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Preface

We are pleased to present to you the proceedings of the Seminar Innovative Internet Technologies and
Mobile Communications (II'TM) during the Winter Semester 2024,/2025. Each semester, the seminar takes
place in two different ways: once as a block seminar during the semester break and once in the course of
the semester. Both seminars share the same contents and differ only in their duration.

In the context of the seminar, each student individually works on a relevant topic in the domain of computer
networks, supervised by one or more advisors. Advisors are staff members working at the Chair of Network
Architectures and Services at the Technical University of Munich. As part of the seminar, the students
write a scientific paper about their topic and afterward present the results to the other course participants.
To improve the quality of the papers, we conduct a peer review process in which each paper is reviewed by
at least two other seminar participants and the advisors.

Among all participants of each seminar, we award one with the Best Paper Award. For this semester, the
awards were given to Len Bioly with the paper Assessing the Energy Consumption of Software and Karoline
Spohn with the paper The State of DNS Delegation: Technical Challenges and Solution Approaches .

We hope that you appreciate the contributions of these seminars. If you are interested in further information
about our work, please visit our homepage https://net.in.tum.de.

Munich, May 2025

»
d:

Georg Carle Marcel Kempf Daniel Petri Stefan Genchev
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Assessing the Energy Consumption of Software

Len Bioly, Kilian Holzinger*, Johannes Spith*
*Chair of Network Architectures and Services
School of Computation, Information and Technology, Technical University of Munich, Germany
Email: len.bioly@tum.de, holzingk@net.in.tum.de, spaethj@net.in.tum.de

Abstract—To lower costs and help the environment, green
software engineering is becoming more and more critical to
lower software’s energy consumption. Therefore, this paper
reviews methods to measure the energy consumption of soft-
ware, including hardware-based methods like Intel RAPL,
AMD APM, and an experimental approach named SEFlab.
Furthermore, it covers software-based estimations created
with eLens, GreenOracle, and Silicon Labs Energy Profiler.
Hardware-based methods can achieve precise measurements
at runtime but suffer from a long setup time. It is also
difficult to detect which current comes from which software.
The software-based methods are helpful in development
because they are easy to set up and can visualize the
energy consumption fine-grained in the code. The paper
also includes information about CloudSIM and proprietary
methods of market-leading cloud distributors like Amazon to
reflect the current research results in energy-efficient cloud
computing.

Index Terms—energy consumption, software measurement,
runtime monitoring, software-based estimation, distributed
systems

1. Introduction

The quantity of information and communication tech-
nology (ICT) is rising yearly; therefore, energy con-
sumption and costs are breaking record after record. The
SMARTer 2030 Report forecasts that, in 2030, ICT will
be responsible for 2% of all carbon emissions [1]. Because
carbon dioxide will be the primary contributor to global
warming, it is essential to lower the energy consumption
of software to combat the climate crisis [2]. To achieve
this objective, the developers must take exact energy mea-
surements of their software.

There can be many methods for analysing software
energy consumption; therefore, this paper outlines some
measurement methods. It contains black-box testing meth-
ods measuring energy consumption at runtime and white-
box software-based estimation methods integrated into
development environments. This review details Intel Run-
ning Average Power Limit (RAPL), AMD APM, and
SEFlab as runtime measurements, besides GreenOracle,
eLens, and Silicon Labs Energy Profiler as software-based
estimation methods. Furthermore, it analyzes the accuracy
and precision and lines out the difficulties and concerns
of the mentioned methods.

Cloud Computing has risen exponentially over the
last few years [3]. More complex measuring structures
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are needed to provide a platform for researchers and
developers to test and optimize their systems. Therefore,
this paper reflects CloudSIM 7G, a state-of-the-art, robust
simulation toolkit for cloud computing. To introduce an
example of monitoring methods at major cloud service
providers, AWS CloudWatch is detailed.

2. Related Work

A paper by Felix Rieger and Christoph Bockrish [4]
concludes a summary of different studies. They reviewed
existing research on green software design and assessment
methods, such as Silicon Labs and SEFlab, which are
contained in this paper.

Andreas Schuler and Gabriele Kotsis [5] ana-
lyzed event-based, utilization-based, code-analysis, and
measurement-based methods for mobile platforms like
Android or i0OS, thereby reviewing individual system
parts’ energy consumption. Within their study, they cate-
gorized existing methods and stated problems that must be
solved. In total, they reviewed 134 studies between 2011
and 2021, most of them applying the Android platform.

3. Energy Measurement Methods

The following section introduces the different methods
for analyzing software energy consumption. The passage
will describe the mode of operation and the functional
framework of these individual methods and also state
some of their limitations.

3.1. Intel RAPL

Intel RAPL allows the user access to sensors inside
the CPU, allowing the CPU’s and DRAM’s accumulated
power consumption to be distinguished. Intel introduced
the method with their Sandy Bridge lineup [6], [7].
The information is stored in Machine-Specific Registers
(MSRs) [1], [7], [8]. Rather than capturing physical mea-
surements, these registers store architectural events from
the cores, processor graphics, and I/O, which are pro-
cessed with energy weights to estimate the active power
consumption of the package [9]. The collected consump-
tions are displayed in Joules and are updated on average
every millisecond, therefore, the granularity is 15.3 pJ for
SandyBridge [6]-[8] and 61 uJ for Haswell and Skylake
architectures [7].

Table 1 shows the different relevant storing registers.
With Intel RAPL, CPU package power, the total consump-
tion of the processor cores and the consumption of the
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TABLE 1: List of available RAPL sensors, Table 1 in [1]

RAPL_PKG Whole CPU package
RAPL_PPO Processor cores only
RAPL_PP1 A specific device in the uncore
RAPL_DRAM  Memory Controller

DRAM controller can be measured. A significant disad-
vantage of Intel RAPL is that there is no possibility of
measuring the power consumption of individual cores [1].

Intel RAPL has severe security issues, as explored
by Z. Zhang et al. [10]. Especially on Linux systems,
unprivileged users can read the measurements offered by
Intel RAPL through the "sysfs" interface. Furthermore,
the same can be done on MacOS with specialized system
calls.

They analyzed the memory power consumption using
DRAM access procedures. With an AVX system call,
they stored data in the DRAM and measured the energy
consumption. They discovered that writing small segments
consumes less power than writing larger segments. Then,
they implemented a receiver and a sender, which can
be placed, for example, one in the container and one
in the management system. With some adjustments, they
established a covert channel that can transmit 0 and 1
through those energy measurements while bypassing all
the security implementations. On their testing systems,
they achieved a bandwidth of 50bps while maintaining
an error rate below 2% on every system [10].

3.2. AMD Energy

In comparison, AMD Application Power Management
(APM) can measure the energy consumed by each core
and the total socket power. The socket power measure-
ments differ from those of Intel’s package power because
it is not the sum of all cores but includes cache and
other CPU internal parts. In contrast to Intel RAPL, it
does not provide the consumed energy in Joules, but the
average consumption over the last timeframe. On a system
with AMD Opteron 6274, a timeframe was about 3.8 ms
long and results in a granularity of 3.8 mW. Only the
information of the last segment is stored in the registers.
This approach is more accurate than Intel RAPL when
measuring microscopic procedures because considering
two timeframes instead of one does not have a tremendous
impact. The disadvantage of AMD Energy is that no
power measurement of the DRAM is possible [6].

3.3. SEFlab

Ferreira et al. [11] conducted further investigations to
create the SEFlab, a hardware-based black-box measuring
lab. It is especially suitable for processors produced before
the introduction of Intel RAPL.

They tried to get exact measurements of both CPUs,
memory, fans, mainboard, and HDD. With some addi-
tional testing, they could distinguish each wire to their
consumer except the power for memory banks and fans
because those are distributed directly on the motherboard.
To address this problem, they measured the power con-
sumption of the memory and fans and subtracted it from
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the measurements of the mainboard results. All these
measurements were collected with a sampling frequency
of 30kHz and then stored and processed in the data
acquisition system (DAQ). The DAQ transmits the data
to the measurement PC, where the data is visualized.
Furthermore, they extracted a pulse via USB from the
server and inserted it via a serial port. With that, they could
get exact measurements when the software is executed on
the server. Bram Visser did a validation analysis of SEFlab
and discovered an error margin around 1% [11]. SEFlab
is still an experimental approach that requires much work
to adapt to other hardware.

3.4. eLens

A concept for estimating energy consumption is eLens.
It combines per-instruction energy modeling and program
analysis to trace executed paths. eLens bases the estima-
tions on bytecode. The conversion process to bytecode is
further introduced in Section 4 of this paper. eLens can
be integrated into IDEs like Eclipse to estimate different
application parts. Therefore, the developers do not need
additional hardware if a SEEP described below is avail-
able. The algorithm can estimate the energy consumption
per line of code, path, method, and application [12].

For eLens to work correctly, a software environment
energy profile (SEEP) is needed. The SEEP contains the
per-instruction energy costs of every hardware component
in the target machine. The researchers of elLens hope
that manufacturers will publish SEEPs of their products
in their future. Since SEEPs are currently not available,
the researchers generated their own SEEP with the LEAP
setup [12].

The Low Energy Aware Platform (LEAP) is a testbed
invented at the University of California, Los Angeles. It
contains an Intel Atom CPU on a mini-ITX motherboard.
With a Digital Acquisition Device (DAQ), they can sample
at a rate of up to 10kHz. The system can be further
adapted to measure all parts necessary for various applica-
tion types. In cooperation with its nanosecond timestamp
counter, it can report fine-grained energy consumption
results while executing a task [13].

eLens contains three main parts, as shown in Figure
1. The Workload Generator converts the possible user
interactions into path information, which can be processed
further in the Analyzer and Source Code Annotator. The
generator is needed, because it would be inaccurate if
all paths were executed n times. The Analyzer then re-
ceives the paths from the workload generator and assigns
each path’s matching energy estimates extracted from the
SEED. Afterwards, the Source Code Annotator visualizes
the results from the Analyzer, which can then be integrated
via the Eclipse plugin. For example, the single lines
of code are highlighted in blue for lower consumption
and then go up in steps to red representing enormous
consumption [12].

3.5. GreenOracle

GreenOracle is an energy estimation software for An-
droid applications. It uses machine learning based on a
big data approach; the creation of the dataset is further
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Figure 1: Structure of eLens, Fig. 1 in [12]

detailed in the accuracy and precision section of this pa-
per. The software then calculates the energy consumption
based on grouped system calls, processes with similar
functions and energy consumption. With the fast execution
and easy adaptation to new versions, app developers can
assess energy-consuming parts of the code in progress.
The results are promising, and it is universally applicable,
while the achieved results are comparable to those of
eLens. Nevertheless, GreenOracle is easy to use and does
not require specialized hardware [14].

3.6. Silicon Labs Energy Profiler

In the world of "Internet of Things" (IoT), many
household devices are connected to servers worldwide.
Microcontrollers are needed to enable such functional-
ity, which can manage and connect these devices while
using only a little power. Silicon Labs provides a com-
plete working environment with in-house software and
hardware, which is available on the market. With their
cooperating hardware the developer can assess the energy
consumption of software since the 5th version of the Sil-
icon Labs Studio. They manufacture 32-bit ARM Cortex
cores, which can be programmed via the Silicon Labs
SDK afterward [15].

The microcontroller EFM8 and EFM32 have a com-
patible debug interface which can be connected to a
Silicon Labs starter kit containing a power supply. With
the Advanced Energy Monitor (AEM) interface included
in the SDK, the energy consumptions can be displayed
within the IDE. The development environment has inte-
grated the Silicon Labs Energy Profiler (SELP); therefore,
multiple devices can be measured and compared simulta-
neously.

The visual user interface efficiently displays the live
energy consumption with a waveform. The AEM interface
provides a single-node and a multi-node view, where
the user can see the animated live consumption. This
presentation method allows the developer to efficiently
assess all the needed information, make changes to the
code, and measure again. Furthermore, the interactions
between several devices can be measured and visualized.
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The system is modular overall and helps the developer
getting complex measurements done in seconds, saving
many work hours; e.g., the software allows the user to look
into variable timeframes and modules, providing complete
control and customization.

The IDE can manage the software autonomously, so
the developer can start, pause, and end the measured soft-
ware directly inside the development studio. Furthermore,
recording the measurements is possible for later analysis,
and the user can enable code correlation, whereby the soft-
ware can assign the energy consumptions to each function
because both code analysis and energy measurement run
in parallel [16].

3.7. CloudSIM

Cloud SIM 7G is the 7th version of this open-source,
java-based simulation tool. The system is not designed to
assess the energy consumption of individual software but
primarily to determine how to distribute the software most
efficiently. The developers can simulate energy consump-
tion of, for example, network components in geograph-
ically distributed systems while recreating the network
traffic of their software. The developers of CloudSIM have
integrated the CloudNetSIM++ software from OMNeT++
for this purpose. Using this, researchers can compare per-
formances of, for example, star and mesh topology while
connecting the data centers. It can manage TCP, UDP,
and HTTP traffic. The system then outputs the calculated
energy consumption per data center or hardware compo-
nent type. With the extension ERouter, the consumption
of switching and routing appliances can be assessed. It is
an extensive system with an easy-to-use GUI (graphical
user interface) that enables researchers and developers to
simulate, optimize, and assess their software [17], [18].

3.8. AWS CloudWatch

AWS (Amazon Web Services), Google Cloud, and
Microsoft Azure implement several proprietary measure-
ment methods [19]-[21]. For example, AWS announced
CloudWatch, allowing developers to see all system com-
ponents’ current hardware utilization. These approaches
cannot measure absolute energy values but give the devel-
opers an indication of how energy-efficient those methods
are compared to other software versions [19]. AWS Cloud-
Watch works on all AWS EC2 systems, which all run Intel,
AMD and proprietary AWS Graviton processors [22].

4. Accuracy and Precision

The following paragraphs will detail the experimental
testing setups and measurement results, assessing the ac-
curacy and precision of Intel RAPL, SEFlab, eLens, and
GreenOracle.

The measurements of Intel RAPL improved from
Sandy Bridge-EP to Haswell-EP [8]. The testing group
of Khan et al. [7] did extensive research on the accuracy
of Intel RAPL power measurements. They established
a testing setup with an Intel Core i7-4770 @ 3.40Ghz,
a Haswell workstation CPU, and an Intel i5-6500 @
3.20Ghz, a Skylake Desktop CPU. Their analysis used Mi-
crobenchmarks, which address only a specific part of
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the CPU, and application-level benchmarks like Stream
or ParFullCMS. The benchmark Stream showed a strong
correlation (coefficient of 0.99) between the RAPL pack-
age power, and the power drawn from the wall socket.
It should be noted that this is only feasible at constant
temperatures. Especially when testing the Haswell CPU,
they observed a significant impact on longer benchmarks
when the temperature is rising. They measured a correla-
tion of 0.93 between package power and temperature read-
ing. Therefore, if measuring with RAPL technology, the
developers should remember that all the tests should have
comparable core temperatures. Overall they estimated a
mean error of 4% for Sandy Bridge and 1.7% for Haswell
CPUs [7].

The accuracy of the SEFlab cannot be distinguished
precisely because of the lack of testing different hardware.
However, in their testing lab, they could measure very
accurate results on runtime. In future work, it will also
be possible to get precise predictions when enough data
is collected [11].

The researchers compared the accuracy of eLens by
comparing the measurements of the ground trough (GT)
metered with LEAP and eLens. First, they downloaded
unmodified Android applications from the Google Play
Store and afterwards converted the Dalvik bytecode to
Java bytecode using the dex2jar tool. Some applications
cannot be transformed and were excluded from their val-
idation process. Furthermore, the code has to run on the
LEAP Platform and during the path measuring process,
0.01% of all paths threw an exception. All the remaining
applications were given to eLens as input. They com-
pared the estimations of eLens with the measured GT,
but different problems occurred during this process. The
GT counted waiting times on human input; the LEAP
could not determine which energy consumption was just
background noise, and the LEAP had only a sampling
rate of 10kHz. The rate is just enough to measure func-
tions that run longer than 10ms. This lack resulted in
many functions where the GT cannot be distinguished.
Therefore, they did not compare the measurements at the
line of code granularity. The average error for the whole
program level was 8,8% but was consistently below 10%.
At the method level, the average was 7.1% and also below
10% in any case. For the hardware components, RAM
and WiFi, they got a maximal error of 12% and one
measurement with GPS, where an error of 8.1% occurred.
These are excellent results in comparison to other software
estimation methods. For example, the average-bytecode
strategy at the whole program level had an average error of
133% and the no-path-sensitivity analysis 267%. Primarily
because not only the CPU consumption is assessed, but
also other hardware components can be included in the
calculation [12].

To get high accuracy, the developers of GreenOracle
collected 24 different Android applications with a total of
984 versions from F-Droid [23], GitHub, and partly from
a direct website. Then they used the Green Miner [24], a
hardware-driven energy profiler consisting of a Raspberry
Pi, a Galaxy Nexus phone, and an Arduino Uno. The
Raspberry Pi executes the tests on the phone and stores
the measured data, while the Arduino Uno collects the
energy consumption of the phone. The predefined tests
consist of standard usage of the app and the user inputs
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are emulated with Unix shell. They executed all tests in
airplane mode. After repeating each test 10 times, they
collected all system calls with the trace command in
several independent tests. Finally, they grouped similar
system calls and created a table of only 13 different system
calls. With advanced machine learning, they achieved
an average error of 5.96% using super vector machine
regression (SV) because other regression types generated
worse results. However, they recommend ridge regression
because the worst case is much better than SV regression.
That concludes with a mean error of 6.17% and a worst-
case error of 13%. These results are comparable to eLens
stated above [14].

5. Error Analysis

During the testing of SEFlab, they encountered some
contradictions with similar experiments, for example, an
experimental analysis by H. Chen, S. Wang, and W.
Shi. [11], [25]. They did not assess these issues within
the paper. Furthermore, they did not address the impact
of rising temperatures of the SOC when running more
extended tests. They stated in the paper that CPU usage
is highly correlated with its power draw. Figures 2 and
3 show that the utilization is initially at 100%, but the
power draw is not at its peak. They explained this by
apparent contradictions in their benchmarks and the lack
of scalability reported in [11], [26]. For mobile usage,
many processors are designed to be highly efficient at idle
but are inefficient at peak performance. This structure is
necessary because, on mobile devices, the idle time is
much longer than the time when the peak performance is
needed [26]. Another point that may impact the findings
is that energy density on the internal head-spreader (IHS)
rose over several chip generations. For example, a Xeon
CPU from 2004 has a TDP of 103W on a heat spreader
with a size of 42.5 mm x 42.5 mm (1806.25 mm?) [27]. In
contrast, a last-generation Intel Core like the 14900K has
a TDP of 125W and a turbo of up to 253W on a 45 mm
x 37.5mm (1687.5 mm?) IHS [28]. That is an increase of
29.9% per mm? of energy density. This increase can cause
a higher temperature range of the SOC and, therefore,
different scalabilities because the resistance of the SOC
rises with rising temperatures and consumes more energy
for the same performance [29].

6. Conclusion and Future Work

As shown in the review, there are many ways to assess
software energy consumption. Nevertheless, to this date,
no method has perfect accuracy and is easy to adapt
to all scenarios. The hardware-based methods described
in the first part are more precise than software-based
approaches regarding runtime measurements. However,
these hardware-based methods are time-consuming, and it
is challenging to distinguish between total system power
usage and power usage caused by the software. The
software-based estimation methods are easy to adapt but
have some uncertainties but still are suitable for more
applications. eLens and GreenOracle are not yet available
to standard developers and still need more straightforward
integration with state-of-the-art software development sys-
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TABLE 2: Overview of methods mentioned in the paper

Method Platform Compati- | Error
bility
INTEL RAPL Only Intel CPUs | 4% (Sandy-
since Sandy-Bridge | Bridge) 1.7% [6],
+ DRAM (since | (Haswell) [7]
Sandy-Bridge Server)
AMD APM Only AMD CPUs | No measured
since 15h generation values [6]
SEFlab AMD & Intel CPUs | ~1%
as above + additional [11]
hardware components
eLens Android based CPU + | < 10%
RAM, GPS, WiFi [12]
GreenOracle Android based CPU < 13%
[14]
SL E. Profiler SL Microcontroller No measured
values [16]
CloudSIM distributed systems No energy val-
ues [17],
[18]
AWS CloudWatch | AWS EC2 instances No energy val-
ues [19]

Note: In this table, SL stands for Silicon Laboratories.

tems. CloudSIM provides the most advanced, freely avail-
able technology in this paper, but the system has many
possible future improvements; ideas could include running
individual software in simulation, which would be ana-
lyzed in a manner comparable to eLens or GreenOracle.
Big cloud distributors have advanced proprietary monitor-
ing tools to shorten costs but they do not provide absolute
energy values.

In conclusion, much work is needed in this segment

to overcome the current boundaries, but more advanced
technologies are being developed every year. Platform-
independent and easy-to-use methods are not available
to date. Only Intel RAPL, Silicon Labs Energy Profiler,
CloudSIM, and AWS CloudWatch are commonly used
in the industry. Especially for network applications, Intel
RAPL is used because this method can deliver precise
measurements, and most test setups in universities are
Intel x86-based. However, more software-based methods
with hardware integrations like eLens are also coming,
making analyzing energy consumption much easier.
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Abstract—The increasing demand for faster and more se-
cure web services have driven significant advancements in
networking protocols. This paper explores the potential
of QUIC, a modern transport protocol, to accelerate web
proxies and REST APIs, which are critical components in
today’s Internet architecture. We provide an overview of
the REST (Representational State Transfer) paradigm and
web proxies. Aswell, we explore basic and in-development
features of QUIC and related work. The paper then anal-
yses the problems, requirements and challenges of REST
APIs, Web Proxies, and Content Delivery Networks and
maps features of QUIC to them to show their potential for
acceleration. The paper finds that QUIC can enhance the
performance, security and reliability of REST APIs served
through web proxies and CDNs. Still, there are connections
between QUIC, REST APIs, and web proxies that need
further research.

Index Terms—quic, content delivery networks, rest, web
proxies

1. Introduction

In an era where web traffic is growing rapidly, the
need for reliable, fast, and secure networking protocols
has never been more critical. The most widely adopted
solution for ensuring secure web communication is the
Hypertext Transfer Protocol Secure (HTTPS), which in-
tegrates the Transmission Control Protocol (TCP) with
Transport Layer Security (TLS). While HTTPS was and
still is the standard for secure web traffic, its reliance on
TCP has introduced several challenges and problems, par-
ticularly with the increasing and changing needs of mod-
ern web applications. To address these challenges, Google
proposed QUIC in 2016 for standardization, among other
things, with the goal of enhancing the performance and
security of web communications beyond what TCP could
traditionally offer [1].

When considering mechanisms for client-server com-
munication, REST (Representational State Transfer) or
RESTful APIs have become the predominant paradigm.
REST outlines architectural requirements that APIs (Ap-
plication Programming Interfaces) must follow [2]. In
many implementations, requests to REST APIs are routed
through web proxies. These web proxies can provide
several advantages, such as improved security, reduced la-
tency, and enhanced performance [3]. Given these benefits,
the role of web proxies in optimizing the performance of
REST APIs is of significant interest.
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This paper explores the potential of QUIC to accel-
erate REST APIs, specifically in scenarios in which web
proxies are involved. We aim to analyze how the features
of QUIC can address the challenges and requirements of
REST APIs when served by web proxies, thereby offering
a more efficient and secure solution.

The remainder of this paper is structured as follows:
Section 2 provides background information about QUIC,
REST, Web Proxies, and CDNs (Content Delivery Net-
works), Section 3 presents related work and sets this paper
apart from others. In Section 4, we analyze the problems,
challenges, and requirements of REST APIs served by
Web Proxies. In Section 5 we then map the features of
QUIC to the problems that we found in Section 4. The
paper concludes with a summary of our findings in Section
6.

2. Background

This section gives an overview of the relevant con-
cepts for the following problem analysis and mapping of
features to the problems.

2.1. QUIC Protocol

QUIC is a transport protocol, which was developed by
Google and later standardized by the Internet Engineering
Taskforce (IETF) [1]. Unlike traditional protocols like
TCP in combination with TLS, QUIC is built on top of
the User Datagram Protocol (UDP) and contains features
that aim to reduce latency, enhance security and improve
the overall efficiency of web communication.

2.1.1. Key Features of QUIC. QUIC introduces several
features that differentiate it from the traditional TCP+TLS
combination:

e 1-RTT and 0-RTT Handshakes: While TCP
requires at least one round-trip time (1-RTT) for
the handshake and TLS needs 1-RTT as well,
QUIC combines these steps [4]. Figure 1 shows
how QUIC establishes a secure connection with
a single round-trip. Moreover, QUIC supports O-
RTT handshakes for repeated connections, thereby
data can be sent immediately [5].

¢ Built-in Encryption: QUIC mandates encryption
by default and uses TLS 1.3 for secure communi-
cations [6]. From the start of the communication,
the built-in encryption provides confidentiality, in-
tegrity, and authenticity. As a result, QUIC does
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Figure 1: Timeline of QUIC’s initial 1-RTT handshake,
a subsequent successful 0-RTT handshake, and a rejected
0-RTT handshake [5].

not need an extra encryption layer like TLS on top
of TCP.

o Connection Migration: QUIC allows to migrate
a connection and continue it seamlessly when a
client’s IP address changes e.g. when switching
from Wi-Fi to cellular data. While TCP uses a 4-
tuple, QUIC utilizes a connection ID to identify a
connection from a client to a server [7].

e Stream Multiplexing: QUIC can handle multiple
streams of data within a single connection without
the issue of head-of-line blocking, which occurs
in TCP when packet loss in one stream can delay
the delivery of data in other streams [8]. By using
different StreamIDs, packet loss does not affect
all streams, but only streams that are in the lost
packet [9]. Figure 2 illustrates how QUIC behaves
in comparison to TCP when encountering packet
loss while having multiple streams.

The following two are extensions to QUIC that are partic-
ularly relevant for scenarios with a web proxy layer and
CDNs. There is still ongoing work and development on
these extensions:

e MASQUE (Multiplexed Application Substrate
over QUIC Encryption): MASQUE is an exten-
sion for QUIC which allows to multiplex traffic of
different applications with a single QUIC connec-
tion. It can create a secure tunnel to a proxy and
because of that, it is particularly useful for appli-
cations like VPNs or proxy services with multiple
streams, since the streams can be handled securely
within one connection [10], [11]. An example
scenario with a proxy server is demonstrated in
Figure 3.

e QUIC-Aware Proxying: QUIC-Aware Proxying
allows clients to tunnel QUIC connections and
adds a new "forwarded" mode as stated in [12].
It allows to use special-purpose transforms rather
than full re-encapsulation and re-encryption of
QUIC packets when they are forwarded by a

proxy.

2.2. REST APIs

REST is a paradigm that outlines principles for build-
ing scalable and stateless web services. It was first intro-
duced by Roy Fielding in 2000 in [2], since then REST
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has become the dominant framework for designing APIs
[14].

2.2.1. Key Principles of REST. As defined by Roy
Fielding in [2], REST is based on the following principles:

« Stateless: Each request from a client to a server
has to contain all necessary information, as the
server does not memorize the client state between
requests.

« Client-Server Architecture: REST separates con-
cerns by defining distinct roles for clients (han-
dling user interaction) and servers (managing data
and logic).

o Uniform Interface: A consistent and standardized
interface is used. Typically HTTP methods (GET,
POST, PUT, DELETE) are used to interact with
resources.

¢ Code on Demand: Web servers can send exe-
cutable programs to clients. Oftentimes commu-
nication is needed in advance to assure that the
client is able to process the offered ressource.

« Layered System: REST systems are layered, al-
lowing intermediaries like proxies to manage re-
quests without clients being aware.

o Cache: Responses can be marked as cacheable to
enable reuse of responses for identical requests,
thereby improving performance.

2.3. Web Proxies and HTTP Caching

Web proxies act as intermediaries between clients and
servers. They forward requests from clients to servers
and vice versa. While offering several benefits, such as
enhanced security, traffic filtering and more, proxies can
optimize network performance by caching frequently re-
quested (static) content [15], [16]. Thereby proxies can
reduce the load on the origin server and decrease response
times.

The concept of HTTP caching enables web proxies
to store copies of previously fetched content. When a
client requests the same resource (e.g. a static web page),
the proxy can serve it from the cache instead of sending
another request to the origin server, which improves speed
and efficiency. Caching mechanisms can be controlled by
HTTP headers like Cache-Control and Expires, which
can for example configure if you want your data to be
cached or not [17]. Since caching eliminates the need for
repetitive requests to the server, it significantly improves
loading times and bandwidth usage [3].

2.4. Content Delivery Networks

A Content Delivery Network (CDN) is a network
of distributed servers around the world that deliver web
content to users. They deliver content based on their
geographic location, the origin of the webpage and a
content delivery server [18]. The main goal of a CDN is to
serve content to clients fast and reliable. Oftentimes CDNs
are used to deliver static content like images, stylesheets,
and scripts, but also dynamic content like API responses.
When requesting content from a website using a CDN,
the request is redirected to the nearest CDN server (edge
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tunneling [13], [10].

server) [19]. This redirection is typically achieved by per-
forming AnyCast or a DNS resolution, where the domain
name is mapped to the IP address that is closest to the edge
server. This architecture that serves content from servers
that are geographically closer to the client results in lower
latency. By caching content on edge servers, CDNs can
not only improve response times, but also reduce the load
that the origin server has to handle [20].

3. Related Work

There are several papers that have explored the per-
formance of QUIC’s specific features. For instance, Kiih-
lewind et al. [10] analyzed implications of MASQUE,
while Cook et al. [21] examined how O-RTT connection
establishment of QUIC effects certain performance met-
rics in different conditions, like mobile networks. Other
research provides general analyses of QUIC. Megyesi et
al. [22] evaluated and compared QUIC’s performance with
other variants. This paper aims to provide a conceptual
overview of how QUIC’s features can address and improve
the specific challenges of a web proxy to accelerate REST
APIs.

4. Problem Analysis

This Section analyses the problems and challenges
of REST APIs. These challenges come from limitations
in the underlying transport protocols (most of the time
TCP+TLS) or constrains of the REST paradigm.

4.1. Latency Due to Connection Establishment

REST APIs normally use HTTP over TCP, which
results in a three-way handshake to establish a connection
[23]. When adding TLS for encrypting data, additional
two RTTs are needed for the handshake process before
any data can be sent, although TLS 1.3 provides new
features that allow a faster connection establishment [24].
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This sequential handshake procedure results in latency,
particularly bad for applications that require quick/real-
time interactions. These circumstances imply an increased
response time, where each connection results in a de-
lay that affects user experience and general application
performance. In scenarios with a web proxy layer, this
additional layer could potentially increase latency and
impact performance of the REST APIL.

4.2. Head-of-Line Blocking

HTTP/2 over TCP suffers from Head-of-Line Block-
ing due to in-order delivery of packets as illustrated in Fig-
ure 2 and explained in [21]. This phenomenon can cause
delays in delivery of data, hence affecting the performance
of a REST API that relies on punctual responses. In certain
scenarios this phenomenon implies reduced throughput,
longer wait times of API responses and especially has
an impact on concurrent requests where multiple API
requests are sent over a single TCP connection.

4.3. Connection Migration Challenges

REST APIs are frequently accessed by mobile clients
that are likely to switch their network interfaces from time
to time, such as from Wi-Fi to cellular data. Because of
that the client’s IP address can change during active ses-
sions. Traditional TCP connections, identify a connection
via the client’s IP address and a port number, hence any
change in the network interface leads to the termination
of the TCP connection. If a client wants to request again
from a REST API, it is necessary to establish a new
connection. This process introduces additional latency due
to the required TCP handshake and TLS negotiation. In
scenarios with a web proxy layer or CDN is, this issue is
further extended due to the additional layers of network
traversal and new connections that need to be managed.
Vargas et al. [25] highlights that a significant portion of
API requests in CDNs consist of small, frequent JSON
messages from mobile clients. The inability of TCP to
handle connection migration efficiently leads to an in-
creased latency and lower performance for these clients.
This phenomenon implies reduced throughput and longer
wait times for API responses.

4.4. Security Overhead

REST APIs typically use TLS to encrypt data, thereby
ensuring confidentiality and integrity [23]. The overhead
of encrypting and decrypting data consumes CPU re-
sources of both clients and servers [4]. This can lead
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to increased response times and reduced throughput in
scenarios with many concurrent connections and high
load. This overhead is particularly significant for REST
APIs with frequent and small requests, where the relative
cost of encryption / decryption is high compared to the
actual payload size. Proxies that inspect or cache content
often terminate TLS connections and act as intermediaries
between client and server. This requires separate TLS
handshakes for each leg, introducing additional latency
and computational load.

4.5. Inefficient Multiplexing

REST APIs often utilize HTTP/2 to enhance perfor-
mance through multiplexing, which allows multiple re-
quests and responses to be sent concurrently over a single
TCP connection, as described in [8]. But since HTTP/2
operates over TCP, packets must be delivered in order.
This leads to head-of-line blocking, where the loss of a
single packet delays all other packets until the lost packet
is retransmitted. This limitation reduces the effectiveness
of multiplexing and can cause delays in delivering API
responses.

4.6. Caching

Cache validation mechanisms which use headers like
Cache-Control and ETag often require additional RTTs
for clients to confirm data freshness, increasing latency
[26]. The statelessness of REST can lead to redundant data
transmission (all meta informations need to be transfered)
[27]. Encryption adds further complications, since the TLS
connection between client and server is terminated at the
proxy or CDN. This requires the proxy to decrypt and
inspect the data, which can be computationally expensive
and introduce additional latency.

5. Mapping QUIC Features to Problems

In this section, we map the features of QUIC intro-
duced in Section 2 to the problems and challenges of
Section 4. By mapping QUIC’s features to the challenges
of REST APIs served through web proxies and CDNs, we
show how QUIC can enhance performance, security, and
reliability.

5.1. Reducing Latency Due to Connection Estab-
lishment

QUIC combines the transport protocol and encryp-
tion layer. It reduces the number of round trips required
to establish a secure connection. For new connections,
QUIC can establish a secure connection in 1-RTT, and
for repeat connections, it can achieve 0-RTT connection
establishment, allowing data to be sent directly [1], [5].
By reducing the connection establishment latency, QUIC
improves the responsiveness of REST APIs, especially in
situations where short-lived connections to APIs via web
proxies or CDNs are made.
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5.2. Eliminating Head-of-Line Blocking

QUIC eliminates head-of-line blocking by implement-
ing stream multiplexing at the application layer over
UDP, which does not enforce in-order delivery. Streams
of QUIC are independent, which means that the loss of
packets in one stream does not affect packets in other
streams [8]. As a result, REST APIs are able to handle
multiple paralell requests more efficiently, with reduced
latency and improved throughput.

5.3. Handling Connection Migration Challenges

QUIC connections are identified by a ConnectionID
instead of a 4-tuple consisting of both IP addresses and
ports [7]. This abstraction allows the connection to stay
active even if the network address of the client changes.
As a result, clients can seamlessly continue their sessions
without the overhead of reconnecting and renegotiating
cryptographic parameters. This feature is useful for im-
proving the reliability and performance of REST APIs
that are accessed by clients with mobile devices.

5.4. Addressing Security Overhead

By mandating encryption and including it into the
transport layer, as described in [6], QUIC simplifies the
security model. Additionally, QUIC’s handshake process
contributes to faster and more efficient secure connections.
This improves security for REST APIs served via web
proxies or CDNs. Apart from that, QUIC encrypts most
of the header information, hence there are less possibilities
for attacks, where attackers try to learn from the header
information.

5.5. Multiplexing Efficiency

QUIC stream multiplexing allows REST APIs to han-
dle multiple paralell requests with a single connection
[9]. The independent streams prevent delays because of
packet loss in one stream from affecting others, resulting
in higher throughput and lower latency. This is beneficial
for web proxies and CDNs that manage high volumes of
simultaneous API requests.

5.6. Caching and QUIC

QUIC over HTTP/3 supports HTTP caching mech-
anisms. Eventhough QUIC encrypts most of the trans-
port layer headers for security, HTTP/3 allows necessary
header fields to remain accessible to intermediaries for
caching [28]. Nevertheless, the encrypted nature of QUIC
shows challenges for transparent caching proxies that rely
on inspecting unencrypted headers.

5.7. CDN Integration with QUIC

CDNs can be improved with QUIC’s features, such as
connection migration. This persistence can reduce latency
and improve the user experience. QUIC’s handling of
multiple streams and reduced connection establishment
times allow CDNss to deliver content more effectively [20].
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For instance, QUIC allows edge servers send content with
lower latency and higher throughput, which is especially
beneficial for REST APIs that rely on CDN infrastructure
to reach a global audience. MASQUE and QUIC-Aware
Proxying can also improve CDNs, since these functions
are only partially available with the traditional TCP+TLS
stack.

5.8. MASQUE and QUIC-Aware Proxying for
Improved Proxy Performance

MASQUE allows clients to tunnel to proxies using
QUIC and enable multiplexed traffic over a single QUIC
connection [11]. This is useful for things like VPNs
or proxy services that handle multiple streams within
one connection. QUIC-Aware Proxying allows clients to
tunnel QUIC connections or forward packets through
an HTTP/3 proxy without terminating the connection at
the proxy [12]. By using the extended CONNECT-UDP
method over HTTP/3, the proxy can forward QUIC pack-
ets between the client and the target server transparently.
The result is a reduced overhead associated with terminat-
ing and re-establishing connections at the proxy, but also
the inability of CDNSs to optimize things like caching.

