now the Linux kernel uses the NAPI.

3. INNER WORKINGS OF PFQ
After understanding how the Linux kernel works for retriev-
ing packets from network interfaces, the next upper layer of
the used software stack is the PFQ framework itself.

3.1 General Structure
PFQ works inside of the NAPI context making use of the
standard way to retrieve packets from network cards. When
receiving a packet on the link, PFQ performs multiple steps
in order to make this packet accessible to a user space pro-
gram.

Figure 1 provides an illustration of the content which will
be discussed in the following paragraphs.

First there is the so called packet fetcher [2] which operates
on single packets. The one thing the packet fetcher does is
saving a pointer to the packet inside of the batching queue
[2]. Internally the packets are still represented by a sk buff
struct as used by the kernel. The whole point of the packet
fetcher is to speed up the processing afterwards in the next
stages by only working on batches of packets instead of pro-
cessing every single packet on its own.

The batching queue is the input to the packet steering block
[2]. Inside of the packet steering block it is decided to which
socket the packet is forwarded. Alternatively a packet can be
fed back into the Linux kernel or discarded completely. Dur-
ing this process the functional engine (discussed in section
3.2) is active. As an output location of the packet steering
block the socket queue is used.

The socket queue is the interface between the kernel world
and the user space world [2]. It is realized as a wait-free
double buffer. While one buffer is being processed by a user

space thread, the other buffer is used for storing new packets
which are currently coming into the system. This process
is facilitated by mapping the buffers into the appropriate
memory spaces.

The user space sockets are the only instances which only
operate in the user space and not inside of the kernel [2].
These sockets provide a way for threads to retrieve packets.

In order to speed up the low-level operations an additional
component called an “aware driver”[2] can be used. This
kind of driver provides only small code changes to the orig-
inal vanilla driver. When using such a special driver the
Operating System kernel does no longer receive network in-
put. All the incoming packets are processed by PFQ. [2]

At this point it should be noted, that the normal Linux ker-
nel would need to do a lot more preprocessing then PFQ
does. For example PFQ does not implement IP reassem-
bling or checks if a TCP segment actually belongs to a cur-
rently open connection. It does only provide a thin interface
between the networking hardware and the user space pro-
cessing.

ethX Hardware

Batching-Queue
NAPI-Driver

Functional Engine

Socket Queue

Figure 1: Inner Structure of PFQ, Image was re-
drawn and adapted, original by Bonelli et al. [2]

3.2 Functional Engine
The functional engine is a feature implemented within the
packet steering block. This engine determines what to do
with a packet. Possible options are: dropping, feeding it
back into the kernel, sending it to a group of sockets, all
sockets, one randomly chosen socket or forwarding it to a
specific socket (a group with only one member socket). If a
group is chosen as the destination, it may be decided if the
whole group receives the packet, or only one random mem-
ber, which thus results in a load-balancing situation. The
used language is called“PFQ-Lang”and was first introduced
by Bonelli et al. [3].

Using a functional approach inside of the kernel provides
the capability to run checks against the program in order to
verify properties like guaranteed termination (no loops) or
that all types correct [3]. This is useful in order to avoid
crashes inside of the kernel.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

62 doi: 10.2313/NET-2016-07-1_09

Inside of the program multiple processing steps can be per-
formed, which can result in a conclusion in which direction
the packet should be destined. If multiple different deci-
sions are made during this process the last decision is used.
One special case is a drop, if a packet is set to be dropped,
later steps cannot overwrite this with another action. These
steps are also called a “processing pipeline” [3] inside of the
functional engine.

A decision on how to handle a specific packet is made by
properties of the packet. These properties include the pro-
tocols used in the layers 3 and 4. Furthermore source and
destination addresses and ports can be investigated. More
detailed information about the packet, for example if it is
fragmented, can also be used.

Having a filtering mechanism like this, which does not crash
and operates inside the kernel does promise a comparably
good speed. Therefore middlebox software seems like a sen-
sible application for this type of feature.

4. COMPARISON WITH OTHER FRAME-
WORKS

Comparing the basic mechanisms of PFQ to those of other
frameworks is important in order to evaluate the perfor-
mance and fitness for some purpose.

4.1 Netmap
Similar to PFQ Netmap also operates inside the Operat-
ing Systems kernel, although most of Netmap is based in
the user space. Contrary to PFQ running Netmap means,
that the network interface on which Netmap is used is no
longer usable for the normal kernel. This limitation is only
enforced if an application uses the Netmap framework, oth-
erwise the interface behaves normal. Another difference is,
that PFQ can work with vanilla drivers whereas Netmap re-
quires patched drivers, which can be derived from the orig-
inal Linux drivers [4]. Netmap basically works by letting
the NIC write its incoming frames to the user space process
memory [2].

4.2 DPDK
DPDK also exclusively uses the network interface which is
switched into this exclusive mode whenever a special kernel
module is loaded. Said kernel module is named “UIO” and
serves as the network cards driver. The only responsibility
the kernel module has, is to map the cards memory into the
memory space of the process which wants to use DPDK.
Obviously this process runs in the user space which means,
that the framework parts inside of the kernel space are less
then the ones PFQ runs inside of the kernel. This framework
does not only provide a fast way to send and receive packets,
but a complete framework to realize Data Plane Devices like
routers or switches. One example feature which is important
to such devices is an efficient implementation of longest-
prefix-matching. [4]

4.3 PF_RING ZC
One feature which PFQ adapted from PF RING ZC is the
usage of aware drivers. PF RING ZC actually was the first
framework to propose such an approach [2]. Similarly to
PFQ PF RING ZC also uses shared memory rings for the

kernel and the user space. The difference however is, that
PFQ uses two such buffers which get swapped, whereas
PF RING ZC only has one buffer [2]. Measurements con-
ducted by Bonelli et al. [2] showed, that PF RING ZC does
not perform as well as PFQ in regards to scaling up to mul-
tiple threads and hardware queues.

5. MEASUREMENTS
Measurements of the performance of PFQ were carried out.
These include the two basic functions of such a framework,
namely sending and receiving packets.

5.1 Setup
The measurements were conducted on two servers connected
by a 10 Gbit/s ethernet link. As CPUs the first server used
an Intel Xeon E3-1230, the other server an Intel Xeon E3-
1230 V2. The used Network Interface Controllers (NICs)
were an Intel 82599ES and an Intel 82599EB respectively.
No further supporting kernel modules or patches to the net-
work driver were used. The systems were running the Linux
kernel version 3.19.

PFQ was compiled from source using the Glasgow Haskell
Compiler (GHC) version 7.8.4. The version of PFQ itself
was 5.0.4.

5.2 Traffic Generation
Using PFQ traffic was generated on the server with the Intel
Xeon E3-1230 processor and the Intel 82599ES NIC. Dur-
ing the experiment the number of threads used for packet
generation was incremented from 1 to 4 in steps of 1. The
packet size was fixed to 60 Bytes. In another run the size
of the packets was set to 128 Bytes, in order to measure
if PFQ also performs well in situations with more realistic
packet sizes. Using the second setup only 1 and 2 threads
were tested. During this test hugepages were not mounted.

The test was performed with the bundled test tool “pfq-gen”
using the command line pfq-gen -l 60 -R -t 0.5.ethtest0

-k 1,...

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 3 4

M
pp

s

Number of threads

Packet length 60 Byte
Packet length 128 Byte

i7-2600 [5] Packet length 60 Byte

Figure 2: Packet generation

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

63 doi: 10.2313/NET-2016-07-1_09

As can be seen in Figure 2, using more than one core does
help to generate packets at a faster rate. The framework
does also scale with rising packet sizes, since the sending
rate did only decrease inside of the error margin. During
the experiment it was also observed, that the sending rate
dropped below the average at multiple occasions, leading
to a quite high standard derivation which is also shown in
Figure 2. Notably the average sending rate peaked with
three cores and descended with the usage of four cores.

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 0 10 20 30 40 50 60

pp
s

Number of sample

Figure 3: Packet generation on 3 cores

Figure 3 shows the performance of PFQ in packets-per-
second for every taken sample of the measurement with 3
cores. It can be observed, that most samples are on one level
above 10 Mpps and only a few downwards directed peaks are
featured in the graph. These peaks occur relatively regular.

5.3 Traffic Capturing
Capturing traffic was performed on the Intel Xeon E3-1230
V2 processor and the Intel 82599EB Network adapter. The
traffic was generated by PFQ running on 3 cores and build-
ing packets with a size of 60 Bytes. During the measure-
ments the amount of used hardware queues was raised from
1 to 4. Each queue was bound to one processor core, which
results in a multithreading situation inside of the kernel. In
contrast to the traffic generation measurement hugepages
were mounted.

Analogous to the traffic generation the used tool also was in-
side of the PFQ test suite. It is called “pfq-counter” and the
used command was pfq-counters -c 64 -t 0.5.ethtest0.
Before issuing the command the PFQ kernel module was
reloaded with the appropriate queue number.