6. Conclusion

This paper explored the conceptual potential of QUIC
to accelerate REST APIs served through web proxies and
CDNs. The paper identified key challenges / problems
of REST APIs that mostly stem from traditional TCP-
based protocols. Among these problems were latency from
connection establishment, head-of-line blocking and con-
nection migration issues. We mapped these problems to
QUIC’s features like including reduced handshake times,
built-in encryption and connection migration.The paper
demonstrated how QUIC can enhance performance, se-
curity and reliability. Adopting QUIC for REST APIs
offers improvements, paving the way for faster and more
secure web services that meet the evolving demands of
today’s internet infrastructure. Nevertheless there are still
connections between QUIC, REST and web proxies that
need further research, for example weither QUIC can be
beneficial for certain properties of REST like uniform
interfaces and statelessness.
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Abstract—The Transport Layer Security (TLS) 1.3, IPsec,
and DNSSec protocols, fundamental components of secure
global communication, rely on public-key encryption, digital
signatures, and fundamental exchange mechanisms. How-
ever, the advent of quantum computing poses a significant
risk to these cryptographic systems, as quantum computers
have the potential to break these schemes. The development
and adoption of Post-Quantum Cryptography (PQC) are
critical to address this emerging threat.

This paper will discuss the transition to PQC, focusing
on standardization efforts and the challenges related to net-
working protocols, public key infrastructure, and hardware
limitations. Potential solutions, such as hybrid cryptographic
systems, will also examined.

Index Terms—Post-Quantum Cryptography, Digital signa-
tures, PKI, TLS, IPsec, DNSSec, certificates, Hybrid cryp-
tography, X.509v3

1. Introduction

Public key cryptography is the most essential part
of keeping communications secure. The security of these
encryption methods, like RSA, Diffie-Hellman, and ellip-
tic curve cryptography (ECC), relies on solving complex
mathematical problems that are difficult for regular com-
puters to solve. These algorithms underpin protocols like
TLS, IPsec, and DNSSec, safeguarding much of today’s
internet traffic [1].

However, the development of quantum computers
threatens to break the mathematical foundations on which
current cryptographic systems depend. Algorithms like
RSA and DH would no longer be secure against quantum
attacks2.

PQC, a newly designed cryptosystem, aims to stay
secure even against powerful quantum computers, protect-
ing global communication systems. The main challenge
is transitioning to PQC while keeping security, efficiency,
and compatibility with current infrastructure [2].

This paper examines why PQC is needed and the
standardization work by NISTS. It also discusses how
the transition to PQC affects networking protocols6, PKI
systems8, and IoT devices9, focusing on performance, la-
tency, and computational challenges. Additionally, it cov-
ers hybrid cryptographic systems7 for backward compat-
ibility and multivariate-based cryptography for resource-
limited environments.
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2. The Power of Quantum Computers

Quantum information is based on qubits, analogous
to bits in classical computers, but can exist in multiple
states at a time, such as superposition. Qubits can be-
come entangled, allowing quantum computers to perform
many calculations in parallel. The efficiency of quantum
algorithms depends on the availability and fidelity of
qubits. In noisy environments, the fidelity of qubits is
reduced, which can lead to incorrect calculations. Error
correction is a technique to reduce such errors in quantum
computations. With lower noise levels and better error-
correction capabilities, quantum computers can execute
quantum algorithms with the potential to break present
cryptographic systems [3], [4].

We can’t fully control or scale quantum computers,
but we expect significant improvements soon. As these
computers get more powerful and we get better at reducing
errors and noise, they can run algorithms that could break
today’s cryptographic systems.

Two important quantum algorithms that demonstrate
the power of quantum computers in this context are Shor’s
and Grover’s algorithms. These algorithms can threaten
today’s cryptosystems and make them vulnerable.

2.1. Shor’s Algorithm and Its Impact on Asym-
metric Cryptography

In 1994, a scientist named Peter Shor introduced a
quantum algorithm that allows quantum computers to
solve mathematical problems such as prime factorization
and discrete logarithms, which form the basis of widely
used RSA, DH, and ECC.

RSA encryption and digital signatures are secure be-
cause factoring the product of two large prime numbers is
infeasible for classical computers. Similarly, DH key ex-
change and ECC rely on the difficulty of solving discrete
logarithms, either in a finite field or on elliptic curves. The
best-known classical algorithms for both problems run in
exponential time, ensuring these cryptosystems’ security
as long as key sizes are sufficiently large.

However, Shor’s algorithm solves these problems in
polynomial time, which means a powerful quantum com-
puter could factor in large integers and break RSA en-
cryption by deriving the private key from the public key.
Similarly, quantum computers could break DH and ECC
by solving the discrete logarithm problem in polynomial
time, compromising key exchange and authentication in
these systems [5].
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2.2. Grover’s Algorithm and Its Impact on Sym-
metric Cryptography

While Shor’s algorithm severely threatens asymmetric
cryptography, Grover’s algorithm affects symmetric cryp-
tography to a lesser extent.

Lov Grover introduced an algorithm that searches for
an element in an unstructured database using the principle
of quantum computers. This algorithm offers a quadratic
speedup from O(27) to O(2("/2)) over classical methods,
which can also speed up brute force attacks by reducing
the security of key to half its length, which speeds up the
threat vulnerability of symmetric schemes such as DES
and AES.

Doubling the key size can mitigate the impact of
Grover’s algorithm, as larger keys increase the time re-
quired for a successful attack. For example, AES-128
would offer only 64-bit security against a quantum attack,
but AES-256 would still provide 128-bit security, making
it an effective defense [6].

3. Impact of Quantum attacks on Network-
ing

Key agreements and digital signatures are fundamental
for secure communication and supporting protocols like
TLS, SSH, IPsec, and digital certificates. Shor’s algo-
rithm threatens these public-key cryptosystems by solving
the underlying mathematical problems they rely on. This
would make it impossible to securely exchange symmetric
keys using DH, while digital signatures generated by ECC
could be reverse-engineered, exposing private keys from
corresponding public keys.

In contrast, symmetric cryptography remains more re-
silient against quantum attacks. Grover’s algorithm weak-
ens symmetric encryption but does not fully compromise
them. Recent research from the Center for Computa-
tional Quantum Physics in 2023 shows that implementing
Grover’s algorithm may not be as effective in practice as
thought due to noise sensitivity and hardware limitation

[7].
4. Urgency of Transition

Quantum computing is advancing rapidly, with record-
breaking qubit counts and noise reduction and error cor-
rection improvements. While we can not predict when
a cryptographically relevant quantum computer (CRQC)
will be powerful enough to break current cryptographic
algorithms, the uncertainty and rapid development empha-
size transitioning to PQC [8]. If public key cryptography
used in protocols, like TLS or IPsec, is broken by a
quantum computer, it would also render all symmetric
keys (used to encrypt data transmissions) vulnerable to
decryption. This section investigates several attacks that
become feasible with quantum computers.

One area that would be significantly affected is
DNSSec. Since DNSSec is based on public key cryptog-
raphy, all authoritative DNS name servers that want to
sign their responses must first generate a public-private
key pair before any response can be signed. It uses chain
of trust to ensure that each zone’s public key is validated
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by its parent zone. This hierarchical system of signing
and verification up to the root DNS server creates a trust
relationship that underpins the integrity of DNSSec.

Once quantum Computers can run cryptoanalytic at-
tacks on public key algorithms, this entire chain of trust
will be compromised, and DNSSec can no longer protect
against DNS Spoofing attack.

The Harvest now, decrypt later (HNDL) attack is
another particular concern. In this case, the encrypted data
is collected today to decrypt in the future once quantum
computers have advanced enough to break these crypto-
graphic systems. Sensitive information, such as long-term
corporate secrets, is at risk if the transition doesn’t happen
as soon as possible [9].

5. NIST Standardization

The NIST PQC standardization process for renew-
ing cryptographic standards for key exchange and digital
signatures, which started in December 2017, had three
rounds of evaluation. Candidates were required to meet
submission requirements and minimum acceptability cri-
teria published by NIST [10]. Each round of the stan-
dardization process employed three primary evaluation
criteria: security, Cost and performance, algorithm, and
implementation characteristics.

For security evaluation, NIST analyzed the resistance
of algorithms to side-channel attacks, perfect forward
secrecy, and multi-key attacks. They also became more
focused on real-world implementation and readiness for
standardization.

For Cost and performance, the focus was on com-
putational efficiency in key generation speed, memory
requirements, and code size. Key considerations included
side-channel resistance, constant-time performance, and
memory optimization to ensure efficient real-world de-
ployment.

They focused on efficiency and simplicity across mul-
tiple platforms for algorithm and implementation. NIST
prioritized designs resistant to side-channel attacks and
compatible with protocols like TLS and IPsec. The goal
was to find algorithms that could be integrated with min-
imal performance lost [11]-[13].

Table 4. Standardized Algorithms

Old Name New Name Base
CRYSTALS-Kyber ML-KEM lattice-based
CRYSTALS-Dilithium ML-DSA lattice-based
FALCON FN-DSA lattice-based
SPHINCS+ SLH-DSA hash-based

PQC algorithms are categorized in four categories
based on the mathematical problems they use : 1) Hash-
based 2) Code-based 3) Multivariate-based 4) Lattice-
based

A detailed introduction about the pqc family and spec-
ifications for algorithms can be found in the corresponding
FIPS standards: ML-KEM [14], ML-DSA [15], and SLH-
DSA [16]. Each standard gives thorough guidelines on
implementing them and what security settings to use.
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5.1. Module Lattice-Based Key-Encapsulation
Mechanism Standard

CRYSTALS-Kyber, standardized as ML-KEM in
[14], is a PQ algorithm for key encapsulation mechanism
(KEM). It enables the secure establishment of a shared
secret key between two parties in a communication, which
can be used for symmetric-key cryptography. This algo-
rithm is a lattice-based cryptography, which means it’s
simple, efficient, and parallelizable. Its security is based on
the hardness of the Module Learning with Errors (MLWE)
problem, a generalization of Learning with Error (LWE).
This emphasizes provable security based on the worst-case
hardness of lattice problems [17], [18].

ML-KEM consists three algorithms:

1) Key generation: Produces public and private key

2) Encapsulation: Encrypts a shared secret key using
the public key

3) Decapsulation: Decrypts a shared secret key using
the private key

ML-KEM has three possible parameter sets, which
make it flexible for different use cases, depending on the
level of security required [14]:

1) ML-KEM-512

« Encapsulation key size: 800 bytes

o Ciphertext size: 768 bytes

o Security strength: Equivalent to AES-128
2) ML-KEM-768

« Encapsulation key size: 1,184 bytes

o Ciphertext size: 1,088 bytes

o Security strength: Equivalent to AES-192
3) ML-KEM-1024

o Encapsulation key size: 1,568 bytes

o Ciphertext size: 1,472 bytes

o Security strength: Equivalent to AES-256

5.2. Module Lattice-Based Digital
Standard

Signature

ML-DSA is a PQ digital signature scheme based on
CRYSTALS-Dilithium [15]. Digital signatures are most
effective when they are bound to a specific identity. The
signer must prove they own the matching private key to
connect a public key to a verified identity. In PKI, this
is achieved by issuing a certificate confirming the identity
and the proof of private key possession. ML-DSA provides
strong Security and is resistant to attacks that attempt
to forge signatures by tricking the signer. This means
even if an attacker tricks the signer into signing arbitrary
messages; it still wouldn’t be possible to create new valid
signatures for other messages. This ensures that messages
can not be faked or changed, which keeps the integrity and
authenticity of digital signatures intact. The Security for
lattice-based signatures relies on Module Learning with
Errors (MLWE) and short integer solution (SIS) problems.
SIS involves finding solutions to specific types of linear
equations [15], [19].

ML-DSA consists of three main algorithms: 1) key
generation 2) Signing 3) Verifying

ML-DSA comes in three different security levels,
which ensure a balance between computational efficiency
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and cryptographic strength. This flexibility makes ML-
DSA suitable for various uses, from securing digital com-
munications to protecting long-term sensitive data [15].

1) ML-DSA-44
« Public key size: 1,312 bytes
« Private key size: 2,560 bytes
« Signature size: 2,420 bytes
2) ML-KEM-65
« Public key size: 1,952 bytes
« Private key size: 4.032 bytes
o Signature size: 3,309 bytes

3) ML-KEM-87
« Public key size: 2,592 bytes
« Private key size: 4,896 bytes
« Signature size: 4,627 bytes

5.3. Stateless Hash-Based Digital Signature Stan-
dard

SPHINCS+, standardized in [16], is a stateless hash-
based digital signature scheme. It combines two key hash-
based schemes:

1) forest of random subsets (FORS): A few-time
signature scheme [20]

2) eXtended Merkle Signature Scheme (XMSS): A
multi-time signature scheme [21]

An SLH-DSA is generated by first computing a random-
ized hash of the message. Part of this hash randomly
chooses a FORS key, and the rest is signed with that
key. The signature includes both the FORS signature and
the data needed to verify the FORS public key. This
verification data is created using the XMSS signature.

SLH-DSA also has three internal and external func-
tions: 1) Key generation 2) Signature generation 3) Sig-
nature verification

The SLH-DSA key generation process requires three
unique random values: PK.seed, SK.seed and SK.prf.
The security parameter n maybe 16, 24, or 32, depending
on the parameter set, which is:

1) n=16
o SLH-DSA-SHA2-128s/f
o SLH-DSA-SHAKE-128s/f
2) n=24
o SLH-DSA-SHA2-192s/f
o SLH-DSA-SHAKE-192s/f
3) n =232
o SLH-DSA-SHA2-256s/f
o SLH-DSA-SHAKE-256s/f

6. Impact of transition to PQC on network-
ing

The transition to PQC is critical for key establishment
protocols like TLS, IPsec, and DNSSec. It presents several
performance, efficiency, and integration challenges into
existing systems.
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6.1. Key establishment and TLS

PQC algorithms tend to have larger key sizes and
signatures than classical cryptography systems, which im-
pacts key establishment protocols.

Current systems like TLS and IPsec rely on RSA or
ECDH for key exchanges, which use small keys, 32 bytes
for X25519 in ECDH. However, PQC algorithms such as
ML-KEM need larger key sizes, such as 1,184 bytes for
client transmissions and 1,088 bytes for server transmis-
sions. This increase can lead to performance bottlenecks,
especially for network handshake latency, bandwidth re-
quirements, and data transmission times. These perfor-
mance impacts are noticeable in real-time implementation
[22], [23].

6.2. DNSSec and PKI

WebPKI and DNSSec will also face difficulties. Cur-
rent signatures and public keys are small enough to fit
within the DNS packet’s Maximum Transmission Unit
(MTU). However, with PQC algorithms like ML-DSA,
the size of signatures and public keys exceeds this limit,
causing packet fragmentation, which increases latency and
reduces network efficiency.

Recent experiments with new cryptography algorithms
for DNSSec, like Falcon-512, SPHINCS+, and XMSS,
have shown that while Falcon-512 performs better in terms
of packet size and resolver compatibility, it still increases
TCP traffic, which might strain DNS infrastructure. Larger
signatures can also cause SERVFAIL responses in DNS
because they exceed the allowed packet size limits.

For PKI, the larger public keys and signatures could
slow down certificate validation and put more pressure on
servers. This can cause necessary changes to the structure
of certificates [24].

6.3. Impact on Hardware

In particular, the hardware that supports the current
cryptosystem may not be constrained to handle the com-
putational demands of PQ algorithms. Devices with older
hardware, such as the Internet of Things (IoT), legacy
systems, and embedded devices, have limited processing
power, memory, and battery life, which may need to be
improved for large key sizes and more complex calcula-
tions.

Also, older network infrastructures may need more
power or memory to manage such large keys and complex
computations, which could necessitate hardware replace-
ments or firmware upgrades [25].

7. Hybrid cryptography

One potential solution is the use of hybrid crypto-
graphic systems, which allow the simultaneous use of
classical and post-quantum cryptography in protocols like
TLS 1.3, IPsec, and DNSSec. This ensures that the re-
sulting shared secret will be protected as long as one
algorithm remains secure. It offers backward compatibility
with existing systems and allows using post-quantum al-
gorithms alongside traditional ones. Devices that support
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modern cryptography can default to post-quantum algo-
rithms, while legacy devices can continue using classical
algorithms until they become insecure. This flexibility
allows for a gradual transition to post-quantum security,
avoiding the need for an immediate system-wide switch.
However, this cryptography also makes challenges about
large key sizes and signatures, which can also lead to
increased latency and higher bandwidth requirements [25],
[26].

8. Transition Strategies for PQC in PKI

Transitioning to PQC in PKI is a complicated process,
especially with X.509 certificates, since their role has been
crucial in securing web communications using protocols
like TLS. There are four main methods for integrating
PQC into X.509v3 certificates [27]:

« Quantum-Safe Certificates: Replaces traditional
public key with quantum-safe. This method is com-
patible with the current X.509v3 format, but it re-
quires that systems trust quantum-safe algorithms. It
also may not support backward compatibility with
older systems.

« Hybrid Certificates: That combines traditional and
post-quantum public keys and signatures in a single
certificate, which ensures compatibility with old and
new systems. However, they increase network traffic
and complexity.

« Composite Certificates: It is similar to hybrid certifi-
cates but without using X.509. They combine mul-
tiple cryptographic algorithms into a single key or
signature, requiring the attacker to break multiple
algorithms simultaneously. It is suitable for high-
security environments but demands more computa-
tional power.

« Parallel Certificate Chains: It issues two separate
certificate chains, one for traditional and one for post-
quantum cryptography, for the same entity. First, the
traditional system is used. After switching to the new
system, the post-quantum system takes over. This
way, certificate sizes stay the same, but checking
everything takes more time and computing power.

9. Multivariate-based Public Key Cryptogra-
phy as a Solution for IoT

Multivariate-based Public Key Cryptography (MPKC)
is a potential solution for IoT devices, which often operate
with limited computational power and memory. The se-
curity of MPKC is based on solving multivariate systems
of quadratic equations over a finite field. This problem is
expected to remain secure against quantum attacks since
no algorithm is currently known to solve it in polynomial
time. It is fast and well-suited for devices that require
quick computations. It also has a low computational over-
head, and the short signature size makes it appropriate for
limited bandwidth and storage applications [27].

10. Conclusion

Quantum computers are advancing quickly and could
soon break the security systems we use today. Although
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we do not know precisely when this will happen, we must
switch to PQC. However, this change is complex and fast.
It involves significant challenges in terms of performance,
infrastructure, and integration.

Hybrid cryptography, which allows both classical and
post-quantum algorithms, X.509v3 certificates with flexi-
ble methods for integration of PQC into existing PKI, and
MPKC for IoT devices with limited resources are potential
solutions. These solutions help keep security strong with-
out needing to replace everything right away. While PQC
is critical for future security, gradual implementation with
compatible technologies such as blockchain or Al-driven
security systems is essential.
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Abstract—Recent ideas to launch thousands of intercon-
nected satellites into orbit have initiated a space race of
the 21st century. These large satellite systems aim to supply
rural areas worldwide with fast, broadband Internet access.
This paper is an introduction to this emerging topic, and
it provides an overview of the history of artificial objects
in space, current statistics of Starlink, and challenges the
providers face. The second part features a literature re-
search discussing the rather undisclosed technical details
of Starlink and the hybrid routing mechanisms used in
megaconstellations. This paper also compares the findings of
two performance-based evaluations of Starlink and discusses
the dimension of the performance gap between Megaconstel-
lations and terrestrial networks. We also review the guides
provided by SpaceX that explain the need for sustainable
technology in the field of Megaconstellations to mitigate
collision risks and challenges concerning increased space
debris.

Index Terms—megaconstellations, starlink, satellites

1. Introduction

With the recent drop in space launch costs due to
advanced manufacturing and reusability options, the po-
tential for leveraging space technology to address modern-
day challenges has significantly increased [1]. One of the
most influential technologies in this field are satellites.
Satellites are most commonly used for scientific earth
observations, climate monitoring and communication.

The first satellites were mainly used to allow for
transatlantic communication. These so-called geostation-
ary satellites operate at an altitude of around 35786 km
(GEO) and are stationary relative to a fixed point on the
Earth’s surface. This ensures broad coverage by utilizing
a small number of satellites [2].

On the other hand, a significant disadvantage is the
high propagation delay that comes with the high altitude.
Due to this trade-off, geostationary satellite connections
cannot meet current standards of their terrestrial counter-
parts [3].

A solution to the high latency can be achieved by
launching the satellites to a lower altitude. The closest
possible orbit to the Earth lies within the low Earth orbit
(LEO) region. This region ranges from 160km to over
1600 km, with the lowest satellite currently orbiting at
167.4km. LEO also inherits many other artificial objects
like the International Space Station (ISS) at an altitude of
400km [4].
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The problem with this approach is the smaller cov-
erage, which can be solved by increasing the number of
satellites. This use of multiple satellites working together
for a common purpose is known as a satellite constellation.
In the context of the Internet, the ideal system leverages
thousands of satellites. Such an enormous constellation is
often described as a Megaconstellation [5].

2. History

This section focuses on the history of satellite-driven
Internet. It discusses the history of the first geostationary
provider up to modern Megaconstellations such as Star-
link. It will also compare the most important providers.

2.1. Geostationary Internet

The first ideas for a communication satellite in GEO
were published in 1945 by the fiction author Arthur C.
Clarke. His article [6] presented the base for the early
GEO satellites. The first reliable GEO satellites for com-
munication were "Syncom 2" and "Syncom 3". Syncom
3’s reliability was proven in 1964 when the Olympics in
Japan were transmitted "live via satellite" to the US. Some
of the first communication satellites were later updated
to support Internet connections. A few ground stations
connect these satellites with the terrestrial networks.

The first satellite with the sole purpose of providing
broadband Internet (e-BIRD) was successfully launched
in 2003 by Eutelsat. It still delivers Internet to Europe to
date. Modern satellites utilize the high-frequency Ka-Band
to maximize throughput. KA-SAT and Viasat-1 (2010) are
the first to use this new technique [7], [8].

2.2. The Teledesic Network

This section corresponds closely to papers by Patter-
son [3] and Sturza [9] from the Teledesic Corporation.

The concept of launching Megaconstellations into
LEO has been around since 1990. The "Teledesic Corpo-
ration" was the first company to practically attempt such a
project. Teledesic planned to launch over 900 satellites to
provide affordable broadband internet globally by 2002.
The quality of service of this network was planned to be
comparable to terrestrial networks with fiber-like delays
and low bit error rates while providing 24-hour coverage
for almost everyone on Earth. The capacity was planned
to be equivalent to over 20 million users on traditional
wired connections. Data rates on the Teledesic network
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were meant to be adjustable with symmetrical and asym-
metrical communication rates of up to 64 Mbits™!. Ad-
justable refers to them being scalable based on application
demand.

The different satellites in the network can be seen
as nodes communicating with eight neighboring nodes
using a fast packet-switching technology. To ensure global
coverage it was planned to split up the Earth into 20000
supercells, with each being targeted by 64 transmit and
receive beams from a satellite at all times. Data was
planned to be distributed encrypted over the links in fixed-
length packets of just 512 bit.

Due to financial difficulties, the project was suspended
in 2002. Teledesic never launched any operational satel-
lites [10].

2.3. Starlink

The current most influential Megaconstellation is op-
erated as a subsidiary of the well-known aerospace com-
pany SpaceX under the name of "Starlink". Starlink was
founded in 2014 by Elon Musk to supply rural areas
with broadband internet and to provide global mobile
broadband [11].

After the design phase, the first test launches were
made in 2018 with two prototype satellites. The first 60
operational ones were launched in 2019, and Starlink went
public in early 2021 [11], [12]. Because of the ability of
SpaceX to launch the satellites using their own spacecraft
and their advanced reusability options, they were able to
launch a fleet of more than 6000 until August 2024. There
are currently 4996 satellites in operation, and SpaceX
plans to increase this number to around 40 000.

6,000

Public Release
4,000 |-

2,000 |-

Operational satellites

| |
2023 2024

|
2022
Year

L
2019 2020 2021

Figure 1: Starlink operational satellites over time [13]

These numbers were accumulated by Jonathan Mc-
Dowell [13] with the operational satellites over time
shown in Figure 1.

SpaceX uses their Falcon 9 rocket to deploy around 60
satellites per launch, with individual launches happening
almost every week [11]. Starlink is currently in its second
generation, with the second-generation satellites being
four times more capable than those of the earlier gen-
eration [14]. In January 2024, SpaceX also launched new
satellites with direct-to-cell capabilities. SpaceX plans to
scale this new LTE Service network in the upcoming years
with hundreds of new satellites [15]. Further explanations
on the technical aspects of Starlink can be found in Section
3.
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2.4. Provider Overview

Multiple other companies compete in this "space race"
of the 21st century. Not only SpaceX, but also Amazon
and Boeing have recently planned to launch their own
constellations.

Companies like Iridium and Globalstar that have been
around since the time of Teledesic, have also sent opera-
tional satellites into LEO.

Table 1 provides an overview of the most important
providers. It shows information about the altitude of the
satellites, planned and operational amount of satellites
as well as the year when the constellation went into
operation. It is closely based on data by Xingchi He [12].

TABLE 1: Important Megaconstellations [12]

Constellation Planned Operational Since Altitude (km)
Starlink 34224 4996 2020 ~ 500
OneWeb 648 616 2023 1200
Iridium-NEXT 66 80 2018 780
Globalstar-2 24 25 2013 1410

Kepler 360 16 2021 550 — 650
GW (China) 12992 0 - 500 — 1200
Amazon Kuiper 3236 0 590 — 630
Boeing 132 0 1056

The altitude plays a crucial role in this comparison,
as it influences the amount of satellites needed. Starlink
sticks out as the constellation with the highest number of
planned and operational satellites.

Jonathan McDowell’s statistics [13] state that there are
currently 20 planned constellations with a total amount of
planned satellites of 547 127. Only 7060 of them have
already been launched.

3. Technical Details

This section will discuss the technical details as well
as the performance of Megaconstellations. Starlink will
serve as the primary example.

3.1. Starlink satellites

The newest Starlink satellites have a flat design and
are relatively small with an overall mass of 250kg. These
second generation satellites have four times the capacity
of the earflier generation. The generation 2 satellites are
split up into two seperate versions. The "V2 mini" version
that is not the full-size V2 satellite was designed to be
compatible with the Falcon 9. Due to this design, up to
60 satellites can be distributed in one Falcon 9 launch.
SpaceX is currently constructing the "Starship”, a new
rocket with a higher payload capacity to increase this
number even more [14]. The Starship will be used to
launch full-sized V2 satellites.

The new satellites utilize a Star Tracker to accurately
calculate the position of each node. These new satellites
also use inter-satellite links (ISL) to communicate with
neighboring nodes. In the current generation, optical links
in the form of three lasers are used. They can reach a
transmission rate of up to 200 Gbits™'. There are eight
antennas on each satellite that utilize the Ka-Band, Ku-
Band and E-Band frequencies. A Starlink satellite can
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adjust its path using an inbuilt ion engine based on ar-
gon gas. The engines can not be recharged in space yet
and satellites without fuel will deorbit either naturally or
controlled [16].

Figure 2: Starlink Shell one [17], [18]

The satellites are launched into different groups, also
known as shells. Each shell inherits different orbits in
planes at different angles relative to the equator (incli-
nation). The first Starlink shell has 72 orbits organized
into orbital planes at a 53° incline [17]. Figure 2 shows
the first Starlink shell with the majority of the current
Starlink satellites. Other shells also serve regions near the
poles with far fewer satellites [19].

A Starlink satellite can be operational for around five
years before deorbiting naturally [20].

3.2. Starlink ground infrastructure

To function as intended, every constellation needs a
connection to the Earth. These connections are usually
established between a ground station (GS) and a satellite
that is currently in view [21].

Most geostationary satellites only need a single GS,
because of their fixed position relative to Earth. This
is not the case for LEO satellites as most of them are
only in view of a fixed point for around ten minutes
[17]. LEO satellites do not have a fixed position to Earth
to withstand gravitational pull. Various GSs have to be
placed strategically around the globe to support all the
satellites that orbit in and out of view and to operate the
constellation effectively [21]. Starlink currently utilizes
around 150 fixed GSs as gateways to the Internet, with
most of them being located in the US and Europe [22].

Another big part of the ground infrastructure of Star-
link are the private dishes that the subscribers use to
connect to the network. These dishes communicate with
currently visible satellites through a User Link (UL). The
dish is wired to a router through Ethernet, which opens a
local network for connections via WiFi or Ethernet [17].

For the visibility of satellites, the sky has to be mostly
clear and the setup location of the dish has to be wide
enough. The tilt of the dish also needs to be adjusted fre-
quently with options for self-adjustment, as seen in Figure
3 [17]. There are currently six variants of the Starlink kit
with options for an overall higher performance.

3.3. Routing and Traffic Management

Routing and Traffic Management are essential factors
when evaluating networks. They are influencing factors
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Figure 3: Standard Dish with motors [23]

on the efficiency and the overall connectivity of terrestrial
and non-terrestrial networks.

Megaconstellations must have a sophisticated routing
system in place to ensure accurate packet routing even
with rapidly moving next hops (satellites). This is es-
pecially important in Megaconstellations where multiple
hops take place using ISLs [24]. As shown in Section 2.2,
Teledesic planned to incorporate a fast packet switching
technology through ISLs.

Starlinks first generation approach was based on a
bent-pipe strategy. Bent-pipe refers to a satellite only
being used to relay a signal to a different point on
Earth’s surface. This was used, because generation 1 did
not utilize ISLs yet. Indirect satellite communication was
possible by using GSs as intermediate steps, but it was
somewhat inconvenient. As shown by Ma et al. [17], a
connection to Starlink generally only involved one hop
due to this.

The signal from the dish was practically only redi-
rected to the closest GS before switching to terrestrial
services. This connection between the dish and GS can
only be established successfully if their distance is at most
1000 km.

Sending a packet between two dishes in range of the
same satellite was also tested in [17]. The experiment
showed that the communication still had to be relayed
through a GS instead of the ULs of the dishes communi-
cating through the satellite.

As the generation 2 satellites are equipped with optical
ISLs, it has become possible to route packets directly
between satellites. This multi-hop approach can be bene-
ficial in increasing the overall connectivity of the system.
It increases the autonomy of the network as the routing
is not dependent on a ground segment that may not
have broadband connections in place. An advantage over
ground infrastructure is also the vacuum as a propagation
environment for wireless signals. The ultra-low latency of
ISLs also enables real-time data sharing [24].

A handover to another satellite is needed if a node in a
currently established link moves out of view, as visibility
between nodes is crucial for ISLs to function [24].

The routing system for Megaconstellations can be set
up in a hybrid manner. It consists of characteristics of
static and dynamic routing.

Static routing might seem counterintuitive when look-
ing at dynamically moving satellites, but the topology of
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a Megaconstellation is predictable. The orbit period of the
satellites can be cut into time slots that represent a stable
snapshot of the network topology. Traditional routing al-
gorithms like the Dijkstra algorithm can be utilized to find
the optimal path in a given snapshot [24]. An algorithm
that is optimized to constellations called "StepClimb" is
described in [25].

Static routing cannot adapt to unpredictable real-time
situations, such as defective satellites in the Megaconstel-
lation. For these situations, a dynamic routing approach
has to be used. The routing tables of the satellites have to
be kept up-to-date. This can be achieved by periodically
flooding the states of each node to all satellites, which can
create an immense overhead. To solve this issue, satellites
on a higher altitude acting as routing managers can be used
[24]. This multi-layer approach with satellites in MEO
(medium earth orbit) or GEO is yet to be used in Starlink.

Load balancing and congestion control are also crucial
factors of networks and even more significant challenges
for Megaconstellations. As the distribution and demand
of the subscribers are uneven around the globe, there are
imbalanced regional traffic loads. Minimum hop routing
strategies and the resulting paths may be congested in
high-traffic areas. The used routing algorithms have to
account for this as well [24].

3.4. Performance

The Performance of Starlink has been evaluated in
papers by Mohan et al. [19] and Ma et al. [17] This section
sums up the most important findings and compares these
papers.

SpaceX states the following: "Starlink users typically
experience download speeds between 25 and 220 Mbits™',
with a majority of users experiencing speeds over
100 Mbits~!. Upload speeds are typically between 5 and
20 Mbits~!. Latency ranges between 25 and 60 ms on land,
and 100+ ms in certain remote locations" [26]. Remote
locations for Starlink are Oceans and Islands as well as
the polar regions.

A measurement by Mohan et al. [19] using global
online speed test data shows that the median latency of
Starlink lies within 40 ms and 50 ms. In Well-Provisioned
Regions like Seattle and the US, the latency is consistently
well below 50 ms. This is likely the case because of the
wide coverage of GSs in these regions. South American
regions like Colombia and regions in Oceania show a low
performance with latencies exceeding 100 ms. It was also
shown that the latency of Starlink under load increased
[19]. This performance analysis by Mohan et al. [19]
reflects the promised performance closely.

The latency of Starlink has a very high variation in
contrast to the stable latency in terrestrial networks. The
reason for this is the continuous movement of the satellites
and the handovers that are needed to keep connections
active [17].

Sami et al. [17] features an experimental approach to
measure the performance for connections from northern
American terrain to a variety of AWS servers worldwide.
The measurement has shown that the latencies using Star-
link were higher, but the difference was mostly negligibly
small. The throughput rates compared to terrestrial con-
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nections cannot be neglected. Starlinks upload rates only
reach around 10% of the terrestrial connections.

Mohan et al. [19] have measured that Starlink
achieves around 50-100 Mbits~! in download rates and 4-
12 Mbits~! in upload rates. This corresponds to the data
measured by Sami et al. [17]. These throughput rates - as
for the latencies - lack stability.

There is currently a gap between the performance of
Starlink and terrestrial connections, which occurs most
prominently in well-provisioned areas. Starlink outper-
forms terrestrial connections in some underprovisioned
areas like Columbia, where the local ISPs average 70
and 100 Mbits™! in latency, but Starlink averages 50 and
70 Mbits~!. In regions like the Philippines, Starlink per-
forms worse than local ISPs, which is a result of the low
distribution of ground stations. This same conclusion can
be made from the above mentioned measurements in [17].

Users of Starlink experience higher overall latencies
and lower throughput comparable to cellular connections.
The current gap will most likely continue to shrink with
the expanding infrastructure of Starlink in Space as well
as on the ground [19].

4. Challenges

It is important to note that Megaconstellations do not
only come with positive aspects, but also non-favorable
impacts. SpaceX offers articles and guides that discuss
solutions to these challenges.

There are currently 22384 objects orbiting in LEO
with a total mass of 6120.8t. These objects stem from
space missions since 1957, including mission payload
and other debris. Some debris and particles also originate
from so called fragmentation events due to collisions and
explosions [27].

Since the age of Megaconstellations, the payload
launch traffic into LEO has increased from under 500
to over 2500 launches. The expanding number of objects
in space increases the risk of a collision in future space
missions [27]. Starlink satellites have an inbuilt collision
avoidance capability in place to mitigate this risk.

Objects within LEO reenter the atmosphere at any
time and sometimes have unpredictable re-entry paths.
SpaceX uses controlled and well-tracked deorbits of non-
operational satellites to reenter them into the atmosphere
[20].

Starlink satellites can be visible to the naked eye while
being lifted into their operational orbit. They can still be
visible to observatories on Earth when they are illuminated
by the sun in their foreseen orbit, disrupting astronomical
observations. Generation 2 of Starlink utilizes different
materials to mitigate the brightness of the satellites [28].

5. Conclusion and future work

Megaconstellations is an emerging topic that has be-
come more important in the last five years but still remains
rather unknown. This paper provided an overall introduc-
tion to Megaconstellations and their importance.

SpaceX’s project of "Connecting The Unconnected”
aims to deliver Internet to areas around the globe with
no connection to terrestrial services. Starlink can de-
liver broadband internet to the highest mountains and the
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smallest isles in the ocean. Starlink can be utilized in
emergencies and can act as a lifesaver.

Megaconstellations may not be the optimal way of

connecting to the Internet when connecting from a well-
connected area like Europe or the US, but they can rev-
olutionize the connectivity in places like Colombia. With

the

performance gap getting smaller, Megaconstallations

may be a viable option for well-provisioned areas in the
future.

As the topic is relatively young, there is a great amount

of potential for future work and optimizations. Future
research could explore the simulation of constellations to
find optimal routing solutions or technical improvements
to mitigate collision risks. Exploring the environmental
and social impact could also be an important topic.
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Abstract—The introduction of technologies like 5G has in-
creased the demand for high-performance, scalable net-
works. Network Function Virtualization (NFV) has emerged
as a solution by virtualizing network functions on standard
servers to meet these standards. However, it relies on ro-
bust security measures which simultaneously provide high
network performance. This paper discusses whether Kata
Containers integrated with Trusted Execution Environments
(TEEs) is a viable solution for securing NFV environments.
We dive into a comprehensive background of these tech-
nologies, analyze their security benefits and drawbacks, and
their impact on network performance in NFV. We found
that although Kata Containers and TEEs provide enhanced
security through virtualization and hardware-based pro-
tection, they introduce performance overheads, especially
regarding network latency and scalability. We conclude that
further research is necessary to analyze the concrete security
and performance implications of Kata Containers integrated
with TEEs in NFV environments. This includes research
in performance optimization techniques and strategies for
determining the right balance between security and perfor-
mance in NFV environments.