Figure 4 illustrates that the packet capturing capabilities of
PFQ rise in a linear fashion with the number of queues used.
As in the traffic generation test a significant derivation in the
measured data was found.

5.4 Comparison with other measurements
Similar benchmarks were performed by Bonelli et al. and the
results published in the projects wiki page [5]. Differences
between the tests were the kind of processor, and software
optimizations. The measurements in this paper were con-
ducted with vanilla drivers, whereas Bonelli et al. [5] used

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 3 4

M
pp

s

Number of queues/threads

Packet length 60 Byte
Linear fit

i7-2600 [5] Packet length 60 Byte

Figure 4: Packet capture

a driver which was optimized by the pfq-omatic tool. Fur-
thermore Bonelli et al. loaded a special kernel module which
provided support for Direct Cache Access. The used traffic
generation and capturing tool were the same and even shared
the same options. However the PFQ kernel module was
loaded with different options. The measurements conducted
by Bonelli et al. used the option “xmit batch len=128”[5],
whereas the measurements done in this paper used the de-
fault value of one. Another big difference were the clock
speeds of the used processors, which were lower in the here
presented results. Using hugepages might as well have an
impact on the performance (it is not stated if Bonelli et al.
used hugepages, although this is very probable).

It can be observed, that the measurements conducted in this
paper do not yield such a high performance as the previous
measurements made by Bonelli et al. [5].

6. CONCLUSION
In this paper historical approaches to handling packets at a
low-level were discussed. These included thread safeness and
interrupts. Modern operating systems migrated away from
issuing one interrupt per packet to issuing one interrupt per
batch of packets.

Furthermore an overview of the building blocks of the PFQ
high performance I/O framework was given. These included
getting the packets from the low-level kernel space, steering
them according to a functional engine and enqueuing them
to be accessible by user space applications. The internals
and capabilities of said functional engine were discussed.

Other frameworks promising similar functionality were ex-
amined for similarities and differences. Discussed were
Netmap, DPDK and PF Ring ZC. All provided the same
basic functions like sending and receiving packets, but the
methods achieving this do differ from one to another. All
use some kind of kernel module, although the ratio of work
done in the kernel space and the user space vary heavily.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

64 doi: 10.2313/NET-2016-07-1_09

Lastly measurements were taken to determine how many
packets PFQ can send and receive on x86 commodity hard-
ware. Inside of these measurements the number of used cores
was variated. Within these measurements it was observed,
that there were severe drops of the transmission rate. An-
other important note is, that when capturing traffic there
is a linear correlation between the received packets and the
number of hardware queues which PFQ was able to use.

7. REFERENCES
[1] J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond

softnet. In Proceedings of the 5th annual Linux
Showcase & Conference, volume 5, pages 18–18, 2001.

[2] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi.
On multi–gigabit packet capturing with multi–core
commodity hardware. In PAM’12 Proceedings of the
13th international conference on Passive and Active
Measurement, pages 64–73. Springer, 2012.

[3] N. Bonelli, S. Giordano, G. Procissi, and L. Abeni. A
purely functional approach to packet processing. In
Proceedings of the Tenth ACM/IEEE Symposium on
Architectures for Networking and Communications
Systems, ANCS ’14, pages 219–230, New York, NY,
USA, 2014. ACM.

[4] F. W. D. R. Sebastian Gallenmüller, Paul Emmerich
and G. Carle. Comparison of frameworks for
high-performance packet io. In ACM/IEEE
Symposium on Architectures for Networking and
Communications Systems, 2015.

[5] Nicola Bonelli. PFQ Benchmarks
https://github.com/pfq/PFQ/wiki/Intel-IXGBE-10-
20G (last retrieved 8.12.2015)

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

65 doi: 10.2313/NET-2016-07-1_09

ISBN 978-3-937201-51-1

9 783937 201511

ISBN 978-3-937201-51-1
DOI 10.2313/NET-2016-07-1

ISSN 1868-2642 (electronic)
ISSN 1868-2634 (print)

1

	Hypervisor- vs. Container-based Virtualization
	Analyzing "Global Access to the Internet for All" Projects
	Vergleich von Hardware- und Software-Traffic-Generatoren und ihrem Einsatz in der Praxis
	The Interface to the Routing System
	How-To Compare Performance of Data Plane Devices
	MoonGen Tutorial
	Middlebox Models in Network Verification Research
	Topology Discovery in controlled environments
	Comparing PFQ: A High-Speed Packet IO Framework