Index Terms—Kata Containers, TEE, NFV

1. Introduction

In recent years, the emergence of technologies like 5G
and its use cases like IoT and edge computing have be-
come increasingly relevant. With the progress they bring,
they have introduced new requirements and challenges,
particularly the need for highly scalable networks capable
of delivering high network throughput and low latency
while simultaneously dealing with a large number of de-
vices in real-time [1], [2]. Consequently, NFV has become
a key technology to meet these standards by virtualizing
network functions on standard servers instead of relying
on specialized hardware [3].

NFV, in turn, requires robust virtualization and con-
tainerization solutions to provide both high performance
and high security [3]. Kata Containers has emerged as a
promising approach to meet these requirements by com-
bining the lightweight performance of traditional contain-
ers with the enhanced security and isolation character-
istics of virtual machines (VMs) [4]. This makes them
a potential solution for securing NFV environments. To
further enhance the isolation of these containers, TEEs
can be integrated to offer an additional layer of hardware-
based security [5]. Together, they can provide an effective
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method for enhancing the security of virtualized network
functions (VNFs), though their full impact requires further
analysis.

However, the increased security and isolation offered
by Kata Containers and TEEs come at the cost of perfor-
mance overhead [6]. In environments where high network
performance is critical, balancing the trade-off between
enhanced security and optimal performance remains a ma-
jor challenge. Therefore, understanding these challenges is
crucial for evaluating the viability of Kata Containers and
TEEs in NFV environments.

This paper provides an overview of the current re-
search on Kata Containers and TEEs in NFV environ-
ments, investigating the security benefits and network
performance drawbacks. The goal is to determine whether
Kata Containers, with or without TEEs, present a viable
solution for securing NFV environments while maintain-
ing the necessary network performance requirements. To
achieve this, Section 2 will provide a comprehensive back-
ground on Kata Containers, TEE, and NFV. In Section 3,
we will explore the security benefits and drawbacks of
Kata Containers and TEEs. This will be followed by
Section 4, which discusses their network performance
implications. And finally, we will compare the security im-
plications with the performance drawbacks in Section 5.

2. Background

We will explore three key technologies important
to our discussion: Kata Containers, TEEs, and NFV.
Kata Containers aims to improve security by utilizing
lightweight VMs. TEEs use a separated area on the CPU
to provide hardware-level protection. NFV is a concept
that moves network functions from specialized hardware
to standard servers. A solid understanding of these tech-
nologies is essential for our evaluation.

2.1. Kata Containers

Traditional container runtimes like RunC achieve per-
formance close to native levels [7]. However, by only
relying on Linux namespaces and control groups (cgroups)
while sharing the same host kernel, they offer little to no
isolation, making them vulnerable to attacks. On the other
hand, VMs offer strong isolation with their isolated kernel
but introduce a significant performance overhead [8]. To
bridge this gap, Kata Containers, an open-source container
runtime introduced in 2017, aims to combine the high per-
formance of lightweight containers with the security and
isolation of VMs. This approach is the result of merging

doi: 10.2313/NET-2025-05-1 05



Intel Clear Containers and Hyper.sh runV, technologies
that run each container in its own optimized VM [4].

The main idea is to run each container within its own
lightweight VM, highly optimized to minimize perfor-
mance overhead and resource consumption using tech-
nologies like Guest Kernel Minimal and Guest Image [4]
while providing kernel-level isolation. Additionally, it uses
a specialized QEMU version named gemu-lite as the
default hypervisor, which improves boot time and reduces
memory footprint with features like Machine Accelerators,
Kernel same-page merging, Hot Plug Devices, and Fast
Template [4]. The architecture of Kata Containers consists
of three main components: the Kata-runtime, Kata-agent,
and Kata-shim. The Kata-runtime on the host creates the
VM for running the container. The Kata-agent process,
running in the guest kernel in the VM, sets up the envi-
ronment and runs the container and processes within the
container while receiving instructions from the host via
gRPC [9]. The Kata-shim is a process on the host that is
responsible for all container I/O streams [4]. An additional
advantage of Kata Containers is their OCI-compliance,
making them seamlessly integrate with containerization
and container orchestration platforms like Docker, Ku-
bernetes, and OpenStack by simply replacing runC with
Kata-runtime, ensuring easy deployment for organizations
and removing the need for major modifications of existing
workflows [4].

2.2. Trusted Execution Environment

A TEE is a secure area within the processor that
allows the safe execution of code and storage of data.
It is segregated from the rest of the CPU, protecting
its data from unauthorized access or tampering by code
outside of that environment [10]. TEEs establish a chain
of trust during the boot process, which guarantees the
authenticity of the running software, the integrity of the
runtime states, and the confidentiality of the code and
data. TEEs also support remote attestation, allowing third
parties to verify the integrity and trustworthiness of the
TEE [11]. Prominent examples are Intel SGX and ARM
TrustZone, each with its own approach to security. Intel
SGX isolates data and code in areas called enclaves, while
ARM TrustZone separates the whole processor into a
secure and normal world [12]. In general, the core features
of a TEE include strong hardware-based isolation, efficient
scheduling and secure communication between secure and
rich environment, and secure updates [5].

2.3. Network Function Virtualization

In traditional networks, network functions like fire-
walls, load balancers, and routers rely on specialized
hardware. In times of fast-paced digital innovations and
declining lifecycles of hardware, the frequent replacement
and scaling of these systems pose a serious challenge
for network service providers, particularly in fields like
5G [3]. NFV aims to solve this problem by virtualizing
these network functions and running them on commer-
cial off-the-shelf servers instead of specialized equipment,
resulting in several advantages [3]. Firstly, it increases
scalability and flexibility by enabling providers to scale
the number of VNFs up or down depending on demand.
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Secondly, it offers better operating performance by dy-
namically allocating resources based on a given network
load. Thirdly, it leads to shorter development cycles by
replacing the necessity of installing new physical devices
with the deployment of software updates. These benefits
significantly reduce both capital expenditures and oper-
ational expenditures, making NFV a highly flexible and
cost-effective solution for modern networks [3].

The NFV architecture consists of three components. A
physical server provides computing and storage resources,
a hypervisor that manages the virtual environment, and
a virtualized environment for executing VNFs [3]. Even
though NFV brings several advantages, the virtualization
of network functions is expected to increase the potential
for security attacks [3], requiring more sophisticated secu-
rity measures. Firstly, it requires a protected hypervisor to
prevent unauthorized access or data leakage [3]. Secondly,
data communication and VM migration need a secure
environment [13]. Thirdly, NFVs use application pro-
gramming interfaces (APIs), which pose another security
threat [14]. At the same time, the network performance
must be comparable to traditional networks despite the
additional virtualization layer. Therefore, a well-balanced
trade-off between security and performance is necessary.

3. Kata Containers and Security

One of the main vulnerabilities of traditional con-
tainers is their dependence on the shared host kernel.
If one container gets compromised, the attacker could
potentially get access to the host and other containers.
While the Linux kernel uses cgroups to isolate and limit
the usage of physical resources for each container, it is
shown that out-of-band workloads can break the cgroups’
confinement [15], potentially making the whole system
vulnerable to resource exhaustion attacks, such as Denial-
of-Service. Next to the weak resource confinement, the
shared kernel also poses the risk of privacy leakage
through pseudo-filesystems, enabling attackers to gather
sensitive information about the environment for further
exploitation [16], [17]. In addition to the kernel layer,
the container layer faces vulnerabilities like improper
handling of symbolic links or insecure API handling,
making container escapes possible [18]. In fact, 56.82%
of vulnerability exploits could launch successfully from
within a container [19], indicating the need for more
advanced security solutions.

Kata Containers makes container escapes more dif-
ficult with its additional layer of security offered by
lightweight VMs and kernel-level isolation, but research
shows that escapes are still possible [18]. In particular,
according to research, Kata Containers have three key
vulnerabilities. First, Kata Containers did not properly
enforce device cgroups, allowing attackers to access the
/dev files on the VM inside the container, leading to
CVE-2020-2023 [20]. The attacker could then overwrite
the kata-agent, leading to container escapes and further
compromises. The Kata Containers reuse the corrupted
kata-agent, leading to CVE-2020-2025 [21]. Lastly, kata-
runtime does not validate mount points in shared folders.
That means it resolves any symbolic link and conducts
the mount operation, leading to CVE-2020-2026 [22],
which would allow the attacker to mount the root file
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system to any part of the host system, thereby breaking
the virtualized container despite the hardware virtualiza-
tion in use [18]. To mitigate these vulnerabilities, Kata
Containers can be integrated with TEEs. The isolation of
the lightweight VM in Kata Containers, in combination
with hardware-based protection by TEEs, can significantly
increase the overall security of the system, offering pro-
tection not only from container escapes but also from
malicious code from the host system itself. Additionally,
remote attestation ensures that only verified code runs
within the TEE, further reducing the attack surface [11].
However, the use of TEEs comes with new challenges
as well. Even though TEEs provide secure hardware-
based security, they are not immune to side-channel at-
tacks, which make use of indirect system information
like memory access, CPU load, or power consumption
to infer information about other aspects of the system
for further exploitation [11]. Nevertheless, while there is
limited research in this area, combining Kata Containers
and TEEs could be particularly useful for securing VNFs,
making them less vulnerable compared to traditional net-
work functions.

4. Network Performance Impact of Kata
Containers

The shift from traditional network functions to an
NFV environment introduces performance challenges, es-
pecially when implemented with Kata Containers. The
critical performance metrics in NFV are network la-
tency and network throughput. Latency refers to the time
needed for data to travel from one point to another,
while throughput refers to the amount of data able to
be transmitted within a specified time window. Research
has shown that the additional virtualization layer of Kata
Containers notably reduces the network performance in
certain cases compared to traditional containers like runC,
introducing potential bottlenecks [6], [7], [9]. In particular,
Kata Containers only shows slightly lower throughput
compared to runC, less than 1% [6]. In more specific cases
regarding TCP and HTTP throughput, it showed 1-18%
lower throughput depending on the scenario [6], [7]. Sim-
ilarly, Kata Containers only scored 20% of the through-
put of runC in simple GET operations from in-memory
data [8]. Similarly, latency is also affected, showing a
performance loss of up to 35% compared to RunC [6],
[9]. Despite these shortcomings, Kata Containers performs
better than gVisor in both network throughput and network
latency [6], [7]. These findings are further illustrated in
Figure 1, adapted from [6], which compares the network
performance of different container runtimes with an em-
phasis on latency. In particular, TCP_RR and UDP_RR
are request-response tests, while TCP_CRR additionally
includes the connection time and teardown time. runC and
bare metal show the best performance, while gVisor shows
the highest overhead, with Kata Containers performing in
between.

Furthermore, in [7], the authors compared the scal-
ability benchmarks of runC and gVisor across different
container counts. The results of these scalability bench-
marks are summarized in Figure 2, adapted from [7],
which shows that while runC scales efficiently, gVisor
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suffers from significant network performance overhead
with an increasing number of containers [7]. However,
we observe that containerd/runsc does not show the same
scaling issues as crio/runsc, which could be the result of
specific optimizations in the containerd runtime. Never-
theless, gVisor relies on an additional isolation layer with
its own user-space kernel. It can be expected that Kata
Containers show similar behavior due to its additional VM
layer. This means that as the number of containers grows,
the network performance of Kata Containers could drop
significantly. This scaling limitation could pose a serious
challenge in NFV environments, where a large number of
VNFs run simultaneously while requiring high network
throughput and latency.

A way for addressing the performance drop of Kata
Containers could be technologies like Single Root 1/O
Virtualization (SR-IOV), which allows direct access to
network hardware, bypassing the virtualization layer [23].
Even though SR-IOV gives containers direct access to
hardware, it does not directly violate the principles of
NFV, as it allows the hardware to be shared between
multiple VNFs [23]. Research shows that it can drastically
reduce the performance overhead of the virtualization
layer, almost achieving native network performance [23].
Consequently, SR-IOV could be a key solution to solve the
network performance overhead and the scaling limitations
of Kata Containers. Next to SR-IOV, there are software-
based performance optimization techniques. One of them
is the use of the kernel driver vhost-net, which offloads
network packet handling from the VM to the host. This
reduces context switches between guest and host, leading
to higher throughput and lower latency while also allowing
a higher number of VMs to run on the same host. This
means more VNFs can run in parallel without perfor-
mance degradation, improving scalability [24]. Another
technique is a set of optimized libraries and drivers called
Data Plane Development Kit (DPDK), which enables the
network packets to bypass the host kernel entirely. By
allowing distributed processing of network packets across
multiple CPU cores, DPDK further increases network per-
formance [25]. In terms of performance optimizations for
TEEs, current improvements in ARM TrustZone include
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Figure 1: TCP_RR, TCP_CRR, UDP_RR transaction rates
per second for different container runtimes. Adapted
from [6].
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Figure 2: Benchmark comparing the network performance (in seconds) of RunC-based runtimes (crio/runc, contain-
erd/runc) and gVisor-based runtimes (crio/runsc, containerd/runsc) across 5, 10, and 50 containers, based on 10 runs.

Adapted from [7].

the simultaneous access to I/O devices for both secure
and rich environment. This reduces context switching and
increases the performance and scalability of I/O-heavy
tasks like network packet processing in NFV [26]. How-
ever, Kata Containers could still be limited in their use in
large-scale NFV environments because of their scalability
limitations, and even optimization techniques like SR-IOV
and vhost-net, which mitigate this limitation, could be
insufficient to fully address this issue.

Additionally, when integrating Kata Containers with
TEEs for additional security, there are also trade-offs in
terms of network performance. One of the key issues is the
frequent context switches between the TEE and the rich
environment, especially in network-intensive tasks where
large amounts of data are transported. These can lead
to significant performance overheads and thus challenge
the combined use of Kata Containers and TEEs in NFV
environments. A solution is to minimize the performance
overhead by limiting the TEE usage to critical parts of
the network, thereby reducing the performance overhead
while maintaining security [27]. Because of the additional
overhead introduced by Kata Containers and TEEs, their
usage in performance-critical applications in 5G networks
could be limited.

5. Kata Containers and NFV

NFV environments allow the virtualization of network
functions, leading to significant improvements in scala-
bility, flexibility, and cost reductions in comparison to
traditional networks. However, this shift comes at the
cost of higher vulnerability to attacks. To mitigate these
security risks, Kata Containers could offer a promising
solution. In these environments, potentially multiple VNFs
run on the same hardware, consequently requiring a strong
level of isolation and security. While traditional containers
like runC show high network performance, they are flawed
regarding security and isolation, making them vulnerable
to critical attacks like container escapes which could
compromise the whole system. By using Kata Containers
as an alternative, we could significantly reduce the risk
of container escapes. This is the result of encapsulating
each container in its own lightweight VM, offering kernel-
level isolation. Running these Kata Containers in TEEs
provides the benefit of an additional layer of hardware-
based protection, even making attacks from a compro-
mised host difficult. Nevertheless, TEEs are vulnerable to
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side-channel attacks, making use of secondary information
for further compromise.

When it comes to network performance, VNFs require
high throughput and low latency. However, securing NFV
environments using Kata Containers comes at the cost
of performance loss caused by the additional virtual-
ization layer, making it a potential bottleneck for high-
traffic scenarios. More specifically, while Kata Containers
show comparable throughput to runC in the majority of
cases, the network latency seems highly affected by the
additional virtualization layer. Moreover, NFV requires
easy scaling, but we have shown that Kata Containers
are potentially limited in that regard, causing increasing
performance overhead with a growing number of con-
tainers. This makes adopting Kata Containers difficult
when handling high numbers of VNFs. Proposed solutions
would be SR-IOV, vhost-net, or DPDK, which would
enable Kata Containers to maintain high performance
while retaining the security gains. However, with the
use of SR-IOV or vhost-net, direct access to hardware
could undermine the benefits of the additional virtualiza-
tion layer and should only be considered when the need
for performance outweighs the risk of reduced security
and isolation. Additionally, Kata Containers could require
more hardware resources than traditional containers due
to the virtualization layer, increasing operational costs
in terms of computing power and memory. Similarly,
TEEs like Intel SGX and ARM TrustZone require spe-
cialized processors, potentially driving up capital costs.
The decision whether to use Kata Containers and TEEs
to secure NFV depends heavily on the specific use case.
In areas where security is paramount, it could be a strong
solution. On the contrary, in situations where performance
is paramount, Kata Containers could pose a limitation
with its performance overhead caused by the hardware
virtualization and possible integration of TEEs, which
further reduces the performance through the need for
frequent context switches.

6. Conclusion and Future Work

This paper aims to provide a broad overview of the
current research on Kata Containers, TEEs, and their
security and performance implications on NFV environ-
ments. While Kata Containers make use of lightweight
virtual machines to improve their isolation compared to
traditional containers, they are still susceptible to vul-
nerabilities. These can be mitigated with the integration
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of TEEs, which add an additional layer of hardware-
based security, thereby creating a robust combination that
can significantly reduce attacks in NFV environments.
However, this enhanced security comes at the cost of
overheads in network performance, particularly in network
latency and scalability. Since VNFs rely on low latency,
high throughput, and high scalability, these additional
security layers could become a bottleneck in performance-
critical scenarios. Therefore, further research is necessary
to examine the exact security benefits and performance
drawbacks in real-world deployments of Kata Containers
integrated with TEEs in NFV environments. This includes
further research in optimization techniques like SR-IOV
for increased performance while maintaining security, as
well as potential improvements, like the reduction of the
frequency or cost of encryption cycles in Intel SGX [12].
Based on these results, future work should aim to deter-
mine the right balance of security and performance for
secure NFV.
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Abstract—Threshold schemes distribute a signing key among
multiple parties, requiring their collaboration to perform
cryptographic tasks, thereby mitigating the risk of key
compromise. As quantum computing advances, recent re-
search has increasingly focused on combining these schemes
with post-quantum secure cryptographic primitives such as
lattices. This paper analyzes three significant advancements
on post-quantum secure threshold schemes. First, Boneh
et al.’s universal thresholdizer converts any cryptographic
scheme into a threshold version, offering great flexibility,
but it suffers from inefficiencies from homomorphically
evaluating entire circuits. Second, Kamil et al. improve upon
this by selectively applying homomorphic evaluation to an
existing (n,n)-threshold scheme, extending it to a (¢, NV)-
scheme. Lastly, Cozzo et al. thresholdize FALCON using
multiparty computation techniques, but the mixture of linear
and non-linear operations in FALCON results in relatively
long signing times.

Index Terms—Threshold Cryptography, Lattice-based

1. Introduction

The rapid development of quantum computing poses a
significant threat to the security of classical cryptographic
systems [1] [2]. Traditional encryption schemes, such as
RSA and ECC, rely on the computational hardness of
problems, which, however, can be solved in polynomial
time by quantum computers [3]. As a result, these cryp-
tographic systems, widely deployed e.g. in securing the
internet and financial transactions are no longer considered
future-proof in the face of advancing quantum technology.
This pressing concern has led to the emergence of post-
quantum cryptography (PQC), which is based on math-
ematical problems, that are believed to be hard even for
quantum computers [3].

In parallel with the need for PQC, there is a grow-
ing interest in threshold cryptography. This technique
strengthens security in distributed systems by decentral-
izing control across multiple participants [4] [3]. This
approach has a wide range of applications, including cloud
computing and blockchains [5].

As organizations work to secure data against quantum
and other emerging threats, the combination of PQC and
threshold cryptography offers a compelling solution for
achieving both quantum resilience and enhanced fault-
tolerant security in critical systems. In light of this, this
paper provides an overview of lattice-based cryptography
and threshold cryptography, followed by a survey of re-
cently proposed threshold PQC schemes. It focuses on the
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Figure 1: Two different basis vector pairs € R? build the
fundamental domain Z2 [10].

works of Boneh et al. [6], Kamil et al.

et al. [8].

[7], and Cozzo

2. Background

This section provides a brief overview of lattices and
threshold cryptography.

2.1. Lattices

Lattices are as a key component of PQC due to their
mathematical structure and the computational hardness of
the problems they pose, which will be introduced in the
following [9].

2.1.1. Lattice Fundamentals

Lattices are algebraic structures composed of points
in n-dimensional space that are formed by the integer
combinations of a set of basis vectors [9].

Definition 1. A lattice L(B) is the span of its basis
vectors B = {by,...,b,} of R™ [9], so that

L(B) = {Zaibi La; € Z}

The cryptographic significance of lattices stems from
the fact that a given lattice L can be represented by
multiple bases [10]. While a "good" basis can simplify
certain computational tasks, a "bad" basis can make these
tasks exceedingly difficult [10]. For instance, in Figure 1,
the red pair of long vectors and the blue pair of short vec-
tors provide valid alternative bases for the same domain
72. However, answering mathematical questions like "Is
(1,0)T € £(B)?" would be more challenging when using
the long and nearly parallel vectors as B in Figure 1 (the
"bad" basis). This is in contrast to the shorter, orthogonal
vectors (the "good" basis). Beyond this, there exist other
computational problems related to lattices that are con-
sidered hard and make lattices appealing for use in PQC,
which will be presented in the following.

Definition 2. Shortest Vector Problem (SVP):
Given a lattice basis B and some norm || -

ey

, find a
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(nonzero) vector v € L(B) such that ||v|| = Apin(L(B)),
where A\p,in s the minimum distance in the lattice [9].

Definition 3. Closest Vector Problem (CVP):

Given a lattice basis B, some norm ||-||, and an arbitrary
vector q € R™, find a lattice-point | € L such that ||l — q|
is minimal [9].

These problems can also serve as the foundation for
other more practical, equation-based challenges. Two ex-
amples of such challenges follow.

2.1.2. Learning with Errors

The Learning With Errors (LWE) problem serves as
the foundation for many PQC schemes [11]. It starts with
a simple system of linear equations A - s = b, where
A e z"™m s € Z™,b € Z". Solving this system can
be done efficiently using standard techniques, such as
Gaussian elimination. LWE complicates this by adding
a small noise vector e € Z", leading to the system
A - s =0b+ e. The challenge now is to recover the secret
vector s despite the added noise, which makes the problem
computationally hard [11]. A formal definition of LWE
follows.

Definition 4. Learning with Errors (LWE):
Let Zy, = Z/qZ be the ring of integers modulo q. Given
are A and b, where:

ANZ;”XM
b=A-s+e

is a matrix sampled uniformly,

a vector in ZZ with added noise e

with e € Z" as a small error vector. Recover the secret

s €z [11].

The hardness of LWE stems from its close connection
to SVP and CVP [11]. For example, in an LWE instance
of the form A-s = b+ e, where A € Z;’;X”L, s € qu,
b € Zy, the matrix A can be viewed as a lattice basis, with
each column representing a basis vector. As a lattice point
is a linear combination of these basis vectors, A - s can
be considered a lattice point, while b is a random vector
in ZZI‘. Given that the error vector e is small, solving an
LWE instance to recover the secret vector s can almost
always be done by solving CVP, searching for s with
minimal ||As — b||. A formal proof of LWE’s hardness
can be found in [11].

Moreover, the presented LWE-problem can be ex-
tended by introducing specific algebraic structures. For
instance, the R-LWE uses a polynomial ring rather than
a ring of integers as in standard LWE and uses poly-
nomial multiplications, for which efficient algorithms
that are similar to Fast-Fourier-Transformation can be
used [11] [12]. A formal definition of R-LWE follows.

Definition 5. Ring Learning with Errors (R-LWE):
Fix a polynomial f(z), consider the polynomial ring
modulo f(x), i.e, Z4[x]/f(x). Given are noisy samples
(ai(z),b;(x)), where:

ai(x) ~ Zglx]/f(x), bi(z) + a;i(z) - s(x) + e;(x)

with e;(x) € Zg[z]/f(x) as a small error polynomial.
Recover the secret s(x) € Zg[x]/f(x) [11].

2.1.3. Inhomogeneous Short Integer Solution

Another practical hard problem is the Inhomogeneous
Short Integer Solution Problem (ISIS) [13], which shares
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structural similarities with LWE but includes an additional
constraint of a size bound. In fact, ISIS can also be
reduced to CVP and SVP [13]. A formal definition of
ISIS follows.

Definition 6. Inhomogeneous Short Integer Solution:
Given A € Zy*™, b € Zy, and B € R, find s € L'
satisfying A-s =y mod q with ||s||2 < S [13].

2.2. Threshold Cryptography

In addition to lattices, threshold schemes can enhance
security by distributing cryptographic operations or secrets
across multiple participants [14]. The general concept of
threshold cryptography will be introduced in the follow-
ing.

2.2.1. Threshold Cryptography Fundamentals

In most large companies with hierarchical structures,
significant decisions, such as signing major contracts,
are typically made only after a majority of the board
members reach an agreement. Threshold cryptography
follows a similar principle of collaboration. In a (¢, N)-
threshold scheme, a secret key sk is split into /N shares
(skq, ..., skn), with each share distributed to different par-
ticipants. In cryptographic scenarios where the complete
secret key sk is required, at least ¢ participants must col-
laborate, combining their shares sk; to reconstruct the key
sk and complete their threshold task with it. This ensures
that if an attacker compromises fewer than ¢ participants
or servers (e.g., t — 1), they cannot reconstruct the full key
sk and the system still remains secure [14] [15]. Main
threshold tasks are introduced in the following.

Key generation (KGen): Two methods exist for
KGen:

o Generation by a trusted authority: A trusted third
party generates the public and private key pair
(pk, sk). The secret key sk is then distributed among
n participants using methods like (¢, N) - Shamir Se-
cret Sharing (SSS) [14]. This sharing method divides
sk into N shares sk; using Lagrange interpolation
polynomials A;, ensuring that any ¢ — 1 shares reveal
no information about the secret sk.

o Distributed key generation (DKGen): Multiple partic-
ipants jointly compute the public key pk and secret
shares sk;, which ensures that no single party has
access to the complete secret key sk [16].

Threshold signatures: Any subset of ¢ participants
can collaborate to generate a signature, ensuring that the
signature remains independent of the specific subset of ¢
parties involved. Moreover, the signature size should be
independent of ¢ and N [15].

Threshold decryption: Any subset of ¢ parties can
decrypt a ciphertext ctx [15].

3. Analysis

This section presents and analyzes three influential
contributions to lattice-based threshold PQC schemes.

3.1. Boneh et al. (2017)

The work by Boneh et al. [6] provides two pri-
mary contributions. First, they construct a threshold fully-
homomorphic encryption (TFHE) scheme based on the
LWE problem. Building on this framework, they con-
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struct an "universal thresholdizer" [6], a tool capable
of converting non-threshold cryptographic schemes into
their threshold variant. These two key contributions are
presented and analyzed in the following.

3.1.1. Threshold Fully Homomorphic Encryption

Boneh et al. construct a TFHE scheme, building on
the existing FHE scheme developed by Gentry, Sahai, and
Waters (GSW) [17], which is presented below.

Simplified GSW-FHE scheme [17]: Fix the mes-

sage u and the matrix G.

o FHE.Setup — (pk, sk): Sample a random ma-
trix A, a random vector s, and a noise vector

STA‘A—F eT and sk = (—S 1)

o FHE.Encrypt(pk, ) — ctx: Return ciphertext
ctr = A-R+p-G, where R is a random matrix
with entries in {0, 1}.

o FHE.Decrypt(pk, sk, ctx) — u: Compute the
linear product y = (sk,ctz®), where ctz® is
the kth column of the matrix ctz, and return 0
if y is small and 1 otherwise.

e. Set pk =

Using this scheme, one can encrypt the message with pk
from FHE.Setup and evaluate an arbitrary cryptographic
algorithm directly on the encrypted message, which ex-
plains its fully homomorphic capability. The decrypted re-
sult can be retrieved through FHE.Decrypt. The security of
FHE.Encrypt relies on the hardness of the LWE problem,
as a slightly modified LWE instance is constructed during
FHE.Setup, with the introduction of a random matrix R
during encryption. An example python implementation is
available in [18].

The (¢, N)-threshold variant of this scheme (TFHE) by
Boneh et al. [6] consists of following steps: TFHE.Setup,
TFHE.Encrypt, TFHE.PartDec, and TFHE.FinDec. In
TFHE.Setup, instead of using a single secret key sk as
in FHE.Setup, the secret is split into /N secret shares
sk;, which are distributed by a trusted third party. For
decryption, each party computes a partial decryption
pi = (sk;,ctz®) using their secret share sk; during
TFHE.PartDec. These partial decryptions p; are then com-
bined to reconstruct the full decryption p in TFHE.FinDec.
For example, by employing (¢, N)-SSS in TFHE.Setup, p
can be successfully reconstructed in TFHE.FinDec using
any t partial decryptions. However, directly combining
the partial decryptions could potentially leak information
about the secret shares due to the simple operations in-
volved, such as the linear product. To address this, Boneh
et al. introduce noise during TFHE.PartDec, modifying
the decryption process to p; = (sk;, ctx*) +noise, which
resembles the structure of a LWE instance b = A - s+ e.

3.1.2. Universal Thresholdizer

Using the constructed TFHE scheme and non-
interactive zero-knowledge proofs (NIZK), Boneh et al.
develop the universal thresholdizer [6], which is presen-
tend in the following.

UT: Fix a circuit C' of a cryptographic scheme and
a subset U of ¢ parties.

o UT.Setup(n) — (pp,ski,...,sky): Generates
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the public key pk and secret shares sk; from
TFHE.Setup, computes the ciphertext ctz with
TFHE.Encrypt(u), and the commitment com,
Com(sk;). The public parameters pp are defined
as (pk, ctz, {com;};cin).

o UT.Eval(pp, sk;,C) — (ctz’,p;,m;): Evalu-
ates the given circuit C' on the ciphertext
ctr, producing the evaluated ciphertext ctz’
and computes the partial decryption p;
TFHE.PartDec(pk, ctz’, sk;). It then generates
a NIZK proof m; regarding the correctness of
pp and sk;.

o UT.Verify(pp, C, p;, m;):
proof ;.

o UT.Combine(pp, {p;}jcv) — p: Combines
partial decryptions p; and reconstruct p using
TFHE.FinDec.

Checks the NIZK

Using this scheme, any cryptographic protocol, such as
a signature scheme, can be transformed into its threshold
version. First, the cryptographic protocol is encoded into
a circuit C' composed of gates. After UT.Setup, each party
generates a partial signature during UT.Eval by using the
encoded circuit as input. The partial signatures are then
verified and combined using UT.Verify and UT.Combine,
respectively.

Although this approach of UT offers flexibilities with
its capability to thresholdize non-threshold schemes, it
also presents certain limitations. First, it relies on a trusted
third party in UT.Setup, lacking DKGen, which is con-
sidered more secure. Second, executing an entire circuit
in TFHE can be computationally expensive, particularly
when the circuit involves heavy steps like challenges
or rejection sampling. Moreover, the noise flooding in
TFHE.PartDec leads to inefficient scaling complexities,
with Q(N log V) for sizes of secret key shares and Q(\?)
for signatures, where A indicates the security parame-
ter [6]. These drawbacks are addressed in subsequent
work.

3.2. Kamil et al. (2023)

Kamil et al. [7] address restrictions of UT [6] with the
following solutions:

1) Instead of TFHE, they utilized a threshold linearly
homomorphic encryption (THE) scheme, which is se-
lectively applied only to the relevant steps of the pro-
tocol, rather than to the entire circuit. Additionally,
the constructed THE scheme incorporates DKGen.

2) They combine the state-of-the-art (n,n) threshold
pg-signature scheme by Damgard et al. [19] with
the constructed THE and DKGen, extending it to a
(t, N)-threshold scheme.

3.2.1. THE With DKGen

Kamil et al. construct a THE scheme as a threshold
variant of the R-LWE-based HE scheme by Brakerski et
al. [20] and extend this with DKGen based on (t, N)-
SSS [14]. Morover, they take care to add noise when com-
bining partial decryptions p;, following the same rationale
as Boneh et al. [6]. The simplified version of their built
scheme is presented below.
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o THE.DKGen [7]: Fix a ring element ag € R,
a small prime number k, and a subset U of ¢
parties.

1) Every party P; samples s;,e; € R, and
computes b; = ag - $; + k - ¢; and its (¢, N)-
Shamir secret shares s; ; of s;.

2) P; sends (b;, s; ;) to every other party P;

3) Every party P; computes its public key pk =
(ag,bg = >_b;) and secret share sk; =

Sj,i
o THE.Encrypt(pk, ) —  (ctz): Samples
r,e/,e’ € R, and outputs ctz = (u,v) =

(ag-r+k-ebg-r+k-e" +pn)

o THE.PartDec(ctz, sk;) — (p;): Samples noise
FE; and output partial decryption p; = A; - sk; -
u+ k- E; with \; being the Lagrange multiplier
for party P;.

o THE.FinDec(ctz,{p;};cu) — (p): Outputs
the complete decryption p = (v — >,y p;)
mod ¢ mod k.

In essence, Kamil et al. extend the base HE
scheme [20] to THE by including SSS and generating
individual R-LWE instances, each with its error e;. Ac-
cordingly, the security of the scheme relies on the R-LWE
assumption from the base scheme [20]. C++ implemen-
tations of the base scheme and a similar version of THE
are available in [21].

3.2.2. Combining THE with scheme by Damgard et
al.

Based on the existing (n,n)-signature scheme by
Damgard et al. [19], Kamil et al. utilize steps from the
constructed THE to extend this to an arbitrary threshold
scheme. The following presents the simplified protocols,
with the modified steps highlighted in bold.

KGenrs(ars, ag,t,n) with fixed ring elements ars, ag

THE.DKGen

return pkg, sk;

Sample s;, y; := (ars, si), ctxs,; + THE.Enc(pkg, s;:)

Collect (y;, ctas,j) v\ (i}

Y= Z]E[n] Yi, clxs = Zje[n] ctxs,j

!}

ski,

return pk := (ars,y), aux = (pkg, ctxs)

Figure 2: Passively secure (¢, N) KGen protocol [22].

o KGen: The protocol first triggers THE.DKGen to
generate the public key pkg and the secret key share
sk;. Building on the existing protocol by Damgard et
al. [19], it homomorphically encrypts the randomly
generated s;. The combined encrypted randomness,
ctxg, is then computed and returned as auxiliary
information for subsequent operations.

« Signing: During signing, the protocol homomorphi-
cally encrypts the randomness r; and computes the
encrypted signature ctz, by combining the encrypted
random values ctx, ; from other parties, the auxil-
iary value ctxs from KGen, and the challenge c. A
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Signrs(sks, auz, U, i) with a subset U of ¢ parties and message u
Sample i, w; = (ars,ri), ctey;:= THE.Enc(pkg,r:)

Collect (wj, ctxr,j)jcu\{i}

wi=3 ey wy, ci=H(w,pk,p)
ctx, :=c-ctxs + Zjeu cte, ;

i

p; := THE.PartDec(ctx., sk;)

Collect (p;)jeuv\ (i}

return ¢ = (¢, z := THE.FinDec(ctz., {p; }jcu\{i}))

Figure 3: Passively secure (¢, V) signing protocol [22].

subset of ¢ parties then cooperatively decrypt ctx,
homomorphically, yielding the final signature z after
combining the partial decryptions p;.

In short, Kamil et al.’s modified protocol enhances the
existing (n,n)-signature scheme by introducing random-
ness into KGen and generating the encrypted signature
ctx, using THE during signing, instead of the unencrypted
signature z. This modification successfully extends the
original protocol into a (¢, N)-threshold variant. Further-
more, in contrast to UT, which requires a non-threshold
scheme as input, this scheme is inherently a threshold
scheme and does not depend on any external scheme. At
the 128-bit security level with ¢ = 3 and N = 5, this
scheme produces signatures of size 46.6 kB of size 13.6
kB [7], offering a significant improvement in efficiency
compared to other recent protocols such as Threshold
raccoon [23].

3.3. Cozzo et al. (2019)

In contrast to the two presented works that utilize
HE [6] [7], Cozzo et al. [8] discuss possibilities to thresh-
oldize promising PQC schemes such as FALCON [24]
based on secure multiparty computation (MPC) [25]. Non-
threshold version of FALCON will be presented first.

Input :y, sk = B € R2*? with small B; j, pk € R2 with B-pk =0
Output: o

. ¢« H(r | p) with random r € {0,1}32°

. Sample t € R?] such that pk -t = c.

. z < round(t, B) such that z € £L(B)

. s« (t—=2)-B

. If s is not short, return to 3

. Return o = (r, s)

DU W N

Figure 4: Simplified FALCON signing protocol [24]

FALCON follows the concept of hash-and-sign. It be-
gins by computing a hash value ¢ and search for ¢ from an
ISIS instance pk' -t = ¢, which is possible by computing
t + (c,0) - B~! [24]. Afterwards, t is rounded to a close
lattice-point z € L£(B) and the signature s is computed
with the difference between ¢ and z. Plus, a rejection
sampling with the condition checking the shortness of s is
included to enhance security of B. FALCON is fairly run-
time efficient and compact, requiring only 0.3 miliseconds
for signing and prodzcing signatures of 1.3 kB [24].

To thresholdize FALCON, Cozzo et al. [8] suggest
utilizing MPC, enabling multiple parties to jointly per-
form computations using their individual inputs while
ensuring the privacy of those inputs [25]. First, a linear
secret sharing scheme (LSSS) can be used to distribute
sk and pk, enabling linear operations to be performed
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on the secret shares rather than directly on the secret
key [26]. Furthermore, considering that FALCON involves
both linear operations (e.g. step 2 in Figure 4) and non-
linear ones (e.g. rejection sampling), LSSS-based MPC
schemes are well suited for the linear operations, while
garbled circuits (GC)-based MPC can handle the non-
linear components [8].

This separation of needed MPC techniques requires
costly conversions between LSSS and GC representations,
leading to a major bottleneck and a longer signing time of
5.7 seconds [8]. Moreover, this threshold-FALCON pos-
sesses further limitations such as the absence of DKGen.

4. Conclusion

In conclusion, the presented three papers show re-
cent advancements on threshold PQC schemes, presenting
different ways to design threshold schemes. Boneh et
al. [6] introduced the "universal thresholdizer," a tool
capable of transforming any cryptographic scheme into its
threshold variant through a black-box execution. Kamil
et al. [7] identified remaining inefficiencies in the "uni-
versal thresholdizer" and proposed a new scheme using
THE instead of TFHE. Cozzo et al. [8] utilize LSSS
and MPC techniques, rather than HE, to thresholdize
FALCON. Future work could focus on further optimizing
the protocol proposed by Kamil et al. [7], e.g. by intro-
ducing compression techniques used in schemes like FAL-
CON [24] or DILITHIUM [27] [28]. Moreover, exploring
PQC schemes based on other mathematical primitives
beyond lattices [29], such as hash functions or isogenies,
presents an avenue for further research.
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Abstract—With the increased complexity of managing net-
works, the need for Digital Twins has been growing rapidly.
These are based on digital maps of networks. The IETF has
been working on standardising the modelling of networks
and their topologies and proposed their base standard in
RFC 8345. In this paper we therefore share our experience
with modelling an Autonomous System based on RFC 8345.
We summarise the current limitations and the possible
solutions for them. The two main issues encountered were the
lack of bidirectional links and the absence of links between
networks. The proposed augmentations to RFC 8345 we
and other researchers suggest based on shared experiences
take away unnecessary complexity and offer backwards
compatibility.

Index Terms—RFC 8345, digital map modelling, digital twin,
bidirectional links

1. Introduction

The rapid growth of networks and rising customer
demands require dynamic adaptation, therefore creating
new challenges for operators. Managing these advanced
networks and services is complex, and introducing in-
novations is risky and costly without reliable emulation
platforms [1]. A rising technology to help manage these
networks are Digital Twins. Zhou et al. [1] define a Net-
work Digital Twin (NDT) as ‘a digital representation that
is used in the context of networking and whose physical
counterpart is a data network’ [1]. These NDTs can help in
many ways. E.g., one of the main applications for an NDT
is the testing of so called ‘what-if” scenarios. Being able
to test a network for possible points of failure or to test
new functionalities without having to test in production is
not only essential for a good consumer/user-experience but
also for the maintaining institutions. Furthermore, there is
the possibility to turn a network into an Autonomous Driv-
ing Network, which regulates the network autonomously
using NDTs as possible test benches or simply as data
input.

A Digital Map (DM) represents the topology informa-
tion for a given network. It provides the core topological
entities, their role in the network, core properties and
relationships between networks and entities on a multi-
level topology [2]. The building of digital maps is essential
for digital twins [3].

We modelled a network based on the guidelines and
standards provided by the IETF. Previous research has
highlighted several limitations in the current version of
RFC 8345, particularly regarding bidirectional links and
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cross-network connectivity [4] [S]. Various augmentations
have been proposed to address these challenges, including
improved guidelines for multi-layer network modeling [4].
Our work builds on these findings, offering a practical
evaluation of the proposed solutions.

The rest of this paper is structured as follows: Chap-
ter 2 presents necessary background information about the
IETF standard RFC 8345 and Chapter 3.1 gives a short
overview of our network we modelled. In Chapter 3 we
cover the limitations we found and what proposed solu-
tions and workaround we could find and also present our
own opinion on how these limitations should be handled in
the future and Chapter 4 summarises the limitations and
the proposed solutions and gives an outlook into future
work.

2. Understanding RFC 8345 — A YANG Data
Model for Network Topologies

Because networks have grown in size and become
more dynamic there was and still is a need for real-time
topology data to support automation and programmability.
To ensure interoperability and integration across multi-
layer multi-vendor networks, the need for a standardised
topology description has been growing. In 2018, to meet
those demands, the IETF formalised their RFC 8345 [6],
in which they proposed a standard describing network
topologies in YANG, a data modelling language [7].
YANG organises data into a hierarchical tree structure us-
ing constructs such as containers, lists, leafs, and leaf-lists
to represent complex configurations and state information.
This modular approach allows for the creation of reusable
and interoperable models that facilitate efficient network
management and automation.

2.1. Structure of RFC 8345

The IETF introduces the data model in two divided
parts. This design decision has been made to separate the
integration of network topology and network inventory
models. It allows the augmentation for inventory infor-
mation without knowing anything about the underlaying
topology of the network. According to the IETF the stan-
dard has purposefully been kept very abstract and generic
so the model can represent any kind of network [6].

2.1.1. Base Network Model (ietf-network). The

ietf-network module defines the base network data
model. The model includes a container that holds a list
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of networks. Each network has its own entry and is
unique through its primary-key network-id. A network
can pose multiple network-types. This container acts
as a target for augmentation, therefore it is implemented
as a container, rather than an empty leaf. This approach
supports hierarchical representations of network subtypes.

To model network hierarchies, a network has a list
of supporting-networks with references to underlay
networks. For a Layer-3 network this could be a reference
to a Layer-2 network.

To model parts of the network the RFC 8345 intro-
duces so-called nodes. A node is intended as an abstract
construct, meaning in one network it can model a physical
device and in a different network it could be a processor
or a router. Each node is uniquely identified by its node-
id and strictly bound to its network. Each network has its
own list of nodes. Just like networks can have supporting-
networks, a node can have supporting-nodes in underlay
networks [6].

2.1.2. Base Network Topology Model (ietf-network-
topology). The ietf-network-topology module defines
the base network topology data model. It augments
ietf-network from above. To describe the topology of
networks in an abstract way, it adds two crucial elements,
links and termination points.

Nodes get extended by a list of termination-points
(TPs). Just like nodes, a termination point is an abstract
construct unique by its tp-id that represents one end of
a link. This could be an interface. Termination points can
have supporting-termination-points in underlaying
nodes of underlaying networks.

Links are captured in a list in networks. Each link is
uniquely identified by its key link-id. A link consists of
a source and destination, both represented by the before
mentioned termination-points. A link can also be sup-
ported by underlaying links in underlay networks. Links
are point-to-point and only unidirectional [6].

2.2. Augmentations of RFC 8345

The YANG model, as mentioned above, has been kept
very generic. This allows for YANG augmentations to
the two YANG modules. The main focus in this paper
is on augmentations on ietf-network-topology. Havel
et al. [4] analysed a plethora of augmentations and came
to the conclusion that work needs to be done on creating
guidelines for augmentations as the current state is not
consistent and therefore very hard to combine them into
multi-layer networks based on one single standard.

3. Limitations of the Current RFC 8345 Ver-
sion

To represent our test-network we wanted to describe
our system using the proposed RFC 8345 standard. During
this process, we experienced current limitations of the
base model, which have also already been encountered
by other researchers [5] [4]. This motivated us to go
into further research and find existing workarounds or
proposed solutions to RFC 8345 and evaluate them.
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3.1. Our Autonomous System Network

AS 1 AS 3

Figure 1: Network topology diagram

In our study of Autonomous Driving Networks, we
modelled an Autonomous System (AS) comprising three
interconnected systems. In our system we wanted to trans-
fer files from AS2 to AS3 through AS1. Our AS1 consists
of six routers. asl-hostl is connected to AS2 and asl-
host6 is connected to AS3. The six routers are set up so
that for data to flow from host-1 to host-6 it has to go
through at least two more routers. All connections are
wired, therefore bidirectional. Between the systems, the
Border Gateway Protocol (BGP) is used, and our middle-
system, AS1, uses the Intermediate System to Intermediate
System Protocol (IS-IS).

3.2. Missing Bidirectional Links

The first limitation we experienced is that there is
currently no way to model a link as bidirectional as
"Links are point-to-point and unidirectional" [6]. This is
an intentional design decision made by the IETF. The
decision has been made to be in line with the philosophy
to keep the standard on a generic level. The IETF further
reasons that unidirectionality improves the applicability
of graph algorithms. Although Havel et al. [5] regard
this as inaccurate in practise, as in most cases further
transformations have to be made before applying a graph
algorithm of any kind.

3.2.1. Proposed Solutions. First it has to be said that the
IETF, aware of the debate on this challenge, not only states
their above mentioned reasons, but also offers their way
of representing bidirectional-links. They want them to be
modelled as two separate and independent uni-directional
links [6]. This is a quite simple way to circumnavigate this
challenge. From our perspective, this still seems rather un-
necessary as it doubles the amount of links and therefore
the networks complexity. This decision and the resulting
independence of the two parts of a link that is supposed
to be a one logical unit create the possibility of just one
unidirectional link existing, therefore increasing the rate
of errors.

This challenge can be solved simply through a small
augmentation by adding a direction-of-1link to the link
container in ietf-network-topology. If one only wants
to address this directionality challenge, this augmentation
would be sufficient. This approach is fully backward
compatible.

3.2.2. Evaluation. We would advise against resolving this

limitation by oneself through augmentation and rather ac-
cept the additional complexity by modelling bidirectional
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links with two unidirectional ones. As the solution to
this limitation is fully backwards compatible and easy
to implement, we recommend the IETF to implement
it in an updated version of the RFC 8345. From our
perspective, the benefits would outweigh the drawbacks
and an augmentation regarding this would not go against
the principle of generic design. Our view is in line with
other papers [5] [4].

3.3. Missing Links Between Networks

The second limitation we encountered when we mod-
elled our AS-System is the constriction on link paths.
Links can only have nodes and termination points in the
same network [6]. Therefore links between two (or more)
separate networks are not allowed. This poses a problem
for our intended description as our network to model has
3 different AS domains (AS1, AS2, AS3).

3.3.1. Proposed Solutions. If one wants to model links
between two different networks using only RFC 8345,
there is just one way to approach this problem. One needs
to create a new, higher-level, network of domains [6].
In our case this would be a network with nodes ASI,
AS2, AS3 and links connecting AS1 with AS2 and AS2
with AS3. Then describing those networks in detail in
their own network. To model the links between them you
would need to create duplicate nodes for the devices in
the neighbouring networks and then create a link to this
node from the corresponding note in the current network.
This creates/emphasises another limitation that will be
explained in chapter 3.5.

A more complex solution in the current state of
RFC 8345 is to use the augmentation for Traffic Engi-
neering (TE) [8]. TE-topologies are specialised augmen-
tations used for traffic engineering, which often necessitate
additional complexity due to their specific application in
optimising traffic flow in complex networks. This adds the
possibility to link nodes between two different networks
by adding a network-ref to the source and destination. This
change in reference makes it unfortunately impossible for
programs that only understand RFC 8345 to retrieve the
topology of the network [4]. This goes against the orig-
inal intent of the standard. Additionally it adds possible
unwanted complexity to the describing as the network has
to be of type te-topology.

Modelling a IS-IS Topology makes this challenge
even more apparent IS-IS areas and IS-IS Domains can
currently not be modelled without using a workaround.
De Dios et al. [9] use node-attributes to define the IS-IS
area. This method makes it impossible for a RFC 8345 to
understand the network and its topology without having
prior IS-IS knowledge.

3.3.2. Evaluation. We recommend extending the
RFC 8345 to allow links between nodes in separate
networks by adding a network-ref in both source and
destination of a given link. This solution would also be
backward compatible [4]. This extension would minimise
the complexity to model AS/IS-IS/OSPF networks, allow
for simple RFC 8345 algorithms to understand those
networks. We do not think that this addition goes against
the spirit of having an abstract base model, because
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multiple connected networks are of high occurrence and
not technology specific. This view is shared by Havel
et al. [4]. Technology-specific augmentations, e.g. IS-IS
and Open-Shortest-Path-First (OSPF), are also on hold
regarding this challenge until it will be addressed in the
base module.

3.4. Missing Option for Subnetworks/Partitioning

This limitation is closely related to the limitation
on links between networks from Section 3.3. Currently,
RFC 8345 does not provide a method for describing one
network as part of another. This limitation is especially
relevant in protocols such as OSPF and IS-IS, where net-
works are often divided into areas that need to be modeled
as part of a larger structure. Havel et al. [4] propose
to add a simple part-of relationship between networks
to RFC 8345 . This proposal is aligned with our view,
because it would greatly simplify the modelling of our
own AS domain. It is also backward compatible.

3.5. Duplicate Nodes, TPs in Multiple Networks

In the current version of RFC 8345, nodes and TPs
are only allowed to be in one network, meaning that if
the same physical or logical node or TP exists in two
networks, it must have different keys and therefore be
two independent nodes from a modelling point-of-view.
This would be the case for our AS-Domain as well, if we
choose to use the workaround with two duplicate nodes
in their respective network from Section 3.3. Havel et
al. [4] state that this is the case with OSPF Networks
and shows the possibility to have this challenge in IS-
IS. This introduces the challenge of consistency when
writing to a model, because one would have to assume
that all duplicate nodes are in the same state. This is not
guaranteed by the model as they are totally independent
from the models point of view [4].

3.5.1. Proposed Solutions. In our case we would have to
model the as1-hostl, as2-host1 routers in the asl AND the
as2 network and the as2-host6 and as3-host1 routers in the
as2 AND as3 network. The IETF is aware of the challenge
and proposes the solution to have an extra network of
physical nodes that represent the existing devices and are
linked to the logical nodes from networks through the
supporting-node logic [6]. In our case we would have to
create a 5th physical-network with all our routers and then
add those routers to their respective nodes in asl, as2 and
as3.

Havel et al. [4] also propose to allow the definition
of nodes outside the scope of networks. This solution
would likely be backwards compatible but greatly alter
the topology tree and therefore needs to be researched
further.

3.5.2. Evaluation. In our opinion this limitation is, just
like the limitation in Chapter 3.3, not technology spe-
cific and it would only be sensible to allow nodes to
be defined outside of networks, to make them uniquely
identifiable across multiple networks, as long as the so-
lution is backwards compatible. Allowing nodes to exist
independently of specific networks would streamline the
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process of maintaining consistency across domains, as it
would eliminate the need to synchronise duplicate nodes
and their states/interfaces.

3.6. Missing Multi-Point Links

While modelling our Autonomous System, we did
not initially encounter the absence of multipoint links
as a limitation. However, during our research into the
other shortcomings of RFC 8345, this challenge became
apparent. Multipoint links, which enable the connection
of multiple devices through a single logical link, are a
critical feature in many modern network environments
such as Layer 2 topologies. For instance, in Virtual-Local-
Area-Network (VLAN) configurations, multipoint links
allow multiple endpoints to communicate across a shared
infrastructure. Unfortunately, RFC 8345 does not natively
support this type of connection. Instead, it only allows
for point-to-point links, which limits the ability to accu-
rately model networks that require multipoint communi-
cation. This limitation originates from the core design of
RFC 8345, where links are described as unidirectional and
strictly point-to-point.

3.6.1. Proposed Solutions. The current workaround pro-
posed by RFC 8345 is to model multipoint connections
using pseudonodes [6]. Pseudonodes act as intermediary
points to represent multipoint connectivity indirectly. By
creating a new node for each multipoint connection, net-
work designers can model the individual connections as
point-to-point links between the devices and the pseudon-
ode. However, this approach significantly increases net-
work complexity, making the model more difficult to
manage and prone to inconsistencies. The RFC acknowl-
edges this limitation but offers no further improvements,
stating that this method preserves the standard’s generic,
technology-agnostic design.

An alternative solution, discussed by Davis et al. [5],
suggests augmenting RFC 8345 to allow links to directly
have multiple termination points, enabling more effective
support for multipoint connections. This approach would
preserve backward compatibility, ensuring that existing
models remain functional while simplifying the represen-
tation of networks using multipoint links. Like the bidirec-
tional link augmentation mentioned earlier in Section 3.2,
this enhancement would streamline the modeling process
by reducing redundant link definitions, making network
maps cleaner and more manageable. It introduces an ad-
ditional, optional link-end definition, which fits within the
current structure, ensuring that current point-to-point links
continue to operate without modification. The simplicity
of this solution would allow for broad adoption without
disrupting existing network models.

A more advanced approach is also suggested to im-
prove the integrity of the existing model [5]. This method
involves extracting the current source and destination
structures and then re-augmenting them back into the link,
all within the same module. Since there is no namespace
change, the augment remains within the module. While
this solution is not fully backward compatible with YANG,
it still produces the same instance structures (e.g., in
JSON) and supports any existing augmentations for source
and destination. One major advantage of this approach is
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that it allows for point inclusion to be controlled based
on feature support, effectively separating the structures
supporting existing capabilities from those designed to
handle new functionalities [5].

3.6.2. Evaluation. From our perspective, we strongly
advise the adoption of the simpler, backward-compatible
solution into RFC 8345. This approach would resolve
the limitation of multipoint links without increasing the
complexity of the model unnecessarily, allowing for easier
and more accurate network representation. Given the high
occurrence of multipoint connections in modern networks,
this change would make RFC 8345 far more applicable
in real-world scenarios while preserving the standard’s
abstract and generic nature.

4. Conclusion

In summary, our evaluation of RFC 8345 has brought
to light several limitations that complicate network topol-
ogy modeling, particularly in Autonomous Systems. Key
challenges include the lack of support for bidirectional
links, restrictions on inter-network connectivity, and the
absence of a mechanism for representing subnetworks
or partitions. While manageable through workarounds,
these issues unnecessarily increase complexity and risk
of inconsistency.

To improve the applicability of RFC 8345, we be-
lieve the IETF should consider adjustments that remove
these limitations while retaining backward compatibil-
ity. Specifically, enabling bidirectional links and allowing
cross-network references would provide a more accurate
and streamlined model for real-world networks. These en-
hancements would preserve the flexibility and abstraction
of the standard, while making it more practical for ad-
vanced network architectures. Addressing these concerns
would lead to more efficient implementations and broader
adoption within the networking field.

By addressing these limitations, RFC 8345 would
better support the development of Digital Twins and other
advanced network architectures, ensuring its relevance in
the evolving landscape of network management.

Further work has to be done on how augmentations for
specific layers and protocols can or need to be changed
when these improvements to RFC 8345 are implemented.
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Abstract—There are many different emulation tools, some
with similar but different functions and goals. The most
common ones are Mininet and NetEm. They are often used to
test and validate the work of researchers. This includes new
algorithms or programs. However, it is not always clear why
a particular emulation tool was used. The following paper
presents and categorizes the use of those tools. Meanwhile,
it becomes clear that current emulation tools have technical
limitations and are sometimes reaching their limits, which
is why there will be even more powerful tools in the future.

Index Terms—Network Emulation, Path property, Emulation
tools, Mininet, Netem

1. Introduction

As the Internet grows, the corresponding programs
and requirements become more complex. It is not only
important that applications work at all, but speed also
plays a significant role. There are a lot of devices with
different hardware on which the programs should still be
usable quickly. Therefore, tests must be carried out to
check how programs behave with other parameters, such
as high latency and bandwidth. The aim is to recreate real
network conditions. Entire virtual networks can also be
created to carry out tests.

The use of such tools offers many advantages com-
pared to testing on real networks. The most significant
advantage is efficiency. Networks can be set up and used
much faster. Moreover, the costs of real hardware are
eliminated. Only with large and complex networks can
the performance decrease, meaning the test results are not
100 % accurate. Nevertheless, the cost benefits outweigh
the disadvantages in most cases, which is why emulation
tools are used so frequently.

In the following paper, the emulation tools are pre-
sented and compared with each other, documenting their
use over the last five years.

2. Emulation Tools

2.1. Function

Emulation tools make it possible to recreate real hard-
ware or software environments to test their behavior in a
controlled environment. Realistic networks or systems are
simulated without the need for the underlying hardware.
The tool must be as similar as possible to the original sys-
tem. Network emulation tools, in particular, allow certain
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conditions to be emulated by changing individual param-
eters. This allows for better evaluation of experiments.

For example, it is possible to artificially increase the
latency and see how the same application works on less
powerful devices. Other limitations, such as low band-
width or high packet loss, can also be emulated. It is also
possible to emulate real networks, which function like real
networks.

2.2. Most Common Emulation Tools

Mininet is by far the most frequently used tool in the
papers. It can mimic a real network by creating virtual
hosts, switches, controllers, and connections [1]. That
is why it is primarily used when researchers want to
focus on Software-defined Networks (SDN). It can also
simulate targeted network failures. The simulations result
in data sets that can be used to train models [2]. Because
only one device is required, Mininet is very cost-efficient.
However, Mininet-based networks cannot exceed the CPU
or bandwidth available on a single server. This leads
to bottlenecks when too many network components are
emulated, resulting in increased latency, packet loss, or
inaccurate bandwidths.

Another well-known tool is GNS3 [3]. Compared to
Mininet, GNS3 is a more robust network emulator that
is mainly used for simulating traditional networks. It can
connect real network devices, such as Cisco routers and
switches, to virtual machines (such as Linux servers).
GNS3’s emulation is more realistic because it uses official
operating system images (such as Cisco I0S). However,
these are often licensed, so it can be challenging to
get hold of them. In addition, GNS3 is more resource-
intensive due to emulating real devices, which is why it
is slow on more extensive networks.

Emulab [4], meanwhile, connects physical and virtual
networks. Real hardware (physical devices) and also vir-
tual machines are used. Emulab enables the use of many
physical machines in a distributed environment, which
increases scalability.

Containernet is an extension of Mininet [5]. In addi-
tion to Mininet’s functions, it enables the use of Docker
containers as hosts, which allows the use of real services
(e.g., microservices).

NetEm [6], on the other hand, focuses on changing
specific parameters. It is possible to add latency, simulate
packet loss and jitter, limit bandwidth, and much more.
This makes the tool well-suited for performance testing
and software optimization.
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TABLE 1: Usage of Path Property Tools in Paper

overall Mininet NetEm GNS3 EmuLab other
2020 10 5 1 0 3 1
2021 12 7 1 1 0 3
2022 6 5 1 0 0 0
2023 5 2 1 1 0 1
2024 6 2 2 0 0 2
sum 39 21 6 2 3 7

Dummynet [7] is similar to NetEm; it was developed
only on FreeBSD, but nowadays, it is also usable on
MacOS or Linux. NetEm, on the other hand, is based
on Linux and is only installable on a Linux-based oper-
ating system. Dummynet focuses more on traffic shaping,
which is why it is more flexible and efficient in those
areas. However, that also needs a deeper configuration and
more system resources. Both are applied on the network
interface and act as an intermediate layer between devices
and the network.

2.3. Installation

Setting up Mininet is easy. The first step is to install
a Mininet VM image and then open it in a virtualization
system(Quelle). This setup is quick because the Mininet
VM has a pre-built environment that is ready to be used.
NetEm, on the other hand, can only be installed on a
Linux-based operating system such as Ubuntu because it
is not a standalone program(Quelle). The corresponding
websites provide ’codes’ that make it possible to use
those tools. For example, in NetEm, 10% packet loss
is simulated with the code: sudo tc gdisc change dev
eth0 root netem loss 10%.

Comparable programs can be installed on FreeBSD
(Dummynet [7]).

3. Usage in papers

In the following, we reviewed the papers of ACM
SIGCOMM and ACM CoNEXT and found all the papers
in which path property emulation tools are used. Table 1
shows the use of the various tools from 2020 to 2024.
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Figure 1: An Example Network Topology
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3.1. Mininet

Mininet was used 21 times, representing about half of
all papers using emulation tools. In references [8], the
authors created an automatic Mininet topology genera-
tor. This creates "an evaluation testbed for any kind of
measurements that require a ground-truth dataset" [8]. A
ground truth dataset is a reference standard for evaluating
models or algorithms. The accurate and verified dataset
information must often be created manually, which the
authors want to automate in this paper. The paper focuses
primarily on Resource Public Key Infrastructure(RPKI)
measurements, but they want to make the approach possi-
ble for all measurements requiring a ground truth dataset.
The first step is to collect the required data from pub-
lic sources to create a directed graph. Since Mininet is
not powerful enough to simulate the entire topology, the
framework must reduce the graph to approximately 4000
nodes while maintaining important properties such as the
degree distribution of the nodes. The abstracted graph is
then translated into a Mininet configuration file, which, in
this case, generates a realistic RPKI deployment scenario.
The developed program allows filtering on a self-selected
set of nodes in the Mininet topology, which can create a
ground truth dataset.

In Paper [9], an algorithm is created that finds the
ideal path between two nodes in a network. It is not
about the length of the path but about better traffic load
distribution. Figure 1 shows a network created in Mininet,
where different hosts are connected to a controller via
many switches. Data is sent from the hosts with different
bandwidths to check whether their algorithm will find the
best path. There are three scenarios: once both hosts send
with less than 50% of link bandwidth, once one host sends
with more than 50%, and the last time both send the data
with more than 50% bandwidth. In all three scenarios, the
algorithm prevented overload, proving the quality of the
algorithm.

It is also possible to train data sets with Mininet, done
in [2], [10]. In the paper [2], datasets of network failures
were simulated in Mininet to train decision-tree-based
models. For this purpose, random traffic was emulated
in selected topologies, and then failure was injected by
manually setting the status of links and nodes to failure.

Sometimes, a network consisting of a client and a
server, both dual-stacks, is emulated [11]. Then, the la-
tency and bandwidth of the IPv4 and IPv6 paths can be
adjusted.

It is also possible that the features of Mininet are
not sufficient. For example, in Paper [12], IPMininet,
an extension of Mininet that supports SRv6, is used.
SRv6 is a modern and flexible routing technology that
directly integrates the segment routing principle into the
IPv6 protocol. This makes routing more efficient because
packets carry explicit path information, and the behavior
of networks is made programmable. IPMininet also allows
the evaluation of network conditions, such as packet loss,
by emulating network loss. This allows the authors to test
their SRv6 plugin.

Primarily, Mininet is used to simulate networks with
routers, switches, and hosts. Often, the bandwidth, latency,
and other parameters are actively set. In Paper [13],
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routers are used whose links have a bandwidth limit of
1000 Mbits~! and a constant delay of 2 ms.

The other papers also briefly address the use of
Mininet to emulate topologies [14]-[25] but do not elab-
orate further.

In summary, Mininet can be used flexibly. Fundamen-
tally, it is used to emulate networks on which tests are
carried out. These include testing network performance
or the functionality of one’s algorithm. Sometimes, data
sets are created from the information obtained, which are
used to train models.
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Figure 2: The response delay of AWStream and DDS with
different network bandwidth and latency

3.2. NetEm

The use of NetEm in papers has been entirely one-
sided. It is mainly described that parameters such as
bandwidth and latency in networks have been varied [13],
[26]. In paper [26], this was done to test the performance
of DDS, a streaming technique. It is a model developed for
video streams from cameras to be sent to servers, which
will be processed using deep neural networks (DNNs).
DNNs are an artificial neural network used to solve com-
plex machine-learning tasks. In Figure 2, the streaming
delay of DDS compared to an already established system
(AWSStream), with different bandwidth and latency, is
shown. The exact comparison is possible through the
emulation in NetEm.

Other parameters, such as packet loss and long delay
(due to a high round-trip time), can also be emulated [27],
[28]. A 5G setup, a combination of increased jitter (fluctu-
ations in the delay), lower bandwidth, and delays, and an
LTE-M model were also simulated, which usually offers
very low latency and high bandwidth.

In Paper [29], the bottleneck link’s speed and the
bottleneck buffer’s size were configured to gain control
over the network. This affects the network performance
so that the authors can evaluate the response to network
congestion and packet loss.

In summary, the users of this emulation tool are satis-
fied with the tool. There are limitations when the load is
too high (for example, too much jitter), but this was not
a problem in the papers mentioned.

3.3. Emulab

In Reference [30], extensive simulations are performed
with Emulab. Different network topologies are emulated,
with different conditions, to demonstrate the performance
of "MPCC, a high-performance multipath congestion con-
trol architecture” [30]. It was explicitly declared that
"[u]nless stated otherwise all link latencies, bandwidths,
and buffer sizes are 30 ms, 100 Mbits™' and 375kB (the
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Bandwidth-Delay Product), respectively." [30] All values
are detailed and explained with potential limitations for
other values. It is noted that the experiments in Emulab
cannot be 100% transferred to real networks. Therefore,
live experiments were also carried out in which files were
downloaded from various locations in the cloud. This also
implies that the tests in Emulab alone cannot provide
complete information about the tool in practice.

The Paper [31] also emulates parameters such as la-
tency, focusing on dynamic changes in network condi-
tions.

It should be noted that papers that use Emulab con-
duct extensive and detailed experiments [17]. Emulab is
designed for larger network emulations, increasing the
complexity and time needed to understand the program.

3.4. GNS3

In Paper [32], [33], Gns3 was used similarly to
Mininet to create virtual networks and test algorithms.
Paper [32] is about Snowcap, which requires GNS3 to
function. A detailed guide is provided explaining how to
use Snowcap, one of the requirements being GNS3.

3.5. Other Tools

There is one paper that uses Dummynet [34]. Again,
realistic network conditions were simulated, which were
intended to represent mobile networks. These are known
for fluctuating latencies, achieved in Dummynet by con-
stantly adjusting the queue delays with target jitter values.
The method caused latency fluctuations without letting
packets arrive in the wrong order, which more realistically
simulates mobile networks. Dummynet was used here
because it is more focused on traffic shaping than NetEm,
offering greater flexibility in emulation. However, the
paper mentions that Dummynet is limited by a maximum
queue size of 100, which does not allow for entirely
flexible emulation.

Nanonet is an emulation tool conceptually based on
Mininet and primarily aimed at segment routing experi-
ments [35]. Segment routing is routing traffic in networks
on predefined routers instead of making a new decision at
each router. In Paper [35], they simulate network nodes
connected to each other for a realistic simulation of
network behavior. Nanonet then calculates the shortest
path between the nodes. An even distribution of traffic
on the paths was ensured to measure the maximum link
utilization with a specific instance. This allowed testing
and comparing different approaches for optimizing link
weights.

Another extension of Mininet is G2-Mininet, which
analyzes the Quantitative Theory of Bottleneck Struc-
tures (QTBS). QTBS is a mathematical theory developed
to analyze and optimize communication networks. The
paper simulated various network topologies (fat trees,
folded clos, and Dragonfly) to test QTBS. More than 600
networks were simulated over more than 800 hours to
confirm the correctness of the model.

In Paper [36], SimBricks, a Network System Evalua-
tion with Modular Simulation, was introduced with ns-
3 integrated. Ns-3 [37] is also an emulation tool that
can process and synchronize packets using the Ethernet
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network interface. SimBrick uses ns-3 to simulate net-
work layers and connections between virtual and physical
network topologies.

The paper [5] takes advantage of the fact that Con-
tainernet is based on containers that form a network of
interconnected nodes. Such a network is created with each
container running a KIRA routing server that provides
IPv6 connectivity and some containers running additional
5G core network functions. This is part of the KIRA
routing architecture intended to enable autonomous and
fault-tolerant network control. Containernet is mainly used
to emulate the network topology and test node failures.

A tool yet to be mentioned is BESS. It allows the
user to control network properties such as latency at a
more detailed level than other tools such as NetEm [38].
This enables fine-grained control of network traffic. In
the paper [38], it is used "to control the access link
speed, queue size, and add delay to ingress and egress
packets" [38] of a switch. In addition, BESS can measure
important data such as queue occupancy and packet loss,
which enables more precise analysis.

The last paper introduces Klonet [39]. It is a new
network emulation platform that was created for educa-
tional purposes. It is criticized that current emulation tools
are inadequate for integrating network hardware due to
insufficient scalability and other factors. The paper also
creates a table with the tools currently in use and shows
factors such as hardware support, container support, and
VM support.

3.6. Summary

Mininet NetEm GNS3 EmulLab
Function Simulation of Simulation of Simulation of Testing and
Software- latency, packet | physical and experimenting
Defined loss, etc. virtual devices | with real
Networks networks
(SDN)
Architecture Virtual Works as part | Virtual Hardware and
Switches, of Linux Traffic | machines, software
Hosts and Control physical testbed
Controllers devices and
switches
Scalability Goodforsmall | Dependingon | Very good for High scalability
to medium the hardware smallto large (both small
networks networks and large
networks)
Realism High proximity | Notan exact Close toreal Very high
to SDN-based | replica, only networks realism
networks simulates through real
properties hardware

Figure 3: Comparison of Path Property Emulation Tools

Many different emulation tools are used for different
reasons. In Figure 3, the most commonly used tools
are compared. For example, Mininet was often used in
the papers, mainly to emulate small and medium-sized
networks. NetEm was used to emulate network proper-
ties but was only mentioned briefly. Although GNS3 is
more flexible in the size of the emulated networks, the
tool was mostly only mentioned in passing. Papers that
use Emulab have mainly carried out very extensive and
detailed experiments that comprise several pages of the
paper. The complexity of the tool can explain this. For
example, while the functions of NetEm are limited to
emulating parameters on one host, Emulab can emulate
large networks with complex properties on several hosts,
switches, and routers.
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Nevertheless, the current tools are not perfect. Some-
times, the current applications do not meet the require-
ments. Very few tools can simulate specific hardware
properties or modern technologies such as containers.
Also, with large, realistic networks, many tools reach
their limits. This has led to tools such as Klonet and
Containernet, which are new emulation tools with more
options that can be used in a broader variety of ways.

4. Conclusion

Path property emulation tools play a crucial role in net-
work research and development. It is possible to precisely
simulate network properties such as latency, bandwidth,
loss, and jitter. Depending on the requirements, choosing
the right emulation tool can be cost and time-efficient,
mainly when a lot of data has to be processed.

However, since the established tools are imperfect,
their results cannot always be 100% transferred to the
real world. With the rapid development of the Internet,
there will be even more powerful and diverse future tools
capable of more. Technologies such as artificial intelli-
gence also mean a lot is still possible in this area, making
it possible that currently established tools will become
outdated and no longer be used.

Nevertheless, the current tools make an essential con-
tribution to the development of modern networks. Even if
they are imperfect, most of the tools have been in use for
several years and will continue to be used in various ways
and on a wide scale.
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Abstract—The concept of Peer-to-Peer networks has become
one of the most employed network architectures in the
21st century, particularly in the domain of cryptographic
currencies. Blockchain networks operate with no central
authority which engendered a security gap in the Peer-to-
Peer layer. In this paper, we explore two attacks that target
the control plane as well as the data plane of the P2P network.
Specifically, we examine the Erebus attack on Bitcoin, which
manipulates a Bitcoin node’s outgoing connections through
control plane vulnerabilities, and the ConditionalExhaust
attack on Ethereum, which exploits data plane weaknesses
to overwhelm network resources and impede the growth of
the blockchain. This paper contributes to the understanding
of the presented attacks and offers insights about some
proposed countermeasures that leverage the resilience of
these networks towards these attacks.

Index Terms—Peer-to-Peer Networks, Erebus Attack, Con-
ditionalExhaust Attack

1. Introduction

Peer-to-Peer networks [1], also acronymized as P2P
networks have become an alternative to the conventional
architecture of networks, namely the Client-Server model.
A P2P network is a decentralized network that enables
the network nodes, also known as Peers, to communicate
directly with each other without the oversight of a server
authority. Each node in this network is considered simulta-
neously as a client and server. Multiple cryptocurrencies
such as Bitcoin [2] and Ethereum [3] rely on P2P net-
works to communicate the state of the public ledger, a
decentralized record of transactions known as blockchain
[4], and validate transactions. Bitcoin and Ethereum opted
for a decentralized architecture since the blockchain state
is replicated and visible across peers, thus offering re-
dundancy as well as transparency. Although this model
offers valuable advantages, e.g. resilience to failure and
high scalability in comparison to the Client-Server archi-
tecture, the lack of central authority has made it subject to
multiple attacks. In fact, only relying on the P2P layer, an
overlay network responsible for peer communication, can
create security vulnerabilities, especially in the absence
of strict node authentication. In this paper, we provide
a detailed overview of two prominent attacks that are
conducted on two different P2P networks, namely Bitcoin
and Ethereum. We classified attacks into two categories:
control plane and data plane attacks. Attacks that target
the control plane aim to inhibit the node’s discovery
protocol by restricting a node’s view of the whole network
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topology. Data plane attacks, on the other hand, focus on
disrupting the actual data transmission or overloading the
network with malicious traffic. The first attack, known as
the Erebus attack [5] (Erebus means "darkness" in Greek),
targets the control plane by inhibiting the node discovery
of legitimate peers and enabling the attacker to manipulate
all data exchanged between nodes. In this attack, the
adversary is usually a Tier-1 AS [6, Chapter 2] that aims
to redirect all victim nodes’ connections to a preselected
set of Bitcoin nodes in order to include his AS in the
victim-to-node path. The second attack, known as the
ConditionalExhaust attack [7, Section 4], can be classified
as a data plane attack since the attacker overloads the
Ethereum network with violating transactions that exhaust
the victim’s resources before it is rejected.

The remainder of this paper is structured as follows:
Section 2 introduces the classes used to categorize the
attacks. Section 3 includes both attacks in separate subsec-
tions, where each subsection is further divided into other
subsubsections designated for the attack’s phases as well
as the proposed countermeasures to alleviate the attack’s
impact.

2. Categorization of Attacks

In this section we categorize the attacks based on the
layer of the P2P network that will be mainly targeted by
the attacker. Accordingly, we can differentiate two general
planes of attacks namely data plane attacks and control
plane attacks [8].

2.1. Control Plane Attacks

The control plane is responsible for the management
of the network traffic through using routing protocols
such as BGP [9] and OSPFE. In P2P networks, the control
plane is crucial for defining how peers discover each other
through the use of protocols such as Kademlia DHT [10].
It ensures that the data follows the optimal path while
being transmitted to the destination. Attacking the control
plane, e.g. Eclipse attack [11], can make the P2P network
vulnerable to misrouting and lead to the partitioning of
peers [8], meaning that the node becomes isolated and
has a restricted view of the entire network.

2.2. Data Plane Attacks

The data plane, also known as the forwarding plane,
refers to the data transmission mechanism between peers

doi: 10.2313/NET-2025-05-1 09



in P2P networks. It is responsible for forwarding data
packets based on the routing decisions made by the control
plane protocols since it operates at a lower abstraction
level. Disrupting the data plane, e.g. ConditionalExhaust
attack [7], means overloading the network, leading to
degraded performance or even the failure of the whole
network [8].

3. Attacks on Peer-to-Peer Networks

This section introduces two attacks targeting the Bit-
coin and Ethereum P2P networks. In each subsection, we
categorize an attack and depict its phases in detail. Fi-
nally, we enumerate some proposed countermeasures and
evaluate their effectiveness to mitigate the corresponding
attack.

3.1. Erebus Attack

Adversary AS

* Original peer connections

» Changed peer connections

Benign Bitcoin
node

Figure 1: Tllustration of Peer Connection Manipulation in
Erebus Attack [12, Introduction]

Muoi et al. [12], carried out the Erebus attack by imple-
menting a Python script. This attack exploits a critical
vulnerability in P2P networks, which is the failure to
verify the legitimacy of peers properly. This attack can be
categorized as a control-plane attack. It aims to redirect
all the outgoing connections of a Bitcoin node through
an adversary AS (the autonomous system of the attacker)
, therefore isolating the victim which becomes unable to
form legitimate connections with honest nodes.

In the Erebus attack, we can distinguish two main phases
that describe a successful attack conduction namely the
reconnaissance phase and the attack execution phase.

3.1.1. Reconnaissance Phase. In this phase, the attacker
seeks to gather information about the network topology.
They aim to identify which Autonomous Systems (ASes)
force the victim’s connection to pass through the adver-
sarial AS. Therefore, the adversary AS can be considered
a man-in-the-middle network, which manipulates the data
traffic of the victim node. These ASes are characterized as
shadow ASes [12, Section IV, Subsection A]. In order to
infer the default AS paths of the AS hosting the targeted
node, the attacker can model the entire topology of the
Internet and simulate BGP advertisement messages. This
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allows the attacker to observe how the targeted AS sets its
default routes to other ASes. After identifying the shadow
ASes, the attacker collects all the IP addresses associated
with these ASes and stores them in a database. These
IP addresses are referred to as shadow IPs. The attacker
should also ensure that the path from the victim node
to the shadow IPs traverses the adversarial AS. This can
be achieved by the attacker through establishing a TCP
connection with the victim node using the shadow IPs
and waiting to receive a synchronization message from
the victim during the TCP-handshake [13]. Receiving a
packet with the SYN flag set from the victim is valid
proof that the path from the victim to the shadow IPs
traverses the adversary’s network.

3.1.2. Attack Execution Phase. In the second phase, the
attacker manipulates the victim node’s outgoing connec-
tions, ensuring they are directed to the harvested shadow
IPs. As the shadow IPs are controlled by the the at-
tacker, they impersonate them and establishes a Bitcoin-
handshake [14] with the victim node. The attacker then
floods the victim with a large number of shadow IPs
through addr messages [15] that serve for other peers
advertisement. The victim node subsequently stores the
received IPs in its new table' for future connections.
The attacker intends at first to fill most of the new table
slots with his harvested shadow IPs therefore increasing
the chance that the victim node initiates an outgoing
connection to one of them. The victim node inserts the
shadow IPs in the right bucket of new table by hashing
the IP prefix group IPshad_pre of the received IP address
with the IP prefix peer_pre of the node that provided the
IP address using a private Key SK and SHA-256 as the
hash function H :

hi1 = H(SK, IPshad_pre, peer_pre)

he = H(SK, peer_pre, h; mod 64)

new_bucket = ho mod 1024

The node computes the slot number by hashing the
bucket’s number new_bucket with the IP address I P, to
be added, and then applying the modulo operation (each
bucket contains 64 slots):

slot_number = H(SK, N, new_bucket, IP) mod 64

If two IPs collide in the same slot the node checks
the timestamp as well as the number of the old
connection attempts related to the already saved one. If
the existing IP seems to be old (more than 30 days) [12,
Section V, Subsection B] and not reliable, i.e. failed to
establish some previous connections, it will be overridden
by the new one. The victim node maintains another
table, known as the fried table* which also represents a
target for the attacker. Since the victim node randomly
selects an IP from one of the two tables to initiate an
outgoing connection, the attacker aims to occupy as
many slots as possible in both tables. As an option, the

1. A table that stores IP addresses learned from other nodes for future
connections. It contains 1024 buckets and each bucket contains 64 slots.

2. A table that contains moved IPs from the new table to which a
successful connection has been made
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attacker runs a script that triggers a repetitive reboot of
the victim node when the likelihood of establishing an
outgoing connection to one of the shadow IPs becomes
significantly high (e.g. 30% or 50%) [12, Section V,
Subsection C]. After each reboot, the node needs to
reestablish all its outgoing connections, which provides
the attacker an opportunity to overwhelm it again with
new connection requests on behalf of the shadow IPs.
This strategy can be adopted by the attacker to occupy all
the node’s outgoing connections and reduce the attack’s
duration as well. Since the attacker cannot access the
two tables of the victim node at the same time due to
some deployed measurements against eclipse attack, they
can use the trickledown attack strategy [12, Section V,
Subsection C] to indirectly flood the tried table with
shadow IPs. In this newly adopted strategy, the attacker
floods the new table and then waits for the shadow
IPs to be inserted automatically in the fried table. The
migration of IP addresses to the tried table can happen
in two cases: (1) when the Bitcoin node establishes a
successful outgoing connection to an IP address from the
new table; (2) The Bitcoin node probes within predefined
time intervals (2 minutes) the reachability of a random
IP address from the new table through an ephemeral
connection known as feeler-connection and add it in the
tried table if it accepts the connection [12, Section V,
Subsection CJ.

3.1.3. Countermeasures. In [12] Muoi Tran et al.
discuss two effective countermeasures that may mitigate
the Erebus attack. In this section, we also provide a graph
that the authors presented to illustrate the effectiveness
of both countermeasures.

a. Reduction of Table Size. One of the suggested
countermeasures is to lower the size of both new and fried
tables since it can significantly reduce the probability that
all outgoing connections of the victim node are made to
the shadow IPs. Usually, the adversary AS is a Tier-1 AS,
which means that it has coverage over multiple continents
in the world and disposes of multiple shadow ASes. This
enables the attacker to harvest a large set of shadow IPs
to execute the attack. Reducing both table sizes means
that the node has fewer available outgoing connections,
which reduces the likelihood that a shadow IP is chosen
for establishing a connection.
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Figure 2: Probability of compromising all outgoing con-
nections [12, Section VII, Subsection C]

Figure 2 illustrates well the impact of dividing the size of
both tables by four on the probability of compromising
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all outgoing connections.

b. Higher Number of Outgoing Connections.
Another effective countermeasure that was discussed was
increasing the number of outgoing connections. A Bitcoin
node has normally 8 outgoing connections. Increasing
the number of these connections may cost the attacker
a longer time to achieve his goal of compromising all
the outgoing connections. According to figure 2 we can
lower the probability of the nodes initiating all 8 outgoing
connections to shadow IP from 40% to 18% during the
same attack period of 60 days. However, this measure may
be inconvenient because it can lead to the congestion of
the Bitcoin P2P network.

3.2. ConditionalExhaust Attack in Ethereum

(1) send TX

Is the actor executing this TX
censoring address "A"?
Yes No

Attacker

(2) Verify TX does
not involve "A"

(3) Run complex
code to verify TX

Execute complex Execute simple .
code d victim

censored

Verifier

Transfer funds to "A"

Figure 3: Illustration of a ConditionalExhaust Attack [7,
Section 4]

The ConditionalExhaust attack is a Resource
Exhaustion Attack, acronymized as REA, that targets
multiple actors of the Ethereum network, forcing them
to consume high computational resources in vain.
This attack is considered a data plane attack since the
attacker overloads the network with heavy computational
transactions, which are then processed by different actors
of the Ethereum P2P network without updating the
actual state of the blockchain. Therefore, the network
becomes congested, and actors spend additional overhead
to process legitimate transactions. Before diving into the
attack details, we will define some important concepts to
gain a clearer understanding of the attack.

In the Ethereum blockchain, there are four key actors
involved in transaction processing and validation, namely
the searchers, builders, relays, and validators, also
known as proposers. Searchers play a crucial role in
identifying profitable transactions, i.e., transactions with
high fees, from the pending transaction pool known as
mempool. The corresponding profit is called Maximal
Extractable Value (MEV) [16], which is extracted by the
validators through choosing and controlling the order of
transactions within a block. These selected transactions
are then assembled in bundles and sent to the builders,
who are responsible for creating "MEV maximal blocks"
by choosing which transactions to include based on the
MEV. Relays are intermediate actors between builders
and validators. They receive "MEV maximal blocks" from
builders and forward only the most profitable and valid
blocks, i.e., blocks with valid structure and signature, to
the proposers. Validators select at first the most rewarding
blocks from different Relays. Additionally, they confirm
the validity of the transactions by checking whether

doi: 10.2313/NET-2025-05-1 09



they have a valid nonce [3, Section IV] (transaction’s
unique identifier) and signature. Validators also inspect
the compliance of the transactions to their censorship
policy by checking some specific transaction fields, e.g.,
checking whether the transaction’s recipient address
contains a sanctioned address. Finally, proposers should
execute the transactions to check further if they interact
with some censored entities.

The measurement unit in Ethereum is called gas. A
user’s transaction can cost different amounts of gas
(measured in units) depending on its complexity. A
transaction fee is calculated by multiplying the number of
gas units used by the transaction with the gas price [17,
Introduction] per unit, which is a variant price advertised
by the sender of the transaction to specify the fee they
are willing to pay for each unit of gas consumed. The
first validator to include a transaction in a block is then
awarded its related fee [7, Section 3].

Aviv et al. presented in [7] two attack variants, but
we will only deal with one variant where the attacker
is a non-proposer. This attack targets mainly two types
of actors, which are the "sanction-compliant” builders
and validators [7, Section 4]. These two actors adhere to
rules that sanction some entities or addresses and forbid
interaction with them. In the attack, we assume that «
is the set of validators that censor a certain address (3.
The proposed attack’s variant is also called coinbase
[7] since the attacker already knows the addresses of
the censoring validator and the sanctioned addresses by
these actors. For a broader impact, the attacker can use
different addresses censored by different validators to
target a larger number of these actors.

The ConditionalExhaust attack consists of two phases
namely the Deployment phase and the Execution phase.

3.2.1. Deployment Phase. In this phase, the attacker
creates a smart contract, a program written in a high-
level language such as Solidity [17, Subsection 1.1.1].
The attacker’s smart contract includes a single function
with two distinct control flows, each designed to target a
specific validator type. If the targeted actor is a censoring
validator, i.e., belongs to the set «, the function executes
at first a code that demands high computational resources
and then interacts with one of the entities sanctioned
by the actor’s censorship policy. However, if the actor
is a non-censoring validator, i.e., not part of the set a,
a simple code that does not incur high transaction fees
will be executed. This can be achieved by the attacker
by implementing a mapping (address -> boolean) in the
smart contract, which maps each validator’s address with
a boolean value that indicates if they are a censoring
validator or not [7, Subsection 4.1]. The executed control
flow is then chosen based on this boolean value, i.e. if the
boolean value is true the complex code will be executed
otherwise the simple code is chosen.

3.2.2. Execution Phase. In this phase, the attacker creates
many transactions that invoke the function of the deployed
smart contract. The gossip protocol [18] of the Ethereum
Layer is employed for sending the attacker’s transactions.
If the current actor belongs to «, they will start by
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checking the transaction recipient address to ensure that it
does not correspond to any sanctioned entity. Furthermore,
the transaction’s compliance with the actor’s rules cannot
be verified without executing it. Therefore, the victim will
waste excessive computational resources during the exe-
cution and then invalidate the transaction since it interacts
with a forbidden address which is 5. While executing the
transaction, the validator incurs a large amount of gas units
(proportional to the complexity of the transaction) and will
not be awarded since the transaction cannot be included
in the current block. As a notice, the attacker can have the
possibility to resend the transaction if the targeted actor
discards the transaction from the mempool, which defines
the pool of the transactions that must be validated before
including them in a block. However, if the targeted actor
does not discard invalid transactions from their mempool,
the attacker should increase the nonce of each sent trans-
action by 1, since every transaction should have a unique
nonce (i.e. nonce of the last sender’s validated transaction
+1) [7, Section 3]. Otherwise, transactions with duplicate
nonce will be discarded by the validator.

In case the receiving actor is a non-censoring validator,
the simple code of the other control flow will be executed
incurring insignificant fees.

3.2.3. Countermeasures. Yaish et al. proposed two
countermeasures in [7, Section 8] that may mitigate
the ConditionalExhaust attack and evaluated their
effectiveness. They also pointed to the limitations of
these measures.

a. Strict Access Lists. The authors suggested
employing strict access lists, in which all addresses that
are involved in a transaction are enumerated. This way
both builders and proposers can verify a transaction’s
compliance before executing it by checking the related
access list. Any interaction with an address that is not
mentioned in the access list, obliges the sender to pay
the incurred fees during the execution and leads to the
transaction’s rejection. Therefore builders and proposers
can avoid resource waste by first checking the access list.
Moreover, they can now benefit from the fees incurred
during the execution of a violating transaction even though
it will rejected. However, establishing such compliant and
accurate lists is complex since the transaction should
consider all possible states to specify these addresses [19].
Aside from avoiding resource waste and additional block
construction overhead, this measure may lead to a higher
rejection rate of legitimate transactions due to inaccurate
access lists.

b. Random Transaction Selection. An additional
proposed countermeasure is to impose a random selection
of transactions regardless of their fees. Based on the
normal greedy selection algorithm, builders prioritize the
attacker’s transactions since they lure them with high
transaction fees. However, with this introduced measure
the attacker should generate more transactions to con-
duct the attack successfully. Even though this strategy
can lower the chance of a ConditionalExhaust attack, it
contradicts the searcher’s functionality as explained above.
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4. Conclusion and Future Work

In this paper, we introduced two different attacks
targeting two of the most prominent P2P networks, namely
Bitcoin and Ethereum. We first categorized these attacks
based on which plane they jeopardize (control plane or
data plane). We began by introducing the Erebus Attack,
its phases, and the threats a malicious Autonomous Sys-
tem (AS) can engender. We also discussed the counter-
measures suggested by the authors and evaluated their
effectiveness in lowering the success rate of the attack.
In Addition, we presented the ConditionalExhaust attack,
which cripples the blockchain update process by flooding
the Ethereum network with transactions that break the
censorship policy. We then outlined two countermeasures
proposed by the authors, highlighting their effectiveness
and limitations. In conclusion, the decentralized network
architecture eliminated the need for a central authority,
however, it introduced new vulnerabilities that must be
addressed. Due to the lack of centralized control, P2P
networks are more susceptible to attacks. To strengthen
the resilience of these networks more efforts should be
dedicated to establishing strict peer authentication and
reconsidering existing P2P protocols. In the context of
blockchain, researchers should focus on enhancing node
partition detection protocols as well as finding alternative
transaction verification methods.
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Abstract—Wireless Local Area Networks (WLANSs), stan-
dardized in IEEE 802.11 and known as Wi-Fi are funda-
mental in daily internet communication. However, collision
and interference may hinder Wi-Fi performance. This paper
delves into models applied in layer 1 and 2 to mitigate
performance issues. It presents 3 Machine Learning (ML)
and Artificial intelligence (AI) based approaches. We exhibit
Chen et al.’s [1] model called Aifi to remove interference as
well as Ali et al.’s [2] approach to reduce collision. Then we
proceed with Coronado et al.’s [3] mechanism that utilizes
ML to determine the frames’ length for each station.

Index Terms—Wi-Fi, WLAN, IEEE 802.11, machine learn-
ing, deep learning, artificial intelligence, physical layer, data
link layer.

1. Introduction

The paper illustrates the deployability of Al and ML
in Wi-Fi optimization, especially interference mitigation,
collision avoidance, and frame aggregation. It demon-
strates how each approach mitigates and enhances Wi-Fi
performance. Wireless interference significantly impedes
Wi-Fi performance, and mitigating its effects remains a
critical challenge. Most available solutions to this issue
rely on CSMA/CA [4]-[6], which lacks efficiency in re-
moving interference. To diminish the issue, Chen et al. in
[1] create an interference cancellation technique called Aifi
that leverages the power of artificial intelligence to esti-
mate and remove the interference. The models estimate the
interference based only on the available physical informa-
tion. Aifi shows promising results in reducing load latency.
Beyond interference mitigation, channel access represents
the most extensively addressed topic regarding the influ-
ence of ML on Wi-Fi performance. Ali et al. [2] propose
a machine learning-based approach to dynamically choose
the optimal contention window value to avoid collisions,
while simultaneously accounting for the dynamic Wi-Fi
environment. This model [7, Section A.1] shows steady
throughput in dense networks. Frame aggregation in IEEE
802.11 is another area of improvement in layer 2. The
two approaches provided by the 802.11 standard fail to
accommodate the Wi-Fi dynamics. Thus, Coronado et al.
[3] use supervised learning techniques to provide the op-
timal frame size for each station. The authors’ model has
significantly lowered the retransmission rate. The paper
further analyzes in Section 2 Chen et al.’s [1] approach
to remove interference. Section 3.1 studies in depth Ali
et al.’s [2] model and its outcome whereas Section 3.2
decomposes the strategy adopted by Coronado et al. [3]
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and elucidates how ML is deployed in Wi-Fi. Then the
paper recapitulates and outlines the main challenges that
endanger Al and ML deployability in Section 4.

2. Al and ML in Optimizing the Physical
Layer

Artificial intelligence and machine learning play a crucial
role in mitigating the trade-offs and the issues that we
face in the physical layer. In this section, we address
interference and specify how ML and Al mitigated it
based on the physical layer information.

2.1. Interference and its Mitigation

The approach to mitigate interference is based on
CSMA/CA [4]-[6] . At first, the sender senses the carrier
to determine if another device is sending at that moment.
This process is called the carrier sense (CS). If the channel
is busy, collision avoidance (CA) is triggered, resulting
in a delay as the transmission is postponed. However,
CSMA/CA is limited as it can not fully eliminate the
interference. Chen et al. in [1] come up with the idea
to analyze the information available in the physical layer
instead of probing in the air.

2.2. Background and Motivation

Subcarriers

| LTF Preamble |

Symbols DATA DATA
DATA DATA
t DATA DATA

v

Figure 1: Physical Information in a Wi-Fi Frame [1]

The Figure 1 illustrates how the physical information
is encapsulated in a Wi-Fi frame. As shown above, on
the x-axis the frequency is divided into subcarriers. There
is always an alternation between a block of data that
carries the user’s data and a pilot block used to observe
the difference between the received signal and an ideal
one. Channel State Information (CSI) [8] and Pilot Infor-
mation (PI) [8] are extracted from the pilot subcarrier. A
Long Training Field (LTF) preamble is spanned over all
the subcarriers to synchronize them. The LTF preamble
provides detailed specifications about the channel, mainly
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used for channel estimation. Symbols stored in the sub-
carriers and the LTF preamble are illustrated by the y-
axis. CSI gives the overall channel response and provides
information on how the channel affected the signal. PI is
a subset that specifically focuses on phase shifts and is
used for phase synchronization. Since the pilot subcarrier
and the LTF preamble are based on a Binary Phase Shift
Keying (BPSK) [1, Section 2.1], the difference between
two consecutive PI samples or CSI samples is always a
fixed Phase [1]. BPSK is a modulation technique based
on two phases that are seperated by 180° and can also be
termed 2-PSK. However, interference may alter the phase
variation in Pl and the frequency domain, represented
by CSI, from linear to nonlinear. This nonlinearity is
explained by the channel estimation [1] as follows:

Y;
Hi=+ = (1

In (1) Hj illustrates the channel estimation with the
presence of the interference I, whereas H refers to the
interference-free channel estimation H = Y/X with YV
reflecting the non-interfered signal. Y; refers to the re-
ceived LTF signal in the presence of interference and X is
the predefined LTF signal. The fraction /X characterizes
the effect of interference and the origin behind the phase
variation’s nonlinearity.

2.3. System Overview

Chen et al. in [1] contribute a mechanism called Aifi
that starts by extracting the interference features from
the PI and CSI information to estimate interference on
different data subcarriers with the help of a regression
neural network. Regression neural network is a machine
learning technique. Depending on the training data, the
regression neural network predicts the outcome, i.e., the
interference estimation. In this case, the training data is
a set of interfered Wi-Fi signals [1, Section 3] that are
subject to non-identical interference patterns and channel
conditions to guarantee the generality and adaptability
of the Neural Networks (NNs). These predictions are
then improved via a refinement neural network to acquire
more precise interference estimations. Aifi conducts an
interference removal process on the data subcarriers and
corrects the data encoding errors across the subcarriers.

2.3.1. Interference Estimation. Aifi extracts the inter-
ference features [1, Section 3.1] as follows:

I=(H;— H)X )

When the transmitting signal X is known, I can be
uniquely identified by the channel estimation [9]-[11]
without interference H and with interference H;. For this
matter, Aifi uses a Convolutional Neural Network (CNN).
The idea behind CNN is to use the provided training data
to figure out what the filters also called kernels should
be. In addition, it helps with pattern recognition which
in this case refers to the interference patterns. The CNN
starts by extracting features from the interfered and non-
interfered signals and then proceeds with the subtraction
as shown in (2). This demonstrates that Aifi does not
require prior knowledge about patterns of the interfering
signal. The training data that serves as an input to our
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NNs, Aifi starts by collecting non-interfered P/ and CSI
information from Wi-Fi frames with a minimum Signal
Interference and Noise Ratio (SINR) of 23 dB. The higher
the SINR, the better the quality of the signal, and thus
the lower the relative impact of interference and noise on
the signal. The estimations collected from the interfered
and non-interfered signals used in training are stored as
pairs. That way Aifi can remove the channel estimation
triggered by irrelevant factors, e.g. device mobility. If
the NNs are well trained to extract the features, Aifi can
be efficient even though the training does not englobe
all the possible interfering signals. After collecting the
interference features from PI, Aifi proceeds with an RNN
also known as Deconvolutional Neural Network (DeNN).
DeNN performs reverse operations of CNN and captures
the non-linearity of the data subcarriers by focusing on
their generic features [1, Section 3.1].

Output

Interference
features from PI

Intermediate grid

L.

[ T T

| g o =T ==y =y |

NS oG omon% [ |11
Nt AN A

i
Filter data subcarriers

Figure 2: Regression NN [1, Section 3.1]

3)

Output = wq - 1 + wa - T

The interference features extracted from the Pl are ex-
pended into an intermediate grid with 0 padding, as de-
picted in Figure 2, to match the size of the data sub-
carriers. A one-Dimensional (1D) filter is applied to the
intermediate grid. In a 1D filter, only the rows or the
columns contribute to the output. In Figure 2, the filter
is applied to the columns. The specificity of the 1D filter
is its one-dimensional array kernel. The kernel length is
set to 2 to process every pair of adjacent elements. In
Figure 2, 1D filter has two trainable weights w; and ws.
Those weights are initially initialized randomly and then
updated during the training process. The 1D filter slides
across the intermediate grid operating as shown in (3). In
this operation, z; and x» illustrate the adjacent elements
over which the filter is applied. x; is weighted by w;
likewise to xo, i.e., weighted by wsy and their weighted
sum provides the output. The size of the 1D filter is
chosen in a way to leverage the continuity [1, Section
3.1] between every two consecutive subcarriers.

Pl Features (M_1)
CSI Features (M_2)
Key interference
features

Figure 3: Feature Refinement NN [1, Section 4]
My - My

v@m>

However, the estimation based only on the interference
features captured from the PI lacks accuracy. To solve this
issue Chen et al. [1] use the interference features from
CSI to enhance the estimations’ accuracy. This is done

Refined interference

W = softmax ( @
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via stacked refinement NNs to ensure the highest learning
power level. The main purpose of the refinement NN is
to learn the weight matrix (W) as depicted in (4). (W)
reflects the correlation [1, Section 4] between PI and the
CSI interference features. As shown in Figure 3 the PI
features (M;) and the CSI features (M) serve as input
to the softmax function. The v/Scale in (4) is a constant
that prevents the correlation from growing in magnitude,
leading to a smaller gradient. The weight matrix is then
applied to the key interference features extracted from
either the PI or the CSI. As a result, a refined interference
is obtained.

2.3.2. Interference Removal.

X=(X;-1)-W (5)
Alfi uses a fully connected NN to imitate the equalization
process in the commodity Wi-Fi that utilizes Zero-Forcing
(ZF) [9], [12]. ZF tackles the signal’s interference by
applying the inverse of channel estimation to the signal [1,
Section 3.2]. The fully connected NN ensures flexibility
by computing multiple iterations and learning the optimal
weights . In addition, it emulates the equalization in
the feature space offering efficient fine-tuning abilities to
remove the interference. As shown above in (5), the (X7)
refers to the received signal that contains the interference,
while (I) is the estimated interference from Section 2.3.1.
By multiplying the subtraction with the learnable weights,
the interference-free signal X is obtained.

2.3.3. Data Payload Correction. Aifi starts with resid-
val interference detection and handling. Indeed, when
the interference is too strong, the interference-removing
process may fail to obliterate it. This is due to the limited
resolution [1, Section 3.3] of the signal in P/ and CSI.
To mitigate this issue, Aifi incorporates a supplementary
neural network to correct the decoding errors repercussed
by the interference. Aifi then proceeds to emulate the
Wi-Fi encoder. In this stage, Aifi utilizes a Long-Short-
Term Memory (LSTM) network. LSTM is a type of a
reccurent network used to mitigate the issue of long-term
dependency in sequential data. In the recurrent NN the
output of the previous input is fed into the node as part
of the input. LSTM enhances this structure by adding an
internal state mechanism. The state comprises three gates:
the forget gate, the input gate, and the output gate. Each
gate can be assigned a number between 0 and 1. LSTM
learns the dependency between consecutive symbols and
in case of an error, the LSTM network attempts to correct
it by rebuilding the correct data payload. Aifi takes the
output of the LSTM network and transforms it into the
final data payload with the help of a demodulation neural
network. This type of neural network tends to mimic the
decoding behavior in the commodity Wi-Fi.

2.4. Real-Word Experimentation

The relevance of Aifi in boosting the network’s perfor-
mance in real-world applications, especially the loading of
web pages is evaluated by Chen et al. [1]. The experiment
is performed on a couple of well-known web pages e. g.
Google.com, Delta.com, Twitter.com, Twitch.com [1, Sec-
tion 8.2] and a predefined Wi-Fi transmission of 24Mbps.
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Before we delve into analyzing the outcome of the ex-

perience, we need to explain the Frame Reception Rate

(FRR). FRR is defined as:

> successfully received frames
> transmitted frames

FRR = (6)
As shown in (6), low FRR reflects a high impact of in-
terference. Interference engenders high packet loss. High
packet loss repercusses elevated latency. As depicted in
Figure 4, in the case of low FRR (FRR < 30%) we
can see that Aifi prevails the most. When the interfer-
ence is too strong (FRR = 0%), we can remark that
Twitter had the highest load latency (200seconds). The
loading functionality of Twitter was nearly unresponsive.
However, with Aifi deployed, the load latency plummeted
(80 seconds). The loading functionality of Twitch is now
usable. All the web pages (Google.com, Delta.com, Twit-
ter.com) experienced this huge load latency reduction with
Aifi deployed, when the interference is prevailing. When
the FRR is medium (between 40% and 70%), the load
latency is reduced from around 160 seconds to around
50 seconds on average for all the web pages. And even in
the case of high FRR (FFRR > 70%) Aifi ensures that the
load latency is less than 3seconds. It offers a good web
browsing experience. To sum up, the model can transform
the web pages’ loading outstandingly.

Delta with AiFi . Google with AiFi . Twitch with AiFi Twitter with AiFi
Type

Delta without AiFi . Google without AiFi . Twitch without AiFi

o 100 20 30 40 50 60 70

FRR %

Twitter without AiFi

Load Latency (s)
= i N
S a S
8 8 8

@
S

80

-

90

Figure 4: Latency of webpages loading [1, Section 8.2]

3. AI and ML in Optimizing the Data Link
Layer

The main strength of AI and ML relies upon their
power to gain knowledge rapidly, generalize it, and learn
from previous experiences. In this section, we delve into
the panoply of approaches that use Al and ML to optimize
the data link layer.

3.1. Channel Access

Most applied approaches are tightly linked to the
Distribute Coordination Function (DCF). DCF is a
CSMA/CA-based channel access mechanism [13]. Devices
randomly select a backoff counter from the Contention
Window (CW) range. This backoff counter represents the
waiting time of this device before accessing the chan-
nel to avoid collision. The CW range is the following
{0,1,2,...,min{2¢7%=1 —1,2551}. (¢) is a constant re-
lated to the physical configuration and (k) illustrates the
number of transmission attempts starting from £ = 1. One
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of the commonly known trade-offs is the choice of the
CW values. Indeed, choosing small CW values provide
quicker transmissions but increase the collision risk and
thus reduce input, whereas large CW values minimize
the probability of collision but increase the idle time
of the channel leading to a reduction in the throughput
[7, Section A]. The following sections provide the major
findings on how to mitigate this issue with the help of
ML.

3.1.1. Collision Reduction. In high-density 802.11ax
WLANS, Ali et al. [2] use a combination of Reinforce-
ment Learning (RL) [14] and Intelligent Q-learning-based
Resource Allocation (IQRA). The purpose of RL is to
optimize a policy to yield maximum reports. The report
in our case refers to the increase of throughput and the
reduction of collision probability. An RL consists of an
agent, a set of states (5), and Actions (A). When the
agent acts a € A, the agent transitions from one state
to another. As opposed to DCF which resets the CW
value every time the channel is idle, the CW value is now
calculated by analyzing the channel collision probabilities
that are based on the Channel Observation-based Scaled
Backoff (COSB) [15] mechanism. Before scaling the CW,
COSB measures how often the channel is busy. It then
predicts the likelihood of collisions according to failed
transmissions or retransmission attempts while accounting
simultaneously for the number of active devices. That
way the JQORA mechanism can manage between exploring
new actions [7, Section A.1] like new CW adjustment
and choosing the optimal actions [7, Section A.1] by
increasing or reducing the CW (according to COSB).
Optimal actions reflect the safest strategy of leveraging the
already available information to be efficient in the current
environment. The JQORA mechanism always accounts for
the unstability of the Wi-Fi environment.

3.1.2. Real-Word Experimentation. Results from the ns-
3 network simulator [7, Section A.1] for dense networks
(with 50 stations) as shown in Figure 5 illustrate the pos-
itive effect of IORA on the network throughput compared
to the standard 802.11 protocol. IQRA provides a nearly
constant network throughput during the whole Simulation
time (from Os to 60s) around 38 MBs~! contrary to the
standard protocol that shows relatively low throughput. In
the standard protocol, the network throughput decreases
from 38 MBs~! to around 27 MBs™1.

8 H— Standard 802.11

IQRA .
0 T T | | |
0 10 20 30 40 50

Simulation time in seconds

Network throughput (MBs™1)

Figure 5: Network Throughput Comparison [7, Section
A.1]
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3.2. Frame Aggregation

Frame aggregation consists of combining smaller frames
into a bigger one to improve efficiency in communication.
Larger frames can reduce the overhead, however, they are
more prone to transmission errors. One error in one of the
subframes can cause the retransmission of the large frame.
To tackle this trade-off, the 802.11 standard introduced
two basic approaches. The first method is called Aggre-
gated Mac Service Data Unit (A-MSDU) [16]. A-MSDU
is more efficient as it has only one Frame Check Sequence
(FCS) but is less robust. If one subframe is corrupted
the entire frame is discarded. The second method is the
Aggregated Mac Protocol Data Unit (A-MPDU) [16]. A-
MPDU offers more robustness because each subframe has
its own FCS but it introduces more overhead. The optimal
approach is to apply those methods simultaneously to
harmonize between robustness and efficiency. The 802.11
standard does not account for the CSI’s dynamic nature.
Thus, to optimally choose the frame size, we leverage
the dynamic features of ML. To optimally select the
frame size under dynamic conditions, Coronado et al. [3]
implement a low computational complexity [3, Section 1]
technique based on a Random Forest Regressor (RFR) for
the Modulation and Coding Scheme (MCS) settings and
the frame aggregation. The MCS is a metric that reflects
several parameters between the Access Point (AP) and the
station including data rate, channel width, etc. The model
is deployed on the management plane and fed periodi-
cally with the control plane’s knowledge, e.g. channel
conditions and user state. This model is considered to
have low computational complexity because the type of
ML model deployed requires minimal resources, reduced
training time, and provides fast outcome predictions. A
Random Forest (RF) is a ML model that uses an ensemble
of decision trees to make its prediction. Each random
forest is characterized by three parameters: the size of the
nodes, the number of trees, and the number of features.

3.2.1. Model Description. The model utilizes the features
like the station details as input [3, Section 4.3.5]. It
assigns an RFR for each MCS and limits the depth of the
tree to 3. By this limitation, the model avoids overfitting
and reduces the complexity of the tree. The model then
undergoes a tenfold cross-validation. Indeed, the data is
split into 10 parts. The model is trained on 9 folds and is
evaluated on the fold left. The model is deployed on the
management plane. The management plane is responsible
for controlling the network. An appropriate frame length
is constantly provided for a specific MCS and in the
next iteration, the model reconfigures itself by using the
feedback from the real obtained goodput. In due course,
the model can correct the next prediction with a prediction
error factor [3, section 4.3.5].

3.2.2. Real-Word Experimentation. The setup consists
of an AP, a Software-Defined Networking (SDN), and the
ML model deployed on the management plane. A SDN
ensures the configuration and monitoring of an efficient
and dynamic network environment. The experiment [3,
Section 5.1] consists of moving the stations within a 30 m
radius of the AP while varying simultaneously the mobil-
ity and the MCS index (MCS-0, MCS-2, MCS-7). Each
MCS index illustrates a unique combination of modulation
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type, coding rate, and several other parameters. Perfor-
mance is evaluated on the goodput metric [3, Section 5.2].
The simulation is repeated 10 times with 14 seconds runs.
The model illustrated its ability to dynamically improve
goodput by about 18.36% compared to static techniques
like max aggregation and no aggregation. The model tends
to outperform all the other approaches, especially when
the bitrate is high (25 MB s~!) and the MCS is equal to 7.
The approach has significantly lowered the retransmission
rate.

4. Conclusion and Challenges

The impact of ML and Al is undeniable in improving
Wi-Fi performance. This paper provides a comprehensive
overview of 3 recent ML-based approaches deployed in
the first two layers. It starts with the approach of Chen
et al. [1] called Aifi. This approach shows its efficiency
in mitigating interference and reducing 80% bit errors.
Aifi improves the FRR by a factor of 18. However, the
applicability to various wireless technologies may pose
both an impediment and a challenge for Aifi. Indeed,
this approach applies to only OFDM-based systems [1,
section 9]. Some wireless systems have different physical
structures and may provide their physical information
differently. Then the paper proceeds by analyzing Ali et
al’s [2] approach. This model ensures steady network
throughput by reducing the chances of collision based
on a combination of RL [14] and IQRA. For the frame
aggregation, we scrutinize Coronado et al.’s [3] approach.
This model provides the optimal frame length for each
station and ensures a low retransmission rate. However,
ML and Al may raise privacy and security concerns.
The pace of Al and ML deployability outran the pace of
their regulations. The success of Al and ML depends on
future standardizations to avoid data transfer that involves
sensitive information used for the training of ML models.
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Abstract—As modern network systems become increasingly
complex and dynamic, traditional approaches to Root Cause
Analysis (RCA) encounter inherent limitations when con-
fronted with the needs of real-time analysis, scalability and
the processing of vast volumes of generated input data. RCA
refers to the process of identifying the root causes of observed
failures within a network system. In this regard, Machine
Learning (ML) approaches have emerged as a compelling
alternative, capitalizing on their ability to process large-
scale data and uncover complex patterns and distributions.
This paper presents popular ML techniques and discusses
their applicability to derive models for RCA in network
fault management, highlighting their strengths, scalability
and limitations.

Index Terms—network failure diagnosis, root cause analysis
models, telemetric data, machine learning

1. Introduction

With the growing complexity and expansion of modern
network topologies and the rising amount of generated
traffic and connected devices [1], efficient network man-
agement has become more needed than ever. Network
management encompasses all applied processes and tools
designed to ensure the reliability, efficient performance
and security of the network infrastructure [2]. In particular,
root cause analysis (RCA) is considered to be a central
aspect of network management. RCA models are designed
to backtrack and identify the set of potential root causes
that are responsible for a network failure [3].

Traditionally, constructing such models relies on the
domain expertise of human operators, with the eventual
aim of deriving a knowledge base of rules to diagnose
network failures [4]. These rules depend on telemetric data
measurements collected from various network devices and
monitoring tools. The relevant input data for RCA mod-
els may include interface statistics or system logs from
routers, or performance metrics such as CPU and memory
usage from servers and endpoints [5].

However, as modern network traffic becomes more
complex, vast amounts of data are being generated, which
makes it impossible for humans to entirely process it.
This results in traditional models failing to exploit all
of the collected data and ignoring certain features that
could potentially decrease the diagnostic output accu-
racy. Moreover, the process of constructing these rules
is time consuming, unsuitable for environments where
real-time reaction is essential, and not scalable to larger
networks [4].
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In this context, and in light of the recent success
of machine learning (ML) applications in many areas of
technology and science [6], ML techniques have emerged
as a promising alternative to traditional RCA models. ML
models feed off large volumes of input data [7], which is
increasingly available on modern networks. In this paper,
we present and discuss popular ML approaches that can
be applied for deriving RCA models in networks based
on input telemetric data.

The remainder of this paper is structured as follows:
Section 2 presents key concepts of RCA in the context of
network management. Section 3 highlights briefly previ-
ous related works. Section 4 introduces various suitable
approaches for deriving RCA models and discusses their
strengths and limitations.

2. RCA in Network Management

This section presents the fundamental concepts and
terminology related to the field of network management
and RCA, which are essential to understand the subse-
quent discussions of the approaches used to derive RCA
models.

Failure: The
expected response
does not arrive
before time-out.
Transaction is
aborted

Error: IP headers
are discarded
because of
incorrect body

Fault: One of
interfaces gets out
of sync every
.25ms

Alarm: Transaction
aborted alarm.

Error: Bursts of
noise are generated
causing bit errors
in IP packets

D Database client

Error: IP packets
are discarded
because of bad
header

Figure 1: Illustration of different terminologies in RCA
process (Figure from [8])

2.1. Terminology

We introduce the following terminologies, based on
the previous works [9] [4]:
Network Error: is defined as the discrepancy between
a condition of the network system and its theoretically
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correct condition and is caused by one or many faults.
Network Faults: are also called root causes. These are
network errors that can cause other errors but are not
themselves caused by other errors. In other words, a
network fault is the root cause of some error.

Network Failure: is an error that is observable from out-
side the system through external indicators called symp-
toms such as alarms raised upon anomaly detection. Upon
detecting the failure, the telemetric data and statistics
generated by network devices are then collected and used
as input for the RCA model for diagnosis and producing
the most likely root causes as outputs.

Root cause analysis: RCA is the process of determining
the set of faults or root causes that generated originally
the network failure observed by the given set of symptoms
and associated with the generated telemetric data. Figure 1
illustrates these concepts using a network scenario where a
failure occurs when a client attempts to access a database
server. The failure is detected through a raised alarm,
triggered by the absence of a response from the server. The
fault originates from a hardware issue in the interface of
a router along the path between the client and the server,
causing bit errors in packets sent by the client, which are
subsequently discarded by the server. This scenario also
demonstrates how faults can originate at locations far from
where their failure manifestations are observed.

2.2. RCA Workflow

The complete RCA process, starting from the model
construction to the inference of probable root causes for
a network failure, adheres to the workflow depicted in
Figure 2. The first step would be to collect labeled tele-
metric data, which are historically observed data instances
in network devices upon detecting symptoms of a network
failure. Each instance is annotated with the corresponding
fault or set of faults as labels. Combined with domain
and system knowledge, an appropriate RCA model is con-
structed. These additional knowledge sources, however,
are not always necessarily used, particularly when large
datasets are available and the RCA models rely entirely on
ML approaches with complex architectures. These models
act from the outside as black boxes, extracting patterns
from large datasets without requiring domain or system
knowledge. Once training is complete and the RCA model
is constructed, it can be used for inference. Telemetric
data generated in response to new network failures is fed
into the model to produce as an output the expected root
causes. Furthermore, if a change in the network system
occurs upon for example removing or adding new devices,
the RCA model is updated.

3. Related Work

The preceding survey [3] highlighted the existing RCA
models in various IT systems disciplines and not specifi-
cally in the context of network management. The survey
emphasized the generation and inference algorithms of
the models, with particular attention paid to performance
aspects. In addition, previous papers [10] [8] discussed
the challenges of fault localization in complex modern
network systems and presented an overview of recent
techniques and models as proposed solutions.
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Domain Knowledge
System Knowledge

Labeled data Unlabeled data

Model Construction RCA model —— Inference Root causes

Model Update

No

System change —————< Updatable model?

Figure 2: RCA workflow (Diagram was adapted from [3])

4. Approaches for RCA Models Derivation

This section provides an overview of various suitable
approaches and techniques for deriving RCA models. In
particular, we start by briefly introducing non-ML models
and then proceed to delve in depth into ML models, high-
lighting their advantages, disadvantages, and scalability as
summarized in Table 1.

4.1. Non ML Models

Non-ML models for RCA are based on deterministic
approaches that do not involve any training algorithms or
optimization techniques on the input telemetric data given
the corresponding labels. While they are often easier to
interpret and understand, their effectiveness is limited
in modern, dynamic networks where it becomes quite
challenging for such models to describe the complex
distribution of the correlation between symptom data
and faults. A review of the literature reveals numerous
examples of such models that were used as the primary
solution for RCA and localizing the root causes of
network failures. In the following we list two widely
applied approaches.

Rule-based Models: These models rely on predefined
logical rules that are derived from human expertise in
domain and system knowledge [11]. The rules are often
expressed as if-then statements and the models rely on
forward-chaining inference to produce potential faults as
an output by executing the rules that were triggered, i.e.,
those whose conditions matched the input data [8]. One
common method for representing the rules is through the
use of codebooks, which map each network fault to a set
of symptom data that should be observed in the faulty
component itself and any affected components resulting
from the original fault. The underlying root causes are
then diagnosed by identifying the closest match to the
observed input data. Reali et al. [12] employed this
technique within a real Next Generation Network (NGN)
that deployed wireline Voice over Internet Protocol (VoIP).

Pattern Mining-based Models: Pattern mining is a

central task in the subfield of data mining that aims to an-
alyze data in order to extract recurring patterns and strong
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TABLE 1: Summary of Advantages and Disadvantages of ML Approaches for RCA

ML Approach

Advantages

Disadvantages

Decision Trees

Human-interpretable models; logical rules are
easy to extract and align with domain knowl-
edge; efficient inference execution.

Susceptible to overfitting and noisy network
data; require ensemble methods for better gen-
eralization; limited in scalability.

Artificial Neural Networks

Capable of handling large-scale network data
and capturing complex distributions; perform
well in presence of noisy telemetric data.

Acts as a black box; lacks interpretability;
training process can be expensive especially
for complex architectures.

Support Vector Machines

Effective for high-dimensional telemetric data
in network’s RCA; can deal with non linear

Training is computationally expensive for
large scale datasets; can underperform when

complex distributions

trained to predict a large number of root
causes.

Clustering
data is available.

Useful when no historical labeled telemetric

Requires pre-selection of the number of clus-
ters; unable to identify specific root causes but
can only group based on similar observations.

Bayesian Networks

data-driven inference.

Human-interpretable models; readable depen-
dencies; can combine domain knowledge with

Model construction is expensive for large-
scale networks; requires expert knowledge to
define graph structure.

correlations [13]. This helps to facilitate decision-making
for many tasks such as classification and prediction. In
the context of network management, pattern mining tech-
niques have been applied to analyze telemetric network
data, enabling the discovery of meaningful patterns that
assist in fault localization and RCA. For instance, Lo-
zonavu et al. [14] applied sequential pattern mining [15]
to discover correlations between network alarm instances.
This approach constructs a directed weighted graph, where
the nodes and directed edges represent the relations be-
tween different alarms and the associated weights illus-
trate the strength or also called the confidence of these
relations. By deploying these dependencies, the model
starts its inference with a network entity that reported an
alarm. It then determines which other alarms are corre-
lated, enabling the system to pinpoint the faulty network
elements more precisely.

4.2. ML Models

ML is a scientific discipline concerned with the design
of models capable to learn patterns and distributions
of input data. The latter is typically partitioned into
three complementary subsets: training, validation and
testing sets [16]. The training set is used to train the
model by optimizing its parameters to minimize a loss
function between true outputs and predicted outputs by
the model. The validation set fine-tunes hyperparameters
and prevents overfitting, while the testing set assesses
accuracy and generalization on unseen data [16]. This
subsection reviews popular ML techniques that can be
applied for RCA in network systems and summarizes
the advantages, disadvantages and scalability of these
approaches, as illustrated in Table 1.

Decision Trees: Decision Trees have been widely
applied to fault localization and RCA in network systems.
In particular, it is a supervised learning technique that
requires labeled telemetric data annotated with the corre-
sponding network faults [17]. Each distinct network fault
or set of faults is represented by a class and the collected
metrics such as interface statistics, bandwidth and memory
usage are referred to as attributes.

A decision tree is a tree-like model that classifies data
instances into classes represented by leaf nodes based on
their attribute values. Internal nodes represent a test of
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an attribute and each outgoing branch from an internal
node represents a possible range of values of this attribute.
Learning a decision tree involves deciding which attribute
and its associated test should be selected at each internal
node to optimally split the data into branches. In general,
optimal splits are picked by maximizing the "Gain" in
information. The gain can be computed using various
criteria, such as Entropy or Gini Index but the choice itself
should not affect the ultimate model performance [18].
The inference algorithm for new instances is then applied
by traversing the learned tree from the root node and
following the branches based on the attribute values until
a leaf node is reached which acts as the predicted root
cause(s) of the model.

Chen et al. [17] deployed a decision tree based model
combined with post processing performed on paths of the
tree in order to identify causes of failures in large internet
systems. In the field of RCA in network management,
decision trees can be preferred as they have the advantage
of yielding human interpretable results, which makes it
easier to follow and understand the decisions made along
the output path [10]. Furthermore, the model exhibits
efficient runtime performance for the inference algorithm,
rendering it well-suited for systems where time sensitivity
and real-time analysis are crucial factors [3]. However, the
scalability of these techniques can be limited to using only
specific attributes of the input data, and the accuracy of the
model can be severely degraded in the presence of noisy
input data, a problem that is exacerbated in large-scale
networks [17].

In fact, to address the last limitation and to improve
generalization on unseen data, Random Forest (RF)
techniques can be employed. RF is an ensemble learning
method and its core concept lies in constructing multiple
decision trees during the training process, rather than
deriving only one. The inference outputs of the trees
are then combined typically through majority voting, to
make more robust and accurate predictions. For instance,
Sauvanaud et al. [19] implemented an RF algorithm to
localize root causes in Virtual Network Functions (VNFs).

Artificial Neural Networks (ANNs): ANNs are com-
putational models inspired by the structure and learning
mechanisms of biological neural networks (NNs) in the
human brain. An ANN consists of multiple layers of inter-
connected neurons. Each neuron receives multiple inputs
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from the previous layer, processes them, and generates a
single output that is fed to each neuron in the next layer.
This processing involves a weighted sum of the inputs,
an addition of a bias, and the application of an activation
function. The weights and biases represent the learned
parameters of the model [20].

In the context of RCA in networks, the neurons of
the input layer represent the telemetric data during net-
work failures and the output neurons correspond to the
root causes. The root cause associated with the output
neuron exhibiting the highest value represents the pre-
dicted fault of the model. Wietgrefe et al. [21] developed
a system called Cascade Correlation Alarm Correlator
(CCAC) based on an ANN to predict the root causes
of alarms in cellular phone networks. Each input neuron
represents an alarm type and takes a binary value (active
or inactive), while each output layer neuron corresponds to
a failure’s cause. The findings of [21] indicate that CCAC
yields high prediction accuracy even in the presence of
noise in the training data such as missing or irrelevant
alarms. Furthermore, in a comparative study conducted by
Wietgrefe et al. [22], it was demonstrated that CCAC is
more accurate at predicting alarm causes than traditional
approaches such as rule-based reasoning models. In gen-
eral, ANN approaches have the ability to process the large-
scale telemetric data produced by modern networks and
can produce accurate predictions even with the presence
of noisy data.

The above advantages may justify the fact that ANNs
have been the subject of extensive research and are
widely employed in numerous domains and fields [20].
However, it seems that ANNs have not achieved the
same dominance in the area of RCA in network systems,
unlike other disciplines. The primary reason behind this
is that these models, especially those possessing complex
architectures like deep ANNS, act from outside like black
boxes and return predicted root cause(s) as an output, but
it is almost impossible for human operators to backtrack
and provide a logical explanation for it [3]. Moreover,
such approaches use exclusively the labeled input dataset
to construct the RCA models and are difficult to combine
with available domain knowledge to derive meaningful
and interpretable rules [3].

Support Vectoring Machines: Support Vector Ma-
chine (SVM) is another popular ML technique that can
be applied to RCA and fault management in networks.
SVM is essentially a linear supervised classifier that is
based on the margin maximization principle [23]. To deal
with non linear problems, which is the case in network’s
RCA, the input data can be preprocessed and mapped to
higher dimensions using kernel methods. This process is
called non-linear SVM [4].

Based on the training labeled telemetric data, an SVM
is learned to find optimal separating hyper planes with
each plane representing a network failure root cause(s).
In the literature, we can find the application of SVM
methods to a variety of network management tasks. For
instance, the study conducted by Zidi et al. [24] applied
an SVM-based model to detect failures in Wireless Sensor
Networks (WSNs). WSNs consist of autonomous devices
collaborating together through a wireless channel. The
training dataset included both normal data measurements
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as well as measurements associated with different types
of faults. Once the SVM model is trained, the inference
algorithm predicts if new observations belong to a normal
or a faulty case. The experimental results conducted by
Zidi et al. [24] show that their SVM method achieves
high accuracy rates.

In general, SVMs have the advantage of performing
well in scenarios with high-dimensional input data [3],
making them suitable for analyzing complex telemetric
datasets in network management. However, SVMs seem
to underperform when trained to predict a relatively
large number of output classes, a common scenario
when representing the diverse root causes of network
failures [25]. As a result, their applicability can be limited
to specific network failure scenarios.

Clustering: Clustering methods are unsupervised
learning techniques that group data instances into clusters
based on similar features or patterns, without the need
for labeled data [9]. This is useful in network’s RCA
when the training telemetric data is not accompanied by
the corresponding root causes. Such scenarios may arise
due to a lack of historical labeled data or the presence
of excessively noisy data, making supervised learning
impractical.

Sozuer et al. [26] applied clustering techniques to
identify correlated alarms belonging to the same cluster
during network failure. This helps pinpoint the faulty
network elements more precisely and localize the root
causes. However, clustering models require predefining
the number of clusters, and without expertise knowledge
of the underlying network system, an incorrect choice can
result in meaninglessly grouping telemetric measurements
that do not originate from the same root cause(s) [9].

Bayesian Networks: A Bayesian Network (BN) is
a probabilistic graphical model that represents variables
and their conditional dependencies through a directed
acyclic graph (DAG) [25]. The conditional probabilities
are learned using techniques like Maximum Likelihood
Estimation (MLE) or Bayesian Estimation [3]. In the
context of RCA in networks, Bayesian Networks can
model the causal relationships between the telemetric
data, symptoms, and faults that act as variables of the
model. For example, if an interface fault in a router causes
increased latency and packet drops, a BN can capture these
dependencies and help infer the root cause when these
symptoms are observed.

Ruiz et al. [27] developed a BN model to identify
the root causes of network failures at the optical layer.
Khanafer et al. [28] proposed a failure diagnosis model
using BN approach for Universal Mobile Telecommu-
nications System (UMTS) networks. The dependencies
between the variables in BN models are intuitively easy
for human operators to understand. Moreover, the explicit
representation of causes and effects enhances readability,
making it easier to derive meaningful rules and integrate
them with domain and system knowledge. However, con-
structing BNs can be computationally expensive, partic-
ularly for large-scale networks, and requires significant
expertise to define the graph structure and which variables
are included. Additionally, their scalability may be limited
when dealing with high-dimensional datasets [25].
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5. Conclusion

In this paper, we examined various approaches that
can be applied to derive RCA models in network systems.
Initially, we showed that traditional non-ML models, while
easier to read and interpret, face major limitations when
employed in dynamic and large-scale networks. We then
proceeded to explore in depth ML models. Our review
demonstrated that these techniques are able to handle large
amounts of input telemetric data and identify the root
causes of network failures more accurately and adaptively.
Nevertheless, challenges such as explainability, compu-
tational cost, and exclusive reliance on input data still
remain. A possible future work could aim to address these
limitations by exploring hybrid models that combine the
strengths of ML techniques with domain knowledge from
traditional approaches, leading potentially to more robust
RCA solutions.

References
[11 A.M. Odlyzko, “Internet traffic growth: Sources and implications,”

in Optical transmission systems and equipment for WDM network-
ing II, vol. 5247. SPIE, 2003, pp. 1-15.

L. Tawalbeh, Network Management, 04 2020, pp. 99-115.

M. Solé, V. Muntés-Mulero, A. I. Rana, and G. Estrada, “Survey
on models and techniques for root-cause analysis,” arXiv preprint
arXiv:1701.08546, 2017.

M. Nouioua, P. Fournier-Viger, G. He, F. Nouioua, and Z. Min,
“A survey of machine learning for network fault management,”
Machine Learning and Data Mining for Emerging Trend in Cyber
Dynamics: Theories and Applications, pp. 1-27, 2021.

(2]
(3]

(4]

[S] T. Wang and G. Qi, “A comprehensive survey on root cause anal-
ysis in (micro) services: Methodologies, challenges, and trends,”

arXiv preprint arXiv:2408.00803, 2024.

R. Pugliese, S. Regondi, and R. Marini, “Machine learning-based
approach: global trends, research directions, and regulatory
standpoints,” Data Science and Management, vol. 4, pp. 19-29,
2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2666764921000485

“Training Data Quality: Why It Matters in Machine
Learning v7labs.com,”  https://www.v7labs.com/blog/
quality-training-data-for-machine-learning- guide, [Accessed
03-12-2024].

M. tgorzata Steinder and A. S. Sethi, “A survey of fault
localization techniques in computer networks,” Science of
Computer Programming, vol. 53, no. 2, pp. 165-194, 2004,
topics in System Administration. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S0167642304000772

S. P. Kavulya, K. Joshi, F. D. Giandomenico, and P. Narasimhan,
“Failure diagnosis of complex systems,” Resilience assessment and
evaluation of computing systems, pp. 239-261, 2012.

(6]

(71

(8]

(91

[10] A. Dusia and A. S. Sethi, “Recent advances in fault localization in
computer networks,” IEEE Communications Surveys & Tutorials,

vol. 18, no. 4, pp. 3030-3051, 2016.

T. Marques, “A symptom-driven expert system for isolating
and correcting network faults,” IEEE Communications Magazine,
vol. 26, no. 3, pp. 613, 1988.

G. Reali and L. Monacelli, “Definition and performance evaluation
of a fault localization technique for an ngn ims network,” IEEE
Transactions on Network and Service Management, vol. 6, no. 2,
pp. 122-136, 2009.

(1]

[12]

Seminar IITM WS 24/25

65

[13] P. Fournier-Viger, W. Gan, Y. Wu, M. Nouioua, W. Song,
T. Truong, and H. Duong, “Pattern mining: Current challenges and
opportunities,” in International Conference on Database Systems
for Advanced Applications. Springer, 2022, pp. 34-49.

M. Lozonavu, M. Vlachou-Konchylaki, and V. Huang, “Relation
discovery of mobile network alarms with sequential pattern min-

ing,” in 2017 International Conference on Computing, Networking
and Communications (ICNC). 1EEE, 2017, pp. 363-367.

J. Pei, “Mining sequential patterns efficiently by prefix-projected
pattern growth,” in Proc. of 17th International Conference on Data
Engineering (ICDE 2001), 2001, pp. 215-224.

O. Hazzan and K. Mike, Core Concepts of Machine Learning.
Cham: Springer International Publishing, 2023, pp. 209-224.

M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer, “Failure
diagnosis using decision trees,” in International Conference on
Autonomic Computing, 2004. Proceedings., 2004, pp. 36-43.

Routledge, 2017.

(14]

[15]

(16]

(17]

[18]
[19]

L. Breiman, Classification and regression trees.

C. Sauvanaud, K. Lazri, M. Kaaniche, and K. Kanoun, “Anomaly
detection and root cause localization in virtual network functions,”
in 2016 IEEE 27th International Symposium on Software Reliabil-
ity Engineering (ISSRE), 2016, pp. 196-206.

[20] S. Agatonovic-Kustrin and R. Beresford, “Basic concepts of
artificial neural network (ann) modeling and its application
in pharmaceutical research,” Journal of Pharmaceutical and
Biomedical Analysis, vol. 22, no. 5, pp. 717-727, 2000.
[Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0731708599002721

H. Wietgrefe, K.-D. Tuchs, K. Jobmann, G. Carls, P. Frohlich,
W. Nejdl, and S. Steinfeld, “Using neural networks for alarm
correlation in cellular phone networks,” in International Work-

shop on Applications of Neural Networks to Telecommunications
(IWANNT). Citeseer Stockholm, Sweeden, 1997, pp. 248-255.

H. Wietgrefe, “Investigation and practical assessment of alarm
correlation methods for the use in gsm access networks,” in
NOMS 2002. IEEE/IFIP Network Operations and Management
Symposium.’Management Solutions for the New Communications
World’(Cat. No. 02CH37327). 1EEE, 2002, pp. 391-403.

[21]

(22]

[23] M. M. Adankon and M. Cheriet, “Support vector machine,” Ency-

clopedia of biometrics, pp. 1303-1308, 2009.

S. Zidi, T. Moulahi, and B. Alaya, “Fault detection in wireless
sensor networks through svm classifier,” IEEE Sensors Journal,
vol. 18, no. 1, pp. 340-347, 2018.

N. G. Lo, J.-M. Flaus, and O. Adrot, “Review of machine learning
approaches in fault diagnosis applied to iot systems,” in 2079
International Conference on Control, Automation and Diagnosis
(ICCAD), 2019, pp. 1-6.

S. Sozuer, C. Etemoglu, and E. Zeydan, “A new approach for
clustering alarm sequences in mobile operators,” in NOMS 2016-
2016 IEEE/IFIP Network Operations and Management Sympo-
sium. 1EEE, 2016, pp. 1055-1060.

M. Ruiz, F. Fresi, A. P. Vela, G. Meloni, N. Sambo, F. Cugini,
L. Poti, L. Velasco, and P. Castoldi, “Service-triggered failure
identification/localization through monitoring of multiple param-
eters,” in ECOC 2016, 42nd European Conference on Optical
Communication. VDE, 2016, pp. 1-3.

R. M. Khanafer, B. Solana, J. Triola, R. Barco, L. Moltsen,
Z. Altman, and P. Lazaro, “Automated diagnosis for umts networks
using bayesian network approach,” IEEE Transactions on vehicular
technology, vol. 57, no. 4, pp. 2451-2461, 2008.

(24]

(25]

(26]

[27]

(28]

doi: 10.2313/NET-2025-05-1 11



Seminar IITM WS 24/25

66



Experiment-Based Reverse Engineering of Signing Protocols for Smart Cards

Dennis Evtushenko, Stefan Genchev*
*Chair of Network Architectures and Services
School of Computation, Information and Technology, Technical University of Munich, Germany
Email: ge95ved@mytum.de, genchev@net.in.tum.de

Abstract—Smart cards dominate the market in many differ-
ent aspects, such as digital payment with a credit card or for
any application for security, authentication or identification.
In order for them to be used so widely, manufacturers offer
interfaces to communicate with their respective cards even
though they might implement completely different protocols
for a variety of applications. These protocols can be public
or proprietary. The main concern is a manufacturer decom-
missioning their product as part of the software development
lifecycle, which might lead to electronic waste. This paper
looks into designing a general setup and procedure to in-
tercept and interpret the communication of any smart card
implementing a PKCS#11 compatible library of a manufac-
turer. We introduce multiple tools for intercepting the traffic
of these cards and present experiment-based strategies for
reverse engineering their implementation details. Qur paper
could serve as a basis for drastically increasing the lifespan of
smart cards. The presented strategies could then be used by
the open source community to keep the cards updated, while
also contributing to reducing the amount of unnecessary
electronic waste.

Index Terms—smart card, integrated circuit card, pkecs#11

1. Introduction

Smart cards are widely used. From being used for
banking with a credit card all the way to healthcare,
smart cards lay the foundation of our digital society. The
ISO/IEC 7816 [1], [2] standard defines characteristics,
like the commands, to avoid the issue of having incom-
patible Integrated Circuit Cards (ICC) across different
countries and to enable interoperability in interindustry.
The implementation of the protocol used by the card
is not necessarily open source and can be proprietary.
Therefore, the manufacturers offer an interface to be able
to communicate with the card.

We follow the assumption of manufacturers complying
with the product development lifecycle, where decom-
missioning is part of the cycle [3]. The fundamental
issue of proprietary cards is the users being fully reliant
on the manufacturer for updates. Once the manufacturer
decommissions their product, it can lead to cards having
no support for newer operating system versions, rendering
them unusable without the required updates, and therefore
turning them into electronic waste.

This paper looks into an experiment-based method
for reverse engineering these naturally discontinued and
outdated proprietary cards to make them open source,
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granted that the manufacturer does not already release
the protocol of their card to the open source community
voluntarily. The idea behind that is being able to extend
the lifetime of these ICCs by having the possibility of
updating their middleware.

The remainder of this paper has the following struc-
ture: First, in Section 2 we provide background informa-
tion by outlining the necessary key concepts. In Section 3,
we proceed with evaluating and explaining the different
challenges and choices made for our approach. Section 4
presents the setup for reverse engineering and goes into
detail for a variety of experiments to extract information.
Lastly, we compare our paper to a related paper by A.
Nicoli¢ et al. [4] in Section 5 and then briefly summarize
the most important findings in Section 6.

2. Background

In this section, we give an overview of the key con-
cepts needed to understand the basics of the communica-
tion of smart cards.

2.1. PKCS#11

The Public-Key Cryptography Standard #11 defines a
platform-independent Application Programming Interface
(API), which is called "Cryptoki". The API specifies a
set of functions to perform cryptographic operations. It
is object-based and offers all the functionality to create,
use, modify and delete cryptographic objects such as RSA
key pairs, certificates and domain parameters for DSA
or Diffie-Hellman. Cryptoki is essential for manufacturers
because they can provide the API as a dynamically linked
library for the C programming language to users, e.g., in
the form of a .d11 file. This way, the manufacturer can
abstract the implementation details while still allowing to
bridge the communication between the ICC and the client
with the provided library. By replacing the .d11 file, the
manufacturer can update the implementation of their ICC
while leaving the ICC’s functionality unchanged.

Alongside cryptographic objects, the standard provides
multiple relevant definitions for this paper. Tokens are
defined as devices with the ability of executing crypto-
graphic functions as well as being able to store these
cryptographic objects. A Slot is a reader that can hold a
Token. For example, a smart card is considered a Token,
while a smart card reader is viewed as a Slot. These two
can have a connection with each other, which is defined
as a Session [5].
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2.2. APDU

An Application Protocol Data Unit (APDU) is a data
packet used for the communication between ICCs and a

card reader. An APDU is a byte array containing infor-
mation defined in the ISO/IEC 7816-4 standard [1].

TABLE 1: Command APDU

Field Description Length in bytes

CLA Class of command 1

INS Instruction code 1

P1-P2 Parameters 2

Lc Length of Command data 0,1o0r3

Command data | Command data Variable length

Max. length of Response

Le data 0,1,2o0r3
TABLE 2: Response APDU

Field Description Length in bytes

Variable, at most
Response data | Response data L.
SW1-SW2 Status bytes 2

There are command and response APDUs. Their for-
mat is shown in Tables 1 and 2, respectively. The first is
responsible for sending the necessary data of the opera-
tion, which entails the instruction, parameters and more
as described in Table 1. Some operations do not require
any parameters or data. The latter returns the response
to the host machine. This response contains two status-
bytes SW1-SW2 indicating whether the command has
been successful or not. Depending on the operation, this
response can contain optional data. For reference, Figure 2
in Section 4.2.1 shows an example for command and
response APDUs. Each command is strictly defined with
its own corresponding sections for data in the byte array.
For example, NIST SP 800-73 Pt.2-5 PIV [6] has its
own set of public commands, defining the byte values
for the APDUs for each command, which still follow
the ISO/IEC 7816 standard. On the other hand, there can
be manufacturers keeping these specifications private [1],

[7].
3. Analysis

The problem statement is to reverse engineer as many
details of the signing protocol of ICCs as possible. For
example, this includes all of the supported mechanisms
and parameters for each ICC as well as the correspond-
ing mapping to the byte values in the command and
response APDUs. The difficulty of reverse engineering
lies in finding a starting point and commonalities within
the protocols. Manufacturer-independent interfaces such
as PKCS#11 and Minidriver [8] can solve these problems.
They define the functionality as well as mechanisms used
for cryptographic functions, as described in Section 2.1.
Additionally, they offer a selection of variable parameters
that can be modified and used to extract information out
of the protocols, which is further explained in Section 3.3.
The structure provided by the manufacturer independent
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interfaces is what makes the problem statement approach-
able. This lays the foundation for the different experiment-
based approaches for reverse engineering the structure of
commands presented in this paper.

3.1. PKCS#11 and Smart Card Minidriver

Smart card minidrivers [8] are interfaces, similar to
PKCS#11, that can be written by smart card manufac-
turers. They are exclusive to Microsoft, which is a dis-
advantage in comparison to PKCS#11 because not all
manufacturers or providers support it. Additionally, there
is no option to debug the communication on Linux. In
comparison to PKCS#11, minidriver offers a less clear
command mapping. In conclusion, the minidriver is less
flexible and more difficult to reverse engineer. For these
reasons, we exclusively cover ICCs with an existing im-
plementation of PKCS#11 in the context of this paper.

3.2. Virtual Card Reader and Logging

The process of reverse engineering in the context of
this paper involves intercepting the data sent between
the card reader and the ICC. We identified two viable
possibilities to intercept and view this data, which are the
virtual card reader and logging.

A virtual card reader implements a driver interface of
a card reader with no underlying hardware. This software
can only relay the data to a card reader, resulting in the
possibility of intercepting the sent data. More specifically,
this can then be used to view and interpret the data, which
consists of command and response APDUs. An example
for an implementation of a virtual card reader is vpcd [9].
This approach would be compatible with the existing
PKCS#11-compatible software, therefore not requiring a
test driver.

Logging, on the other hand, is intercepting the data
between the card and the card reader using software such
as pesced on Linux or APDUPIlay on Windows. Therefore,
both Windows and Linux are viable options for this ap-
proach.

Both presented options for intercepting are suitable,
however, in the context of this paper, we decided to use
logging. On Linux, logging APDUs can be done with
pesced, which is a Personal Computer/Smart Card Daemon,
using the --apdu and --debug options [10]. An alternative
to pcscd is APDUPIlay for Windows [11].

Since the PKCS#11 API is provided in C, the code for
the experiments is also written in C. A different option
is to use a wrapper such as TUGraz IAIK [12] in order
to be able to use the manufacturers library in a different
programming language such as Java or Python. However,
using a wrapper is only preference and not necessary since
the functionality stays the same.

3.3. Approach to Interpret Commands

In this section, we give an overview of selected
PKCS#11 functionality, which serves as a basis on how
to:

« Find functions that are able to be reverse engi-
neered.
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o Find modifiable parameters within these functions.

e Choose fitting and relevant values for these param-
eters in order to extract information.

o Interpret the data of these commands.

e Design and conduct further experiments for tar-
geted information disclosure.

Firstly, we need to choose a command or a series of
commands to send to a card. The APDUs have different
fields where we can input different parameters.

Since the ICC follows the protocol of a vendor specific
library implementing the PKCS#11 standard, there is a
given list of all possible parameters for all functions
defined in the standard. In order to reverse engineer the
implementation of the ICC, all possible combinations of
the functions and parameters have to be tried. The goal is
to find out all of the supported functionalities as well as
the mappings between them and their respective bytes.

C_GenerateKeyPair generates new private and public
key objects. It is possible to choose the mechanism, such
as RSA, and create a template for the respective keys,
where the attributes can be further specified. When con-
sidering RSA for example, the private or public exponent
as well as the key length (modulus bits) can be set to their
desired values. Additionally, the attributes can specify
what each key will be used for: The private key can be
set to be used for signing, while the public key can be set
to be used for verifying. This is intended for preventing
improper uses. Furthermore, the amount of attributes for
each template is a parameter of the function, which can
be changed for different key pairs.

Similarly to C_GenerateKeyPair, C_GenerateKey
generates a secret key for, e.g., AES or a set of domain
parameters for, e.g., Diffie-Hellman. Analogously to the
generation of key pairs, the mechanism, the attributes
and the amount of the attributes can be specified. Some
examples for attributes in this context are specifying the
uses for keys to encryption or decryption as well as the
key length and key type.

There are cryptographic functions defined by the
PKCS#11 standard, such as C_Encrypt, C_Decrypt,
C_Digest, C_Sign and C_Verify. Despite having dif-
ferent functionalities, these functions share many simi-
larities by being split into multiple function calls and
because of their parameters. Each function can be suf-
fixed with Init, to initialize the respective operation,
such as C_EncryptInit. This step is required and sp-
eficies the mechanism, such as RSA or Elliptic Curve
Cryptography (ECC) for the C_Sign operation as well as
the respective key for the selected operation. Afterwards,
the operation itself is called where the data and the
location of the output with their respective lengths can
be defined [5].

PKCS#11 also defines multiple hashing and signing
mechanisms, where the padding can be changed, such
as CKM_SHA256_RSA_PKCS, performing SHA-256 hash-
ing and RSA signing with PKCS#1 v1.5 padding or
CKM_SHA256_RSA_PKCS_PSS with PSS padding [13].

All of these various parameters for each command
can then be used to interpret the bytes of the command
APDUs as well as the response APDUs. Since we know
exactly which parameters we put into the function we
can specifically look for the changing bytes in the log.
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Considering there are many different options, the approach
yielding the most consistent results is to only change one
parameter value at a time. Upon only changing a single
parameter value, most of the bytes within the APDU stay
the same, while specific values will differ with every
change of the respective parameter, narrowing down the
location of the bytes of the input parameter over multiple
function calls. This limitation allows for a more precise
interpretation of these values and mapping them to their
respective algorithm in both the command and response
APDU.

4. Design

In this section, we present a specific soft- and hard-
ware setup to be able to conduct experiments. These
experiments are designed to extract information out of
the proprietary implementation details of a card with a
corresponding vendor library implementing the PKCS#11
standard.

4.1. Software and Hardware Setup

Figure 1: Experimental Setup

Target
i proprietary
Protocol

Vendor-specific | [coMMandiresponse APDUS|

Test Driver :
PKCS#11 PKCS#11 library |
. Logger
|

The experiments are conducted as shown in Figure 1.
Firstly, a card with an instance of the PKCS#11 standard,
such as PIV [6] or ISO/IEC 7816-15 [14] is needed.
Additionally, a card reader is required to be able to
communicate with the card. This reader is connected to
a machine, where the raw communication between the
card and reader is intercepted and logged. An application
interacting with the PKCS#11 library on the computer is
the client, which is acting as a test driver in this case. This
test driver is responsible for the control and management
of the experiment. The test driver is a program calling a
series of selected commands for the current experiment
in order to communicate with the card. These commands
should be appropriately selected to disclose the details of
the routines of the card as well as the concrete values of
the APDU fields, as discussed in Section 3.3.

4.2. Experimental Approach

The following experiments are designed by the authors
for possible approaches for the problem statement. All
experiments are conducted using the soft- and hardware
setup described in Section 4.1. Each experiment should be
designed in a way such that a single operation with all of
the associated functionality can be disclosed. For example,
this would include not only encryption but also the ini-
tialization of the operation as well as the creation of the
respective key with specified attributes. This potentially
leads to a lot of data in the form of multiple APDUs,
that has to be analyzed. Therefore, it can be effective
to keep the same environment, such as keys or data for
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multiple iterations as well as to minimize the changes
of parameters. In the following, we present step by step
approaches to extract information of the implementation
of any card using the PKCS#11 protocol.

4.2.1. Password Encoding. The ISO/IEC 7816-15 [14]
standard defines attributes for passwords, which are also
used in ICCs following protocols of vendor specific li-
braries implementing the PKCS#11 standard. It defines
five different possible encodings for passwords: binary
coded decimal, half-nibble binary coded decimal,
ascii-numeric, utf8 and is09564-1. Since passwords
can have variable lengths, padding can be necessary.
PKCS#11 allows password values to contain any valid
UTF-8 character, which can be restricted to a subset
depending on the Token. In this context, we assume
that passwords can only hold numerical values with six
characters.

The VERIFY command, which can be used to translate
the C_Login command, is defined in ISO 7816-4 [1]. It is
more like a recommendation for the structure and values
of the APDUs. Therefore, manufacturers can make their
implementations completely different. This fact makes
reverse engineering more difficult but not impossible.

There are two relevant PKCS#11 functions for this
experiment: C_OpenSession and C_Login. The first one
is responsible for creating a Session between the Token
and the Slot. The latter is for sending the password to log
the user into the Token [5].

The login allows for a limited amount of attemps to
enter the correct password before locking the user out of
the Token. Once locked out, the supervisor can unlock
the card again. Since we are working on a proprietary
card, we do not require access to the supervisor actions.
Therefore, we need to send different passwords while also
avoiding locking the card in order to find the encoding.
For this experiment, we choose an arbitrary password such
as 123456 and call C_Login.

Figure 2: Possible APDUs for C_Login

Client ICC

00 20 00 80 06 31 32 33 34 35 36

Y

63 C2

A

Figure 2 shows possible command and response AP-
DUs for the password 123456. In this case it is trivial
to find the password within the bytes, which is the last
6 bytes of the command APDU marked in red. The
password in this example is encoded as ascii-numeric.
If it is not clear where the password is located on the
first attempt, we can modify a single digit, e.g., 123455
and call C_Login once more. The resulting bytes can now
be compared again. For more data, we create the initial
situation, meaning the correct password has to be entered,
to reset the password retry counter and C_Logout has to
be called, to log the user out of the Token. Afterwards,
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the process can be repeated again while changing a single
digit of the password. With enough collected data, the
sent password’s byte values can now be mapped to the
password encoding used by this card.

4.2.2. C_Sign. The goal for this experiment is to iterate
through all combinations of mechanisms that are compat-
ible with a fixed key pair. In order to compute signatures,
we have to generate a key pair and provide data that should
be signed. For this experiment, the data can be fixed in
the beginning, since there are no further implementation
details that can be disclosed with more data sets. The next
step is to choose a key type, such as RSA or ECC, for
which we can generate a private key and public key pair
using C_GenerateKeyPair. However, before calling the
function, we define the template for the key pair. When
considering RSA for example, this can include setting
attributes such as the private and public exponent to valid
arbitrary values, e.g., 3 as well as the key length to,
e.g., 2048 or 4096. With the specified parameters, we can
now create a Session using C_OpenSession, followed by
logging into the Token with C_Login, if required, and call
the C_GenerateKeyPair function.

The relevant parameters for the signature function
are the mechanism, the signature key and the data. The
generated key pair can now be used for multiple sig-
natures. For each generated key pair from the previous
step, we iterate through all possible mechanisms such as
CKM_SHA256_RSA_PKCS_PSS, CKM_SHA384_RSA_PKCS and
CKM_ECDSA, where the scheme, digest and padding are
dynamic. Upon specifying all of the needed parameters,
the signature can be done using C_SignInit and C_Sign
and we can proceed with creating a new key pair and
repeating the steps. For the purpose of reverse engineering
the signature operation itself, it is sufficient to generate a
fixed key pair for each iteration through the mechanisms.
For more details about the structure and values of the at-
tributes for keys, there should be a new key pair generated
for every single possibility of valid options provided by
the PKCS#11 standard.

Since cards implementing a PKCS#11 compatible li-
brary do not have to support all mechanisms defined by
that standard, the return value can be checked to see if
the selected mechanism is supported by the card [5], [13].
Granted it is supported, we gain some information about
the implementation with this approach. We can inspect the
APDUs to find out the mapping for each mechanism in
the command and response APDUs. This process can be
continued, by trying all possibilities for mechanisms and
attributes during the key creation. However, the changes
each iteration should be kept to a minimum to maxi-
mize the amount of information that can be confidently
mapped.

5. Related Work

The research presented in the paper of A. Nikoli¢ et
al. [4], describes tools and strategies for reverse engineer-
ing smart card middleware of proprietary manufacturers.
In contrast to this paper, their work focusses on the
middleware to gain more information about the Windows
smart card architecture as opposed to our research, where
we present tools and techniques for analyzing smart cards
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implementing PKCS#11 specifically. Nikoli¢ et al. show
multiple different approaches such as performing static
analysis through disassembly, dynamic analysis and the
analysis of the communication traffic, consisting of com-
mand and response APDUs, as described in this paper. It
should be noted, however, that their research is limited
to smart card middleware following the Windows Smart
Card Minidriver Specification. Their paper successfully
applies their described methods to the Serbian Electronic
ID Card, where a platform-independent library has been
developed to allow for use of this card on other operating
systems.

6. Conclusion

This paper addresses the problem of manufacturers
decommissioning their products without publishing their
implementation for possible updates. In our research, we
discuss multiple tools to intercept the flow of communica-
tion between smart cards and card readers. Additionally,
we highlight the challenges of reverse engineering smart
cards and their solutions through manufacturer indepen-
dent libraries such as PKCS#11. Most importantly, our
research introduces multiple step by step strategies to
extract information about the implementation details of
smart cards. This paper can serve as a basis for reducing
the amount of electronic waste by enabling the possiblity
of updates for the middleware.

Future research may include the reverse engineering
of smart cards following different standards, using similar
concepts as described in this paper. Furthermore, there
is the possiblity to automate parts of the experiments by
creating a program that can automatically generate all
possible parameter combinations for the operations.
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Abstract—QUIC plays an important role in today’s Internet
by providing several benefits over TCP. In this paper, we
explain how ECN can be used to optimize QUIC’s congestion
control. ECN tries to avoid retransmissions by explicitly
notifying the sender about congestion in the network instead
of silently dropping packets. When using QUIC, this can
be done by including ECN counts in the ACK frames to
mirror information about incipient congestions back to the
sender, who can then reduce its sending rate. We also take
a look at the support of ECN with QUIC in the Internet
based on related work. ECN with QUIC is currently barely
used, mainly because of missing support in common QUIC
implementations and failures in the ECN validation stage.

Index Terms—QUIC, ECN, congestion control

1. Introduction

QUIC, a protocol introduced by Google [1], provides
many benefits over the Transmission Control Protocol
(TCP). By providing a zero round-trip time (0-RTT) hand-
shake and avoiding head-of-line blocking delays, QUIC
significantly reduces latency [1], [2]. Among other rea-
sons, this has led to a wide adoption of QUIC in the
Internet. Today, 8.4% of all websites use QUIC [3].

QUIC can be used with different congestion control
algorithms [1], [2]. Traditional, loss-based congestion con-
trol algorithms like CUBIC [4] treat lost packets as a sign
of congestion and consequently reduce the sending rate
while retransmitting lost packets. These retransmissions
increase the latency and reduce the available bandwidth.

By using Explicit Congestion Notification (ECN), the
sender can be notified of congestion before packets have
to be dropped. Routers can set a codepoint in the IP header
to signalize incipient congestion. When a packet with this
codepoint set arrives at the receiver, the receiver has to
mirror this information back to the sender. The sender then
reduces its sending rate. To achieve this, support of higher
layer protocols, such as TCP or QUIC, is necessary. [5]

In the following, we show how ECN can be used with
QUIC to optimize QUIC’s congestion control. Section 2
provides background information about QUIC and how
ECN can be used with TCP. Section 4 focuses on how
ECN works with QUIC. In Section 5, we take a look
at the support of ECN with QUIC in the Internet. Next,
Section 6 discusses an idea of how congestion control with
ECN could be further improved. Section 7 concludes this
paper by providing a short summary.
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2. Background

To understand how ECN with QUIC works, we first
take a look at the QUIC protocol itself and how ECN can
be used with TCP.

2.1. QUIC

Langley et al. [1] demonstrated their experiences at
Google with QUIC in 2017. According to them, using the
transport layer protocol TCP comes with various draw-
backs. First, using Transport Layer Security (TLS) on top
of TCP increases the delay by requiring both a TCP and
TLS handshake. Second, multiplexing TCP streams can
lead to head-of-line blocking delays.

Making changes to TCP to cope with these challenges
is difficult [1]. Since TCP is implemented in the kernel,
deploying changes takes time. Creating a completely new
transportation protocol on layer 4 is challenging due to
middleboxes like Network Address Translations (NATSs)
or Firewalls, as they would explicitly need to be adapted
to support the new protocol. QUIC circumvents this by
building on top of the User Datagram Protocol (UDP).

QUIC solves the previously mentioned problems of
TCP [1]. To establish a new, secure connection, QUIC
only needs a one round-trip time (1-RTT) handshake by
combining the TLS and transport layer handshake. Under
certain conditions, subsequent connections to the same
server can be established using a O-RTT handshake.

A single QUIC packet can consist of multiple frames,
each containing data of a specific stream. Losing a UDP
datagram only affects the streams contained in that data-
gram. Therefore, head-of-line blocking can be avoided. [1]

QUIC does not require a specific congestion control
mechanism, making it possible to use different algo-
rithms [1].

2.2. ECN

When using loss-based congestion control, nodes drop
packets in case of a full buffer to signalize congestion [5,
Section 1], [6]. The sender is able to detect congestion
due to duplicate acknowledgments or timeouts and con-
sequently reduces its congestion window [6].

Loss-based congestion control algorithms tend to keep
buffers full, leading to a queuing delay [5], [7]. Both full
buffers and retransmissions increase the latency. Active
Queue Management (AQM) algorithms [8] like Random
Early Detection (RED) [9] are trying to avoid the build-up
of large queues at routers. While this reduces the queuing
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delay, ECN mitigates the issue of retransmissions due to
dropped packets [5].

2.2.1. ECN on the IP layer. ECN makes it possible
to inform the sender about congestion without dropping
packets. This can be done by setting the Congestion
Experienced (CE) codepoint in the IP header [5].

RFC 3168 [5] refers to a packet with the CE codepoint
set as a "CE packet". In the following, we use the same
definition.

0123456 78 9101112131415

Version IHL ToS ECN

Figure 1: First 2 Byte of the IPv4 header. Based on
RFC 791 [10, Figure 4] and RFC 3168 [5, Figure 2]

RFC 3168 defines four ECN codepoints by using bits
6 and 7 of the type of service (ToS) and traffic class field
of the IPv4 and IPv6 header, respectively [5, Section 5].
Figure 1 shows the first two bytes of the IPv4 header,
including the ECN field. The codepoint "00" is set if
ECN is not being used. "11" is the CE codepoint. Either
ECT(0) ("01") or ECT(1) ("10") are set by the transport
protocol endpoints if they support ECN. Originally, both
codepoints were handled equally by routers and served as
a one-bit nonce. [5]

More recently, however, ECT(1) serves as a Low
Latency Low Loss and Scalable Throughput (L4S) iden-
tifier [11]. Routers supporting L4S set the CE codepoint
earlier, enabling faster reactions by the endpoints.

2.2.2. Compatibility of ECN. Since the adoption of ECN
by routers and hosts happens gradually and is therefore not
supported or used by every router and host, it is important
that ECN works alongside existing congestion control
algorithms. Thus, and to ensure fairness, hosts have to
react to an ECN in the exact same way as to a dropped
packet. In addition, routers are only allowed to set the
CE codepoint if the packet would have been dropped to
signal congestion when not using ECN. Routers should
deal with a CE packet just as with any other packet. If a
queue is entirely full, routers still have to drop incoming
packets, even when ECN is used. [5]

2.2.3. ECN with TCP. If an endpoint receives a CE
packet, the endpoint has to mirror this information back to
the sender so the sending rate can be reduced. To achieve
this, ECN requires support from the Transport Layer. [5]

First, when setting up a connection, both endpoints
have to be able to signal their capability and willingness to
use ECN (Section 2.2.4). Then, after agreeing to use ECN,
both endpoints have to react to CE packets by reducing
their sending rate (Section 2.2.5). [5]

TCP supports ECN by introducing two flags. Bits 8
and 9 of the reserved field of the TCP header are used for
a congestion window reduced (CWR) flag and ECN-Echo
(ECE) flag, respectively. Figure 2 shows the CWR and
ECE flags. [5, Section 6]

2.2.4. Negotiating the use of ECN. If a host is willing
and capable of using ECN, it has to send a packet with
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01234567 8 9101112131415
c|lE|u|alP|R|S|E

Head

L;fgte}f Reserved |W|C|[R|C|S|sS|Y]|I
R|E|G|K|H|T|N|N

Figure 2: TCP header supporting ECN.
Based on RFC 3168 [5, Figure 4]

the ECE, CWR, and the SYN flag set in the TCP header.
The receiver of this packet can then signal their support
of ECN by setting the ACK, SYN, and ECE flags but
not the CWR flag in the response. This response is then
acknowledged by a packet with the ACK flag set. After
completion, both endpoints have to react appropriately
to CE packets and to TCP segments with the ECE flag
set. However, they do not have to set the ECN-capable
Transport (ECT) codepoint in the IP header themself. [5]

@ IP header: ECT

@ TCP header: ACK, ECE

@ IP header: CE

Y

@ IP header: ECT, TCP header: CWR

Sender

S

Router

—

Receiver

Figure 3: ECN with TCP

2.2.5. Using ECN. Figure 3 illustrates the use of ECN
with TCP. When sending a packet, the sender sets the
ECT(0) or ECT(1) codepoint in the IP header (1). Then,
a router on the network path experiences congestion. Since
the ECT codepoint in the IP header of our packet is set,
the router can mark the packet with the CE codepoint (2).
When receiving a CE packet, the receiver sets ECE in
the TCP header (3) to mirror the information back to the
sender. Upon receiving a TCP segment with the ECE flag
set, the sender reduces its congestion window and informs
the receiver about that by setting the CWR flag (4). As
soon as the receiver processes this flag, it stops setting
ECE in the TCP header. [5]

3. Related work

Most of the related, previous work has focused on
ECN with TCP. However, more recent work has also
studied improvements and the support of using ECN with
QUIC.

ECN with TCP. Floyd [12] has conducted sim-
ulations to point out several advantages of using ECN
with TCP. For instance, in one of their LAN simulation
scenarios, they were using ten telnet connections, a 0.1
msec TCP clock, packet-based RED gateways (with and
without ECN), and a 64 kB maximum TCP window. In
this experiment, they were able to decrease the average
delay from about 20ms to nearly zero by using ECN.
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Different simulation scenarios show similar results: by
using ECN, fewer packets were dropped, which decreased
delays. They also pointed out potential disadvantages,
mainly focusing on misbehaving endpoints and losing
acknowledgment (ACK) packets.

A variety of other studies have focused on the support
of ECN on the Internet. Lim et al. [13] have shown in
2022 that over 85% of Alexa Top 100K web servers
support ECN with TCP. Bauer et al. [14] have observed a
similar number while conducting Internet measurements
regarding the effect of TCP options. This is a massive
increase from what previous work has shown earlier. For
instance, Bauer et al. [15] conducted experiments using
the Alexa Top 1M list in 2011. Only about 17% of web
servers supported ECN at that time.

ECN with QUIC. While ECN with TCP is widely
deployed in today’s Internet, Sander et al. [16] were able
to show that the opposite holds for QUIC. By conducting
extensive research and experiments on the support of ECN
with QUIC in the Internet, they were able to demonstrate
that by the time of their studies, ECN could be used with
less than 2% of QUIC hosts. We take a closer look at their
results in Section 5. Uchida et al. [17] proposed a method
to leverage ECN with QUIC to improve the fairness of two
competing hosts using QUIC with CUBIC and BBR [7],
respectively. By adapting how CUBIC reacts to ECN
codepoints and by adapting BBR’s phase transitions, they
were able to improve fairness in their experiments. For
instance, when using a bottleneck link buffer of 1 Mbit,
they improved Jain’s fairness index value from less than
0.7 to nearly 1.

In this paper, we mainly focus on how ECN with
QUIC works (Section 4) and what current impediments
toward a wide deployment of ECN with QUIC are (Sec-
tion 5).

4. ECN with QUIC

This section is based on RFC 9000 [2], which contains
specifications on how ECN can be used with QUIC.
Similar to using ECN with TCP, the sender decreases its
sending rate when receiving a CE packet. In contrast to
using ECN with TCP, ECN with QUIC can also be used
in only one direction. In addition, the receiver informs
the sender not only about CE packets but also about the
ECT(0) and ECT(1) codepoints it receives. In order to use
ECN with QUIC, a sender first has to confirm that both
the receiver and intermediate nodes support ECN.

4.1. Mirroring ECN Counts

To be able to use ECN with QUIC, the receiver needs
to be able to access bits 6 and 7 of the ToS and traffic
class field of the IPv4 and IPv6 header, respectively. The
receiver then maintains counts for the ECT(0), ECT(1),
and CE codepoints it has observed. These counts can be
mirrored back to the sender using specific fields in the
ACK frames.

Similar to TCP, ACK frames in QUIC are used to
confirm successfully transmitted packets [2, Section 19.3].
To support ECN, QUIC introduced the ACK frame type
0x03, as shown in Figure 4. ACK frames of this type
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ACK Frame {
Type = 0x03,
Largest Acknowledged,
ACK Delay,
ACK Range Count,
First ACK Range,
ACK Range ...,
ECN Counts {
ECTO Count,
ECT1 Count,
ECN-CE Count,

}

Figure 4: ACK frame format of type 0x03 in QUIC.
Based on RFC 9000 [2, Figure 25 and Figure 27]

additionally include the ECN counts of the receiver for the
packet number space it acknowledges. By using this ACK
frame type, the receiver is able to inform the sender about
the total number of ECT(0), ECT(1), and CE codepoints
it received.

4.2. Example: ECN with QUIC

Figure 5 illustrates how QUIC with ECN works. After
establishing a connection and agreeing on the use of ECN,
the sender sets the ECT(0)/ ECT(1) codepoint in the IP
header (1) to signal the use of ECN to routers. In (2), the
router experiences a congestion. Instead of dropping the
packet, it sets the CE codepoint in the IP header (3). The
receiver maintains the ECN counts n, m, and &k for the
number of ECT(0), ECT(1), and CE codepoints received
(4). The receiver includes these counts in the ACK frame
(5, 6) when acknowledging the received packet. Due to
the increase in the CE count, the sender then reduces its
sending rate.

4.3. ECN validation

To determine whether the network path supports ECN,
the sender sets ECT(0) (or ECT(1)) in the first few pack-
ets. If none of these packets are acknowledged, the sender
assumes the packets have been dropped and that the path
does not support ECN. The sender then disables ECN.

If the sender receives an ACK frame containing the
ECN counts, he has to validate them [2, Section 13.4]. It
is important that all ACK frames being used for ECN val-
idation increase the largest acknowledged packet number.

There are several scenarios that lead to a failed ECN
validation. In the following, we define A_ECT_0O as the
ECT(0) count in the current ACK frame. S_ECT_0 stands
for the total number of ECT(0) codepoints set by the
sender. Similarly, A A_ECT_0 defines the difference be-
tween the ECT(0) count in the current ACK frame and the
ECT(0) count in the previous ACK frame. A S_ECT_0
represents the number of packets that are newly acknowl-
edged and were sent with the ECT(0) codepoint set. In
the same way, A_ECT_I, A A_ECT_I, A A_CE and
S _ECT I are defined.

As specified in [2, Section 13.4], the following condi-
tions are verified:
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Figure 5: ECN with QUIC

1) The ACK frame contains ECN counts

2) AA_ECT_ 0+ AA_ECT_CE > AS_ECT_0
3) AA_ECT_1+ AA_ECT_CE > AS_ECT_1
4) A_ECT_0<S_ECT_0

5) A_ECT_1<S_ECT_1

If any of these conditions do not hold, ECN has to be
deactivated. 1 validates that the receiver mirrors the ECN
codepoints and that the ECN field of the IP header does
not get cleared from a node on the network path. 2 and
3 are used to detect the remarking of ECN codepoints.
For instance, a node on the network path could change a
CE codepoint to ECT(0), although the packet was initially
sent with an ECT(1) codepoint. Since ACK frames can get
lost, it is possible that e.g. AA_ECT_0 >= AS_ECT_0
holds, which explains the inequality used in 2 and 3.
However, the total number of A_ECT_0/ A_ECT_1 can
never exceed S_ECT_0/S_ECT 1. Thus, 4 and 5 are also
used to detect the remarking of ECN codepoints.

5. Support of ECN with QUIC

One of the biggest challenges of using ECN over
QUIC is the lack of support. Sander et al. [16] have been
able to show that by the time of their study in 2023, QUIC
with ECN could only be used with less than 2% of the
hosts they investigated. In order to use ECN with QUIC,
the codepoints have to be mirrored (see Section 4.1),
and the validation of the ECN codepoints has to succeed
(see Section 4.3). By conducting several experiments, they
were able to pinpoint the causes of the low support of ECN
with QUIC. This section discusses the main findings of
Sander et al. [16].

5.1. Missing ECN counts

In case it is possible to access the ECN codepoints of
the IP header, the QUIC standard [2, Section 13.4] defines
the mirroring of ECN codepoints as a MUST. However, a
previous statement in the standard makes QUIC support
seem to be optional, causing ambiguities [18]. Actually,
only 20% of QUIC hosts that were tested by Sander et al.
include the ECN counts in the ACK frames. The interop
runner [19] shows that only 6 out of 17 tested QUIC
implementations support ECN.

5.2. Undercounting of ECN codepoints

Mirroring the ECN codepoints is not sufficient for
using ECN with QUIC. Instead, the sender also validates
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the reported ECN counts (see Section 4.3). Sander et
al. [16] were able to show that over 90% of the domains
that support ECN mirroring fail this validation stage. Over
one-half of them acknowledged fewer ECN codepoints
than they had been sent with. They were able to show
that this is mainly because of issues in the QUIC imple-
mentation used by the receiver and not due to nodes in
the network.

5.3. Remarking of ECN codepoints

About one-third of the domains investigated report
ECT(0) codepoints as ECT(1) codepoints. This is, how-
ever, not caused by the used QUIC stack but mainly by the
network operator Arelion (ASN 1299). When repeating
the measurements from various geographically distributed
origins, the overall observed pattern stays the same. In
fact, globally, only about 0.3% of the tested domains
meet all the requirements during the validation phase.
Even if the validation is successful, it does not mean that
the endpoint or routers on the network path actually use
ECN. [16]

6. Possible Improvement

The current QUIC standard [2] specifies the use of
ACK frames with the type 0x03 when using ECN. As
explained in Section 4.1, these ACK frames contain the
total count of ECN codepoints the receiver has observed.
This information, for instance, is used by the Prague
Congestion Control Algorithm [20]. However, it still lacks
the information on which packet was marked with which
codepoint. This fine-grained information could be valu-
able to react even more efficiently and effectively to CE
packets, according to Seemann et al. [21]

Therefore, they proposed a new QUIC ACK frame
type, which includes the ECN codepoint that was set in
the packets of each ACK range. If necessary, ranges have
to be split into multiple ranges such that all packets within
a range share the same ECN codepoint. [21]

It remains to be seen if this idea will be included in
future versions of QUIC and if congestion algorithms can
actually profit from this fine-grained information.

7. Conclusion

In this paper, we have explained how ECN works and
how it can be used with QUIC. ECN is used to notify a
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sender about congestion in the network. To achieve this, a
router can mark a packet with the congestion experienced
codepoint. QUIC then mirrors the codepoint back to the
sender using ACK frames, and the sender can reduce its
sending rate.

We have also discussed that the biggest impediment of
using ECN with QUIC is the missing support in common
QUIC implementations and misbehaving network opera-
tors.

While ECN can optimize QUIC’s congestion control
by trying to avoid retransmissions, it is currently barely
used. Having more QUIC implementations supporting
ECN would be essential for a wide adoption and usage
of ECN with QUIC. In order to demonstrate the impact
of using ECN with QUIC on throughput, latency, and
packet drops quantitatively, performance measurements
and comparisons could be conducted as part of future
work. Depending on the results, this could speed up the
support and use of ECN with QUIC.
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Abstract—The second-hand market for domain names is a
special market as domains are intangible and unique goods
with a wide price range. Most research papers focus on the
appraisal of domain names, however, how and when domains
are sold or auctioned has not been analyzed before to our
knowledge. This paper presents a more holistic examination
of the domain name market by analyzing auction and sales
data from multiple marketplaces. We provide insights into
properties and trends of the domain market, as well as
characteristics of the domains that change hands.

Index Terms—domain name, domain registrar, second-hand
domain market, domain auction

1. Introduction

Domain marketplaces allow the trading of domains
that have expired or which current owners do not wish
to use. On these marketplaces, prices of domains can
vary greatly. To give a recent example, in September
2024, the domain rocket.com was traded for 14 million
USD [1] while the majority of domains sell for far less.
As such, domains present a special type of intangible
good: According to Wu et al. [2], traditional accounting
methods cannot be used to calculate the marketvalue of
a domain due to its non-financial properties. In addition,
each marketplace can employ their own policies on selling
and buying, and offer a variety of other services. For
sellers, it is crucial to know whether investing in domains
is lucrative and which marketplace is most suited. For
buyers on the other hand, knowing what to expect from the
second-hand market can help decide if they should pursue
their desired domain or register an alternative domain.
This paper analyzes five second-hand marketplaces for
domain names. Using data collected from auctions and
sales, we investigate how and when domains change own-
ership by analyzing bidding behaviors of potential buyers,
characteristics of sold domains, and properties of the
domain marketplaces. The rest of the paper is structured
as follows: Chapter 2 presents background information on
domain registration and a general overview of the domain
providers. Chapter 3 summarizes related work. Subse-
quently, we present the data collection and processing,
and display the results of the analysis in Chapter 4.

2. Background

In this chapter, we give a brief overview of domain
names and their life cycle in order to understand the
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domain name market. Afterward, the domain providers
and their most important policies are introduced.

2.1. Domain Names and their Life Cycle

Domain names are organized in a hierachical structure

that is read from right to left: A domain starts at the
DNS root (.), followed by the top-level domain (TLD) and
second-level domain (SLD) separated by a period [3], [4].
Every combination of TLD and SLD is allowed exactly
once in a domain name registry, and the length of each
segment is limited to 63 characters [4].
Domain names are sold through registrars in coopera-
tion with registry operators, organizations that manage
individual TLDs and register domain names in a DNS
database [3]. The registration duration usually lies be-
tween one and ten years at a time. To retain possession
of a domain after that period, a renewal fee needs to be
paid [5]. If a domain owner decides not to renew their
registration, an expiration process will be triggered which
can vary depending on the TLD. Website visitors might
see a parked page showcasing information on where the
domain can be acquired and advertisements to generate
revenue. For generic TLDs, the expiration process goes
roughly as follows: Up to 45 days after expiring, the
domain owner can pay the standard renewal fee to keep
the domain. If that does not happen, the domain enters
the redemption grace period which lasts 30 days, and a
renewal will incur an additional fee [5]. If the owner lets
the deadline pass, the status of the domain will change to
pending delete. Several days later, the domain will be
deleted from the registry’s database and becomes available
for re-registration [5]. Some registries of country-code
TLDs will immediately start the redemption grace period
upon expiry [6].

2.2. Provider Overview

The auction and sales data was collected from the
providers Sedo, Sav, Namecheap, GoDaddy and Snap-
Names. Below are their most important characteristics.

Market Listing Types. All providers offer auction and
’Buy now’ types of sales on their platforms. Sedo, Go-
Daddy and SnapNames additionally have a "Make offer’
type that allows for negotiations between sellers and buy-
ers.

Auctions by Private Sellers. Selling domains through
auctions as an individual is only possible on Sedo and
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Figure 1: Domains offered and sold per month in marketplaces (on a logarithmic scale) and the sale ratio in percent.

Sav. On Namecheap, GoDaddy and SnapNames, private
sellers are limited to sale-type listings.

Fees. Sav charges the lowest fee at 4% of the final sales
price while GoDaddy has the highest rate at up to 25%
and a 15 USD minimum for each sale. SnapNames and
Namecheap have a fee of 20% and 10%, respectively. On
Sedo, it costs 59 EUR to put a domain up for auction.
Alternatively, it can start as a "Make offer’ that converts
into an auction listing free of charge after the first offer
was received. In both cases the fee is 15% of the final
price.

Cross-listing. Sedo explicitly forbids cross-listing do-
mains for sale in other marketplaces. Namecheap, Go-
Daddy and SnapNames cross-list auctions and sales from
their partner platforms to promote a successful and faster
sale.

Auction Format. All five providers use a soft-close auc-
tion format whereby an auction is extended by five to ten
minutes everytime a bid is submitted five to ten minutes
before it ends.

3. Related Work

There are several publications on domain appraisal.
In one of the earlier works on this matter, Wu et al. [2]
realized that, while domain names should be treated as
intangible assets likewise to intellectual property, other
methods of appraisal are needed. They identified multiple
factors affecting the value of a domain, among the more
significant ones, the domain structure, i.e., letters and
numbers in a domain, its length and the TLD. However,
their model includes some subjective criteria, such as
impression and creativity.
Subsequent works by Dieterle and Bergmann [7], Bikadi
et al. [8] Moro-Visconti [9] and Tang et al. [10] use very
similar domain structure criteria. In addition, the number
and types of keywords, and their respective search result
volumes are contributors to a domain’s value [8], [10].
Other metrics include revenue from advertisements [9] and
various page ranks [8]-[10], e.g. Alexa Rank and Google
Page Rank.
Thies [11] provides an overview of the domain market
which describes the price index of domains in general
and a trend in domain registrations from 2006 to 2013.
According to Thies, domain registrations and the price in-
dex show an overall upward trend that rises and falls syn-
chronously with the development of the IT economy [11].
Furthermore, their study provides a relative ranking of top-
level domain prices which found the com TLD to be the
most valuable one when SLDs are the same [11].
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4. Evaluation

Sav, Namecheap, GoDaddy and SnapNames offer
snapshots of their respective marketplace in the form of
CSV and JSON files. Sedo is more protective of their data
and restricts access to the files from the *expired domains’
category. Data collection on SnapNames has begun late in
2024 and is, thus, limited to the months of October and
November. Several marketplaces include data for domains
about to expire or domains about to go on auction. For
the analysis, we consider domains that were in an ongoing
auction or sale when the snapshot was taken.

The files were downloaded once per day because of Go-
Daddy’s update rate. As a result, certain inaccuracies arise
from the granularity of our data: A file includes auctions
and sales that have not ended at the time the file was
created. If bids were submitted between file creation and
the end of an auction, the final bid count and auction price
would not be captured by the market snapshot the next
day. For this reason, the final bid count and auction price
are referred to as minimal final bid count’ and *minimal
final price’. Similarly, one can only assume that an auction
without bids will lead to a ’likely unsold domain’.

The analysis starts at a macro level at which the overall
numbers and characteristics of marketplaces are examined.
Afterwards, we zoom in and take a closer look at the
details of auctions and the properties of sold domains.

4.1. Providers

The data was collected from auctions and sales of
32,422,508 unique domain names across five providers
from the end of December 2023 until November 2024. To
put that number into perspective: according to Verisign’s
quarterly domain report, 362 million domains are regis-
tered across all TLDs [12]. Figure 1 shows the trends
of domains offered and sold on each platform and the
monthly sale ratios. Every auction with a final bid count
of at least one counts as sold as bids are binding. Among
the five providers, GoDaddy appears to be the biggest mar-
ketplace with an average of 1.6 million domains offered
per month. It is followed by Namecheap and Sav with
around 830K and 130K per month, respectively. Sedo has
a monthly average of 44K in expired domains. SnapNames
has been excluded from Figure 1 as there is only data
from two months. In the time period considered, Sedo,
Namecheap and GoDaddy appear to have equilibriums
between the number of offers and sales: The monthly sale
ratios vary by less than 0.5% for these three. Sav, on the
other hand, looks more volatile as the ratio changes by
up to 1.8% between months. Table 1 displays the average
sale ratios.
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TABLE 1: Average monthly sale ratios in marketplaces.
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Cross-listing had a small effect on the final numbers as
26425 cross-listed domains were found in the dataset.
Most cross-listings occurred between GoDaddy and Sav
and GoDaddy and Namecheap. Sedo’s cross-listing ban
appears to be well enforced since no cross-listing in any
other marketplace was found. Furthermore, each domain
that was cross-listed appeared at most in two marketplaces
at the same time. Generally, cross-listing is a way to pro-
mote auction and sale listings and attract more attention
from potential buyers. For private sellers on Namecheap,
GoDaddy and SnapNames, cross-listing their domain in
other marketplaces is the only possibility to auction off
their domain. Listing domains in an auction and another
format is not problematic as marketplaces allow sale-type
listings to be cancelled [13], [14].

Mon Tue Wed Thu  Fri Sat
Weekday

100%
5%
50%

25%

Relative activity

0%

Sun

I'iSedo I 1Sav ! ' Namecheap 11 GoDaddy I # SnapNames

Figure 2: Relative activity per weekday in marketplaces:
No significant peaks or troughs at any provider.

Next, the activity in each marketplace is examined.
Whenever a bid count for a domain listing increases
from one day to the next, the count for that weekday
is incremented. Figure 2 contains the combined activities
of the five providers. Each bar represents the number
of bids relative to the respective highest bid count of
the week per seller. The more prominent fluctuations of
Sedo are explained by the small available dataset. The
absolute difference between minimum and maximum is
72 bids. Apart from a small dip around Saturdays for
all remaining providers, the distributions don’t have any
significant peaks or troughs in activity which suggests
that people bid on domains on all weekdays, including
weekends. Intuitively, this makes sense since an auction
listing can start and end on any day of the week. To better
understand the bidding behavior, Section 4.2 will delve
into when bids come in for individual auctions.

4.2. Auctions

All five providers state in their marketplace terms
that bids cannot be retracted once submitted. As such, a
query for the highest bid amount per domain listing was
performed to get a number that should at least provide a
bottom line for the final auction price. The same is done
for the number of bids each auction receives. The results
are shown in Figure 3. Outliers from rare occasions in
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Figure 4: Percentage of days to 50%/100% bids: Most
final bids come in the last 10-20% of an auction.
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which domains sell at very high prices would impair the
readability of the figure and are, therefore, discounted for
using the 95th percentile. Instead, these special cases need
to be analyzed separately in future work. Approximately
73% of all domains sell for likely less than 50 USD and
83% for likely less than 100 USD. In line with the low
average sales price, almost 77% of auctions from sold
domains likely end with less than five bids. The mean
and median bid counts for each bin are marked by the
orange and red line, respectively. As prices increase, both
mean and median bid counts increase as well while staying
relatively close. Their trends suggest that auctions ending
with high prices usually receive a higher number of bids.
To find out whether high bid counts result from more
bidders participating or a small number of buyers submit-
ting more bids, more information from the marketplaces is
needed. Solely Sav provides data on how many individual
bidders partake in an auction, thus, our analysis is very
limited in this regard. Out of all successful auctions on
Sav, about 87% have one or two bidders per auction. At
least for the marketplace of Sav, this distribution matches
the findings of Roth and Ockenfels [15].

To examine when each auction received its likely winning
bid, the total auction duration and the highest number of
bids for each auction listing were determined first, then,
after what percentage of the total duration that bid count
was reached. With the same method, the percentage of
time passed until registering 50% of the final bids was
obtained. The line graph for auctions that have just
received their final bid (i.e., 100% of their bids) in Figure
4 displays a steep incline after 80% of auction time,
indicating that a large number of auctions receive their
likely winning bid in the final 10-20% of listing duration.
Combined with the graph representing the time it takes to
receive half of the respective final bids, one can infer that
bidding activity appears to increase in the last 10-20% of
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auction time. This observation is consistent with the late-
bidding behavior described in [15]. Late-bidding is more
prominent in hard-close auctions but it exists to a lesser
degree in marketplaces that automatically extend auction
timers.

However, one should bear in mind that the data here does
not have the same granularity as [15]. Consequently, 10%
of an auction duration can be an entire day. While up to
half of the bids are submitted late for the majority of sold
domains, this does not necessarily mean that interested
parties are engaged in a bidding war in the last hour of
an auction.

4.3. Properties of Domains Sold

In this final section of the analysis, the focus lies on the
characteristics of domains and what sets apart those that
have been bought from domains that seem less desirable.
Taking advantage of the findings in [2], [7]-[10], the
length of the domain name without TLD/country-code
SLD (e.g. co.uk), the number of numerical characters
and the number of hyphens are picked as attributes to
analyze. For each property, the dataset is split into sold
and unsold domains. Subsequently, the domain lengths,
i.e., the number of characters until the first period, and
the number of hyphens and numerical characters are deter-
mined. Lastly, the sale ratios for each respective attribute
value were calculated. For instance, the sale ratio for the
hyphen count of one is the ratio of sold domains with one
hyphen to all listed domains with one hyphen. The results
are summarized in Figure 5.

As described in Section 3, length is one of the most
important factors in determining a domain’s desirability.
Short domains are easier to remember, type out and more
rare [10]. To illustrate this, using letters from the English
alphabet, there are 676 possible two-letter and 17576
three-letter SLDs. If the letters need to form a word or a
nice-sounding combination, the number of possible SLDs
is further reduced. Therefore, short domains are generally
more valuable. This is reflected in our data as the sale
ratios are visibly higher for short domains. In addition,
sold domains have a slightly lower mean and median
length: 10.87/10 vs 11.98/11. The steeper decline of sold
domains as length increases can be interpreted as long
domains being less in demand.

The number of hyphens and numerical characters in a
domain name displays a similar negative correlation with
desirability. Both graphs have a peak in total sales and sale
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ratios at zero hyphens and zero numbers, respectively. The
hyphen count in the set of sold domains does not exceed
seven and most sold domains have less than six digits.
Hyphens and numbers can impede the memorability of
domain names and even lead to misunderstandings [9].
For example, the number ’4’ being used symbolically for
“for’, or not spelling out hyphens when communicating a
domain name verbally.

Apart from a structural analysis, the English keywords in
sold domains are examined. To find the words a domain
is composed of, each domain name is first tokenized and
then matched against a corpus of English words from
the Python NLTK library. Keywords in which single letters
have been replaced by numbers, e.g. ’3’ for the letter 'E’
cannot be recognized. Figure 6 shows the most frequent
English words that were identified. The size of a word
is indicative of how often it occurred. The word cloud
mostly contains keywords that are short and generic, yet
descriptive enough to give potential visitors an idea of
what the contents of a website might be. For example,
’insurance’ in a domain name makes it easy to guess
what type of business that domain belongs to. Plugging the
keywords into ahrefs, a tool that estimates search engine
volumes, further reveals that 82% of these words return
more than 100,000 search results each.

1kitchen vou Service. digital
clougwl‘]ome school ) pCr‘%San
all _hub blog group beauty "5, 4,

US2 travel club ma”m..‘-f!ﬂ;\f]%,v .
5 betson he spa center - your
. wor 1d
city crypto e loveoautodata "5
art life ~media pay -
- buy servicesweb grille
L -
5 0 global free get sand h
£ g labd . for _.social health

He, MSIC online otel

green 3 x b1g ote

star @ 5 . “ solutions
house 0 2 coin__c  food book

one academy live insurance

Figure 6: Frequent English keywords found in sold do-
mains.
S. Conclusion and Future Work

This paper analyzes second-hand markets for domains
by examining the activity in multiple marketplaces, the
outcome of auctions, bidding behavior of their customers,
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and characteristics of the domains sold with the help
of [2], [7]-[10]. Generally, marketplaces display little fluc-
tuation in the number of offered and sold domains. While
the bidding activity remained fairly consistent throughout
a week, most auctions of sold domains receive up to half
of their bids fairly late in their listing duration. Lastly, we
showed that the set of sold and unsold domains differ in
their domain structure, i.e., SLD length, the number of
hyphens and the number of numerical characters.

The analysis was in part limited by the rate at which
the data was fetched. More frequent snapshots of mar-
ketplaces could reveal more insights into the late-bidding
behavior and possibly yield more accurate bid counts and
final prices.
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Abstract—This paper evaluates the performance impact of
compiler-provided profile-guided optimization (PGO) on a
data plane packet processing application that utilizes the
Data Plane Development Kit (DPDK).

We explain the compilation and application process for
using PGO and show differences in the setup and perfor-
mance compared to the regular (no-PGO) DPDK application.
In our case, we gain slight but consistent performance ben-
efits from applying PGO. Throughput increases by 0.06%,
and latency is decreased by 0.36%.

When applying PGO to the entire application (not just
DPDK), we also find that PGO may not always improve
performance, as that application is sometimes slower than
the one that had no PGO applied.

We conclude that PGO can be a valid optimization
technique for packet processing applications when keeping
limitations in mind and running performance tests to ensure
a positive impact.

Index Terms—data plane, DPDK, PGO, packet processing
throughput, packet processing latency

1. Introduction

The “Data Plane Development Kit” (DPDK) [1] is an
open-source framework for userspace packet processing.
Data plane (as defined by Bifulco and Rétvari in [2]) refers
to the part of a router that performs the routing decisions
given a policy (which originates from the control plane).
For an IP router that is determining where an IP packet
is sent. DPDK is implemented in userspace so it avoids
overhead-expensive system-calls, which can improve the
performance of applications using it [3]. Since processor
state data has to be saved/invalidated and restored later
(described by Gerhorst et al. in [4]), system calls can take
thousands of CPU cycles to execute, as was shown by
Soares and Stumm in [5].

When using DPDK, packets skip the processing done
by the standard network stack. Copy operations between
user and kernel memory are also omitted, as explained by
Gallenmiiller et al. in [6]. This can improve performance.

A further source of performance improvement can
be profile-guided optimization (PGO). Kumar describes
how PGO works in [7]: profiling is used to collect data
on how a program behaves during runtime. That is then
employed to optimize future executions of the program
by including the gained knowledge on the code behavior
during optimization/compilation.

The goal of this paper is to evaluate whether PGO can
have a performance benefit on a DPDK-based application.

Seminar IITM WS 24/25

85

2. Related Work

Miano et al. introduce "Morpheus" in [8], which opti-
mizes data plane code (e.g. such that uses DPDK) using
a form of PGO (in combination with other techniques).
During evaluation (in comparison to the baseline), Mor-
pheus improves the throughput of a DPDK application by
up to 469% in some cases, while not affecting it in others.
Latency is affected in a strongly positive way (decreasing
it by up to 76%) in some cases while in other cases there
is almost no effect.

Wintermeyer et al. introduce "P2GO" in [9], a system
to optimize P4 data plane programs using traffic traces
(representing real-world usage). Resource allocation is re-
duced to a realistically necessary (instead of theoretically
possible) level, leading to increased efficiency.

3. Profile-Guided Optimization Background

PGO is often implemented in a two-stage process [7]:
first, the program is compiled with special instructions/-
function calls that generate profiling information, such as
how often a line of code is executed [10]. This is then
run, and the profiling data is collected.

In the second step, the profiling results are taken as
optimization input when compiling the code a second
time, taking into account the commonly observed behavior
of the program. That allows the compiler to optimize the
code specifically to what is expected to be needed during
runtime. That second version is then used as the final
program since it has been optimized and does not contain
the profile-generation overhead anymore.

An example of an optimization that could be per-
formed based on profiling data is branch prediction. GCC,
for instance, has a mechanism to influence a proces-
sor’s branch prediction mechanism (accessible using the
__builtin_expect function, see [11]). When using PGO,
we can collect statistics on whether a jump instruction is
taken or not during the execution of the first version of
the program. We can then use that information to influence
the branch prediction to take the branch that is likely to
be correct based on real-world runtime data.

What code could look like if one were to perform that
manually is shown in Figure 1 using an example.
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if (x < 0) {
// branch true
} else {

// branch false
}

lProﬁling shows else branch
likely to be taken
if (__builtin_expect(x < 0, 0)) {
// branch true
} else {
// branch false

}

Figure 1: Before and after a branch prediction hint is man-
ually applied, assuming profiling has shown the condition
to likely be untrue, i.e., the else branch is most likely
taken.

One caveat has to be kept in mind: The data/envi-
ronment that the profile-generating program is executed
on should be quite similar to what the final program
will mostly encounter. If that is not the case, profile-
guided optimizations could decrease performance since
they provide false hints to the compiler about the runtime
data. This will then likely lead to it generating unfitting
optimizations [7]. Going back to the previous example,
we can imagine an input that causes the jump instruction
to be taken at a rate of 90%. The compiler generates code
including static branch-prediction information indicating
to the CPU that the branch is expected to be taken. When
the actual data then differs, for example by making the
program take the branch at a rate of only 20%, the CPU
will still predict the branch to be taken, even though it
is not taken in most cases. That leads to the processor
performing unnecessary operations in the wrong branch
and having to go back once the actual result of the if
statement’s expression is known. The CPU’s pipeline will
therefore be empty and have to be filled again, decreasing
instruction throughput and therefore performance.

4. Test Setup

This section describes how reproducibility is ensured,
the PGO is applied, and the tests are executed.

4.1. Ensuring Reproducibility

Since we want the results to be reproducible and as
independent of environmental influences as possible, we
use the TUM Chair of Network Architectures and Ser-
vices’ testbed infrastructure with the plain orchestration
system (pos) introduced by Gallenmiiller et al. in [12].
This system allows us to use test nodes connected with
10GigBaseLR (R fiber over 1310 nm optics) to evaluate
the influence PGO has on performance metrics. The nodes
are reset and equipped with an OS image for each set of
runs executed, ensuring reproducibility. There are different
test nodes. We use a “device under test” (dut) (where
the program to be tested is run) and a peer that the dut
communicates with. For some tests, we also use a capture
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device connected with an optical splitter to accurately
determine latency. pos coordinates and synchronizes the
test execution and distributes the program/data among the
test nodes.

All utilized nodes are running a Debian "bookworm"
image and are equipped with an Intel Xeon D-1518 quad-
core processor running at 2.2 GHz combined with 32 GiB
of DDR4 memory. Intel X552 10 GbE SFP+ network
interface controllers (NICs) are used and code is compiled
using GCC 12.2.0.

We use two test setups: One for measuring through-
put and one for measuring latency. Both are based on
MoonGen (introduced by Emmerich et al in [13]), which
is a packet generator that uses libmoon as a library.
libmoon relies on DPDK.

When running the regular setup (without PGO), the
test nodes are first rebooted and the code (scripts and
MoonGen/libmoon/DPDK) is copied/cloned to them. It is
then compiled right on the nodes before pos initiates the
actual tests, which are repeated multiple times to achieve
more accurate results.

4.2. Applying PGO

Since PGO requires a modified, more complicated
two-stage compilation/execution process, we need to mod-
ify the setup and execution phases of the existing code-
base. The PGO code evaluated in this paper can be found
in [14].

4.2.1. Compiling and Executing DPDK to Generate
Profile Data. The first step of the two-stage PGO compi-
lation process calls for compiling the program such that it
generates profiling information while running. We do that
in the compilation/setup phase the device-under-test node
goes through.

The main part of the program that should be com-
piled with PGO is DPDK. In the MoonGen version
we use, DPDK is compiled from a build script inside
the aforementioned libmoon using Meson, which is a
build system (see [15]). We therefore need to modify
the build script such that it adds the necessary flags
to the meson build command. We use the Unix sed
stream editor with a fitting regular expression to achieve
that. sed looks for the meson build command inside
the build script and replaces it with a Meson command
that sets the C/C++ compiler/linker flags (-Dc_args,
-Dcpp_args, -Dc_link_args, -Dcpp_link_args) to
the GCC "-fprofile-generate=<profile-dir>" flag
(see [16]). If concurrency is present in the part of the code
that uses PGO, we also add "-fprofile-correction" to
account for profile data that may not be program-flow
consistent (see [17]). Compilation in the second stage
(applying the profile) might fail otherwise. That already
takes care of compiling DPDK itself to generate profile
data.

Since the previously built DPDK code is linked to in
the libmoon build stage (which uses CMake, another build
system, see [18]), we need to add the library necessary to
generate the profiling information (1ibgcov.a, the GNU
(test) coverage library, see [10]) to the libraries CMake
links against when building MoonGen/libmoon. We there-
fore add according target_link_libraries commands
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to the CMakeLists.txt files present in the MoonGen code-
base on the node before calling the build script.

In the test setup execution phase, profiling data will be
written to the directory specified by <profile-dir>. Each
DPDK source file that was used during program execution
will have a profiling file (.gcda) associated with it inside
that directory. It stores profiling information about the
code inside the according source file to use when applying
PGO for it. This folder will get copied back to the main
orchestration node (the node pos was launched from) since
it would not be available for future use on the dut after
rebooting and loading another image.

4.2.2. Compiling and Executing DPDK to Use Profile
Data. The second stage (application of profile data to op-
timize the code) looks quite similar from our perspective.
We need to apply the previously generated profile data.
That requires us to copy the profiling data generated in
the runs of the first stage to the dut node before setting it
up. Also, the meson build has to happen with the GCC
flag "-fprofile-use=<profile-dir>" (see [17]) in-
stead of "-fprofile-generate=<profile-dir>", which
will make GCC apply the profile data generated in the
profiling runs to compile specifically optimized code.
"-fprofile-correction" may also need to be applied
in some cases as mentioned before.

The compiler will complain that for some files, no
profiling information is available. That is expected since
DPDK is built as a library, so the entire DPDK codebase
is compiled. However, only certain parts of the code (e.g.
some functions) are used by MoonGen, so others have
never been executed and have therefore not generated any
profiling data. We confirm the assumption that PGO is
still being applied correctly by trying the second stage
compilation (applying profiling data) with an empty di-
rectory as the <profile-dir>. We can see considerably
more warnings about missing profile information. The
difference between this and the regular compilation with
a filled <profile-dir> has to be the set of files for
which profile data was successfully found and applied in
the regular setup. The performance results of this stage’s
execution phase are the ones we are interested in for our
comparison since the program had PGO applied to it.

4.2.3. Adding Other Parts of MoonGen. We can-
not only apply PGO to the DPDK part of MoonGen,
but also to the MoonGen code itself. To achieve
that, we add the flags as described in subsubsec-
tion 4.2.1 and subsubsection 4.2.2 to the various CMake/-
Makefile invocations in the MoonGen/libmoon build
script. Again, we need to use two different flags
("-fprofile-generate" and "-fprofile-use") for the
two stages. PGO for those parts of MoonGen did not
work without "-fprofile-correction", so concurrency
is always present there.

By looking at the generated files inside the directory
passed to GCC, we can see that only a small set of files
was added to the PGO step compared to the large amount
from DPDK. The vast majority of optimizations, therefore,
have likely already been applied when PGO was only used
with DPDK.

Seminar IITM WS 24/25

87

5. Test Results

We perform throughput and latency tests, each with
three different cases we can compare: no PGO used,
PGO only applied to DPDK, and PGO applied to the
entirety of MoonGen (as described in subsection 4.2). The
application on the dut forwards packets between two ports
without modifications.

Throughout the tests, we observe performance results
with very small margins between the different optimiza-
tion levels (i.e., if and where PGO was applied). To
ensure significance, we run tests multiple times, while also
alternating the order of the optimization levels to mitigate
effects such as hardware warming up. We find the results
to always have the same trends regardless of the order or
the set of runs. We therefore assume the results to be valid
and not based on fluctuations.

5.1. Throughput Tests

For the throughput test setup, results are taken from
the device under test. It measures how many packets, and
following from that, bytes are sent/received per second.

The exact throughput numbers are taken from the
loadgen_runX.stdout files, where X is the number of the
run. We average the throughput over all runs of a set to
balance out inaccuracies.

Figure 2 shows the throughput performance results.
We can see that the program which had PGO applied
to only DPDK performs slightly better than the program
which does not use any PGO. Both the RX (receive), and
the TX (transmit) throughputs are about 0.06% higher for
the PGO program. When PGO is applied to the whole
program, it performs just slightly worse for both RX (not
visible in Figure 2 due to rounding) and TX throughputs
than the no-PGO version. This result is surprising, since
when applying PGO to the entire program, we also apply it
to the DPDK component present in MoonGen. Under the
assumption that the DPDK component with PGO performs
the same in both scenarios, these results indicate that the
non-DPDK part of MoonGen does not only not profit from
PGO, but is harmed by it performance-wise.

5.2. Latency Tests

For the latency test setup, results are taken from the
capture device which is connected to the other two nodes
using an optical splitter. That allows it to measure pre-
cisely when a packet is received and when it is answered.
It can then calculate accurate latencies from that.

The latency numbers are taken from the summary of
the capture_runX.stout files, where X is the number of the
test run. The values over all these files of a test set are
again averaged to balance out fluctuations.

Figure 3 shows the latency performance results. Again,
the program that had PGO only applied to DPDK performs
best, achieving the lowest latency on average. It is roughly
0.36% lower than that of the no-PGO program. Apply-
ing PGO also to the rest of MoonGen proves counter-
productive for performance, increasing latency compared
to the DPDK-only PGO program by roughly 0.10%. While
its performance was below that of the no-PGO program in
the throughput tests, it is now slightly faster (decreasing
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latency by 0.26%), but still slower than the version that
had PGO only applied to DPDK.
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Figure 2: Performance results of the MoonGen DPDK ap-
plications testing throughput. Results are divided into RX
(receive) and TX (transmit) throughput for each version
of the program. We compare performance results without
PGO (No-PGO), with PGO only applied to the DPDK
component of MoonGen (Only-DPDK-PGO), and with
PGO applied to the entire program (Full-PGO).
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Figure 3: Performance results of the MoonGen DPDK ap-
plications testing latency. We compare performance results
without PGO (No-PGO), with PGO only applied to the
DPDK component of MoonGen (Only-DPDK-PGO), and
with PGO applied to the entire program (Full-PGO).

5.3. Interpretation of the Performance Results

The performance results show a slight performance
benefit (increase in throughput and decrease in latency)
when applying PGO to DPDK only. Applying it to the
rest of the program proves to be counter-productive in
our tests. We do not have an explanation for this behavior,
though we can form some assumptions.
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While the DPDK-only PGO latency tests worked
without the "-fprofile-correction"-flag, that was not
the case for the whole-program PGO tests. This implies
that concurrency is present in the non-DPDK part of
MoonGen, since this flag is used to mitigate profiling files
corrupted by concurrent execution of profile-generating
program code [17].

We can also see that the performance benefit from the
no-PGO to the DPDK-only PGO program is considerably
larger in the latency tests compared to the throughput
tests (by about a factor of six). When taking into account
that all throughput PGO runs (DPDK-only and whole-
program) needed the "-fprofile-correction"-flag (im-
plying that concurrency is also present in the DPDK part
here, likely through different usage of the DPDK library),
it could be inferred that concurrency in profiled program
parts might be hindering performance when using PGO.

5.4. Comparison with Previous Work

When comparing our results to the ones obtained on
a DPDK application using Morpheus (as described in
section 2), we achieve a drastically lower speedup. How-
ever, Morpheus’ approach is quite different from ours, so
comparability is lacking. While we restrict ourselves to
regular PGO (as supported by modern compilers such as
GCC through gcov-profiling, see [10]), Morpheus com-
bines several techniques, including static code analysis [8].

While our approach is limited to profiling the CPU
domain, Morpheus’ approach does not have this limita-
tion. It can access domain-specific information relevant to
packet-processing applications, such as match-action table
access patterns [8].

6. Conclusion and Future Work

We showed that regular compiler profile-guided opti-
mization can have a positive impact on both the through-
put and latency performance of a DPDK application.

The usage of PGO is only moderately complicated,
requiring an extra stage for compiling with the profile-
generating instructions/function calls. Once that is done
and profiling has been generated, it is as simple as apply-
ing the generated profiling information while compiling.
The generated code can then be used just like it would
be without PGO while potentially providing improved
performance.

Also to be kept in mind is that PGO does not always
have a non-negative impact on performance, as seen with
the Full-PGO tests in section 5. This shows performance
benefits should not just be assumed to exist, but actively
verified for a worthwhile PGO application.

In the future, it would be interesting to evaluate dif-
ferent PGO approaches, such as AutoFDO introduced by
Chen et al. in [19]. Evaluation could be done based on
ease of use and performance.

Additionally, it could be beneficial to evaluate our
applications using PGO in a more real-world environment,
where the traffic the profiling was generated on may differ
from the traffic that is present. This could demonstrate
what influence the level of similarity of the profiling to
the application data has on performance.
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Abstract—The Transport Layer Security (TLS) protocol is a
cornerstone of modern web security. In the TLS ecosystem,
the configurations of servers are mostly concealed from
clients, as servers only react to the clients’ proposals during
the handshake process. Scanning and fingerprinting ap-
proaches address this gap by performing several handshakes
with the server in order to extract as much information as
possible about its TLS configuration. This information can
be helpful in improving the network security by discovering
misconfigurations and identifying malicious servers. This
paper classifies existing TLS scanners into three categories.
We introduce every category and discuss its characteristics
while highlighting its advantages and drawbacks. We also
introduce a local testbed to compare the performance of
various scanners based on their ability to distinguish between
different TLS configurations.

Index Terms—Active scanning, Fingerprinting, TLS, SSL

1. Introduction

Throughout the last years, Transport Layer Security
(TLS) has become a widely used security protocol and the
standard for encrypted communication over the Internet
[1]. It guarantees the integrity and confidentiality of the
data as well as the authentication of the involved parties.
The TLS protocol begins with a handshake where the
client and the server negotiate a common cryptographic
base. In the handshake, the client shares all their capa-
bilities with the server. The latter, however, only chooses
from the client’s proposals according to its internal config-
uration. As a result, the server’s TLS capabilities remain
unclear for external parties.

A possible way to uncover this information is by passively
listening to the server’s TLS communications. Based on
the content of the captured data packets, we attempt to
reconstruct the server’s TLS configuration.This approach
does not generate any additional traffic and does not strain
either the target server or the network. It is, however,
inherently inefficient with protocols that implement en-
cryption mechanisms since a third-party listener has no
access to the session’s cryptographic keys. For example,
in TLS 1.3, the server already encrypts several fields in
the Server Hello message, which makes them inaccessible
for analysis by passive monitoring tools [2]. This is where
active scanning tools become relevant. The idea is to
craft and transmit several Client Hello messages and then
observe the server’s responses to attempt to reconstruct
its TLS configuration. Such scans are beneficial not only
because they provide us with a detailed overview of the
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server’s configuration, but also because they are powerful
tools for finding vulnerabilities and misconfigurations.
Furthermore, scanning approaches can help detect mali-
cious Command & Control (C&C) servers as they usually
have the same, or similar, configurations [3].

This paper categorizes existing TLS scanners into three
types: Elementary TLS Scanners such as TUM goscanner
[4] or zgrab2 [5]. In their basic mode, these scanners only
initiate one TLS handshake and return the server’s re-
sponse. They are practical for Internet-wide measurements
[5] and can provide us with invaluable insights into the
TLS ecosystem. The second type are server debugging
tools that are able to reconstruct a detailed and comprehen-
sive representation of the server’s internal configuration,
such as DissecTLS [6], SSLyze [7], and testssl.sh [8].
The third and last type are fingerprinting approaches. The
most relevant representatives are JARM [9] and Active
TLS Fingerprinting (ATSF) [10]. These approaches only
send a small fixed number of Client Hello messages and
generate a unique fingerprint for every TLS configura-
tion, which is primarily used to differentiate and compare
servers.

The remainder of this paper is organized as follows: We
start by explaining the methodology of the TLS protocol in
section 2. Section 3 summarizes the most important TLS
configuration parameters from a scanner’s perspective.
Section 4 analyzes different TLS scanning approaches and
discusses their advantages and limitations. In section 5, we
compare the performance of TLS scanners across different
categories in a local environment before we conclude in
section 6.

2. Methodology

A basic understanding of the TLS protocol, especially
the TLS handshake, is required to understand the scanners’
work system. This paper only focuses on TLS 1.2 and TLS
1.3, as all previous versions are deprecated [11]. They are
also the most relevant and widely used versions within the
TLS ecosystem [6]. TLS 1.2, standardized in 2008 [12],
has been the backbone of secure Internet communication
for over a decade. Its successor, TLS 1.3, was standardized
in 2018 [13] and introduced several significant improve-
ments. The faster handshake process is one of the most
important enhancements. TLS 1.3 only takes 1 Round-
Trip Time (RTT) to complete the handshake instead of 2
RTTs in TLS 1.2. The newest version is also inherently
more secure as it only supports AEAD cipher suites [13]
that simultaneously provide privacy and authenticity [14].
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The following figure captures the most important steps of
the TLS 1.3 handshake:

Client Server

Client Hello = { TLS Version, Cipher suites ...,
Extensions = {ALPNs, supported versions, supported groups ... }}

3
>

Server Hello = {Version, Selected cipher suite ...,
Extensions = {ALPN, version, supported groups ...}}

A

Change cipher spec

A

Encrypted extensions, Certificate, Certificate verify .... , Finished

Change cipher spec

Y

Finished, [Application data]

Y

Encrypted application data

A
Y

Figure 1: TLS 1.3 Handshake [15]

2.1. Client Hello

The client initiates the handshake by sending a Client
Hello message to the server [13]. This message specifies
the client’s supported TLS versions and suggests several
cipher suites for the server to choose from. The Client
Hello message can potentially contain more than ten ex-
tensions [13] with the majority of them not relevant for
our work. This paper only focuses on the most important
extensions from a scanning perspective. As part of the
handshake, the client also generates multiple key pairs
(public and private) based on the proposed key exchange
algorithms (in the supported groups extension) and in-
cludes the public keys in the key share extension of the
CH message [13]. These keys are necessary for generating
the symmetric encryption key.

2.2. Server Hello

In response to the Client Hello message, the server
replies with a Server Hello message [13]. This message
selects a cipher suite from those proposed by the client and
specifies the server’s extensions. After generating its key
pair and receiving the client’s public key, the server can
calculate the symmetric encryption key. It also includes its
public key in the key share extension to allow the client to
calculate the same cryptographic material. Furthermore, in
order to authenticate itself, the server sends its Certificate
and a Server Certificate Verify message to prove owner-
ship of the private key associated with the certificate. To
ensure the integrity of the handshake, the server applies
a hash function on all the previously exchanged data and
sends the result in the Finished message (encrypted). The
client also performs the same operation and compares the
output with server’s hash. If both hashes are equal, then
it means that the handshake messages were transmitted
correctly. To conclude the handshake, the client sends
a Change Cipher Spec message followed by a Finished
message. From this point, the client and the server can
start exchanging application data in an encrypted and
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secure manner. In earlier TLS versions, the Change Cipher
Spec record was used as an indication that all subsequent
records will be encrypted [12]. To avoid misbehavior of
middleboxes, implementations try to make the TLS 1.3
handshake similar to TLS 1.2 [13]. This includes the
transmission of the Change Cipher Spec record, which
does not serve any function in TLS 1.3.

3. TLS Configuration parameters

It would be impractical and costly for scanners to
extract all the server’s TLS properties since it would
require a lot of time and resources. Depending on the
information it wants to gather, each scanner prepares a
specific strategy to extract this information [6]. The table
below outlines some of the TLS configuration parameters
that can be extracted by scanning tools [6].

TABLE 1: The typically extracted TLS configuration
properties

Parameters Representation

Supported Versions set

Cipher Suites
Supported Groups priority list/set!

ALPNs

Deflate compression bool

' A set in case the server uses the client preferences.

The Supported Versions field lists all the TLS versions
supported by the server. These versions include TLS
1.0, TLS 1.1, TLS 1.2, and TLS 1.3. Although TLS
1.0 and TLS 1.1 were formally deprecated in RFC
8996 due to security concerns [11], they continue to
be accepted by servers within the TLS ecosystem [6].
One of the most important properties of a TLS server
is its supported cipher suites. A cipher suite in TLS
1.3 specifies the AEAD (Authenticated Encryption with
Associated Data) cipher mode that will be used for
bulk encryption and a hash algorithm. This is different
from previous TLS versions, where the cipher suite also
contained information about the key exchange algorithm.
In TLS 1.3, the key exchange algorithm is negotiated
through extensions as discussed in the previous section.
A server’s supported cipher suites are defined in relation
to a specific TLS version. For example, TLS 1.3 only
defines and supports 5 cipher suites [13], meaning that
any server using this version should only accept a subset
of these 5 cipher suites [13].

The supported groups parameter specifies the
cryptographic groups that the server supports for
the key exchange protocol used for the generation of the
symmetric encryption key.

The Application-Layer Protocol Negotiation (ALPN)
extension optimizes the communication. In the Client
Hello message, the client provides a list of the supported
application protocols, and the server selects at most one
protocol based on its capabilities. The server then includes
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it in the ALPN extension of the Server Hello message
[16]. This extension enables the negotiation of the
application layer protocol during the TLS handshake. It,
therefore, reduces the overhead that would have otherwise
occurred if the negotiation were to be completed after
the handshake.

In versions prior to 1.3, the TLS protocol included
support for compression methods, with the most used
being the deflate compression method. Clients and servers
would negotiate a commonly supported compression
method through the compression methods field. However,
TLS 1.3 obsoleted this feature entirely due to known
security vulnerabilities, such as the CRIME attack [17].
TLS 1.3, however, still implements the compression
methods field in the handshake messages, with its value
always set to O (indicating no compression). This is
done to maintain backward compatibility with previous
versions.

4. Capabilities of TLS Scanners

This section explores the three categories of TLS
scanners: Elementary scanners, fingerprinting approaches,
and server debugging tools. In the following subsections,
we introduce each type and provide examples of different
implementation approaches.

4.1. Elementary Scanners

Elementary scanners initiate a single handshake with
the server and return the server’s response. This approach
provides very limited information about the server’s con-
figuration, which makes such tools impractical for scan-
ning in their base mode. They are utilized as founda-
tions for more complex implementations, where their
elementarity and scalability can be leveraged as part
of a deeper analysis. A prominent example is zgrab2,
which can perform a TLS handshake over HTTP with
the entire IPv4 address space in less than 6 hours and
20 minutes [5]. This tool is highly effective for con-
ducting Internet-wide surveys. Censys.io [5] is a search
engine powered by zgrab2 that automates Internet-wide
scanning. It offers a REST API and a web interface
for querying an up-to-date database of the public ad-
dress space gathered through continuous scanning with
zgrab2. The search interface supports advanced search
features, including "full-text searches, regular expressions,
and numeric range queries" [18]. For example, a com-
mand such as services.tls.versions.tls_version
= "TLSvl_3" and location.country code = "DE" re-
turns all IPv4 hosts in Germany that support TLS 1.3,
which are currently around 3.7M hosts. Durumeric et al.
[5] argue that this approach democratizes the internet-
wide scanning process by making the scanning of the TLS
ecosystem accessible to researchers and users in general
without concerns about legal permissions or network in-
frastructure.

Another example is TUM goscanner [4] which serves as
a foundation for the implementation of DissecTLS.

4.2. TLS Debugging Tools

Scanners of this type provide a detailed overview of
the server’s TLS configuration. This is typically achieved
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by sending a large number of Client Hellos to exhaustively
test all possible configurations. As there are over 370
ciphers that can be used across different TLS versions, the
number of Client Hellos required is primarily determined
by the Cipher Suites parameter [19]. SSLyze [7] is a scan-
ning tool that implements a "naive" algorithm. It performs
a full cipher suite scan by conducting one TLS handshake
for each cipher suite. This results in approximately 543
transmitted Client Hello messages [19]. A main advantage
of this stateless approach is that it allows for paral-
lelization of requests, trading the high generated traffic
for a speedup in the scan execution [19]. testssl.sh [8],
while more efficient and optimized than SSLyze [6], also
remains impractical for big-scale measurements due to the
high number of sent requests. Such tools should only be
used on a small scale, where we’re only interested in fast
and precise results and where the scanning costs can be
neglected. The most prominent debugging tool that com-
bines the lightweight nature of fingerprinting approaches
with the precision and completeness of debugging tools
is DissecTLS. Integrated as a feature of TUM goscanner
[4], DissecTLS divides the scanning process into multiple
subtasks, each responsible for collecting information about
specific parameters [6]. Each task maintains a state and
dynamically crafts the next Client Hello based on this
state. This approach reduces redundant handshakes that
do not yield new information.

4.3. Fingerprinting Approaches

Fingerprinting approaches, unlike the previously dis-

cussed categories, do not produce a human-readable repre-
sentation of the server’s configuration. Instead, they aim to
minimize the number of sent Client Hellos while extract-
ing as much information as possible. The collected data
is then stored in a concise format called a "fingerprint",
which is primarily used for comparing servers [3]. The
reduced traffic footprint and the lightweight output make
these methods highly scalable and well-suited for large-
scale scanning. The most significant use case for these
tools is the identification of Command and Control (C&C)
servers, which are a fleet of computers that have the
same or similar configurations and are used to transmit
malicious commands and steal data. By comparing the
similarity between a fingerprint of an unknown server and
that of a known C&C server, fingerprinting tools provide a
high probability indication on whether the server is a C&C
server. Althouse et al. [3] argue that their fingerprinting
tool JARM can identify "most, if not all Cobalt Strike C2
servers" on the IPv4 address space on port 443.
JARM [9] sends 10 Client Hellos specifically designed to
extract as much information as possible about the server’s
TLS configuration. It then uses the received Server Hellos
to produce a 62-character fingerprint with the following
structure [3]:

TLS extensions

| 15d3fd1 6d29d29d00042d43d000000?1 784f39f8305ba9220d037894b6ff26‘

TLS versions and cipher suites

Figure 2: JARM Output Example

Each three characters of the first 30 provide information
about the TLS version and cipher suite chosen by the
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server as a response to each of the ten Client Hellos. A
"000" indicates that the server refused the connection [3].
The remaining 32 bits are constructed using a truncated
SHA256 hash on the TLS extensions sent by the server
in the Server Hello.

An even more advanced fingerprinting tool is Active TLS
Fingerprinting (ATSF). Sosnowski er al. [10] suggest
that this tool is superior to JARM in identifying C2
Servers and generally better at distinguishing server
configurations [10]. Similar to JARM, ATSF sends ten
distinct Client Hello messages. However, it provides a
more precise fingerprint by leveraging additional TLS
handshake messages. While JARM only deals with the
extensions present in the Server Hello message (Plus
the ALPN extension), ATSF also incorporates extensions
from Encrypted Extensions, Certificate Request, Hello
Retry Request and Certificate TLS messages [10].
ATSF, however, produces a longer output than JARM
since it employs a different technique for generating
fingerprints. In fact, for every TLS handshake, it produces
an independent fingerprint and then concatenates all these
outputs to generate the final server’s fingerprint [10]. This
is an example of an elementary handshake fingerprint:

Cipher Encrypted Extensions  Alerts
— —— —
771 1301 _43.AwQ-51.23 _0.-10.AAo... ___18.<40.
| I —

Version Server Hello Extensions Certificate Extensions

Figure 3: ATSF handshake fingerprint example

5. Comparison of Scanners in a Local

Testbed

In our local testbed, we compared the TLS scan-
ners based on two important criteria: their capability to
correctly distinguish between different TLS configura-
tions, and the amount of traffic they produce throughout
the scanning process. The main test parameter for this
experiment is the Cipher suites parameter. We selected
this parameter because it allows for a wide range of
possible configurations, matching our experiment’s needs.
We selected 5 TLS 1.2 cipher suites, resulting in 325
unique configurations. We can compute this number by
calculating the number of all permutations of all the
possible combinations of the selected cipher suites. The
use of permutation was necessary because server pref-
erences were enabled throughout the experiment (except
when scanning the Preferences property). This means that
the server keeps an internal priority list of the supported
cipher suites and always picks the highest-priority cipher
suite available. For each configuration, we deployed a
Docker container running an Nginx Version 1.27.3 server.
We ran each scanner against all 325 servers and counted
the unique scan outputs generated. This value reflects the
number of configurations successfully identified by the
scanner. For ATSF and JARM, we were able to use the
output directly. For the other scanners, we used a Python
script that extracts the scanned cipher suites from the
scan results, which we can then use as a basis for the
differentiation. This measure was necessary to avoid un-
stable results, as some parameters, such as scan time, can
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vary even for the same configuration. We also extracted
other simple parameters, such as Preferences, and Session
Tickets which can be either en- or disabled. To assess the
scanning costs, We used tcpdump to capture the number
of Client Hellos sent by the client during each scan, and
then computed the average number across all scans.

The following table summarizes the results of the exper-
1ment.

TABLE 2: Identified number of Nginx configurations for
each scanner.

Test Case ATSF JARM SSLyze testssl.sh DissecTLS | Total
Cipher Suites 22 17 31 325 325 325
Preferences 2 2 1 2 2 2
Session Tickets 2 2 2 2 2 2
Average CHs 10 10 447 128.1 11 -

As shown in the table, only dissecTLS and testssl.sh
were able to completely identify all the servers’ cipher
suites configurations. ATSF and JARM, however, were
only able to differentiate around 20 unique configurations.
This result is expected, as these fingerprinting tools only
send a fixed number of Client Hellos. Their lower level of
precision is offset by significantly reduced scanning costs,
making them ideal tools for large-scale deployments. SS-
Lyze had a relatively poor performance, as it was only
able to differentiate 31 unique configurations. The reason
behind this is that SSLyze does not consider the order of
the cipher suites [6], meaning it could only differentiate
between the different combinations of the 5 cipher suites,
which amount to 31 configurations. On top of that, it was
by far the most costly scanner in terms of generated traffic,
with an average of 447 Client Hellos. While testssl.sh
was able to distinguish all configurations, its high average
scanning cost of 128 Client Hellos makes it unsuitable for
large-scale use cases. DissecTLS is the best-performing
scanner in this experiment. It effectively combines the low
cost typically associated with fingerprinting approaches
while maintaining the accuracy and precision of TLS
debugging tools. The average of approximately 11 sent
Client Hellos, along with the successful identification of
all the TLS configurations, clearly demonstrates this.

6. Conclusion and Future Work

In this paper, we introduced the concept of TLS scan-
ning. We presented three different scanning categories:
Elementary scanners, fingerprinting techniques, and de-
bugging tools. We explained each category’s methodology
and introduced its most relevant representatives. Addition-
ally, we discussed each type’s advantages, limitations, and
use cases. We then compared the performance of differ-
ent scanners in a controlled environment by evaluating
their ability to identify different TLS configurations while
monitoring the scanning costs. The conclusion was that
DissecTLS is the most efficient scanner, providing the pre-
cision of debugging tools while generating minimal traffic,
typically a feature of fingerprinting tools. It should be
mentioned, however, that the experiment was conducted
in an artificial environment. The results could be slightly
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different from reality. As part of future work, we could
scan actual servers within the TLS ecosystem and then
compare the scanners’ performance. This would provide
more realistic and precise results.
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Abstract—Widely deployed, loss-based, congestion control
and avoidance mechanisms, such as CUBIC and RENO,
have served well for many years. Until recently, packet loss
may have been a good indicator for congestion, but with
increasing wireless networks in public venues, as well as
ever-growing buffer sizes leading to bigger delays, packet
loss has become an unreliable indicator of congestion. In this
paper, we present the Bottleneck-Bandwidth and Round-Trip
(BBR) algorithm and its evolution from version 1 to version
3. Originally developed by Google in 2017 [1], BBR uses
a model-based approach to regulate congestion, making it
better suited to modern network conditions.

Index Terms—BBR, Network Path Modeling, Congestion
Control, TCP

1. Introduction

When Jacobson et al. set out to analyze the reason
for the “first of [...] a series of congestion collapses*
[2] they developed a new way to prevent such an event
from happening again. It was then that packet loss was
decided to be used as the main indicator for congestion in
a network [1]. They proposed to use a mechanism called
the congestion window (cwnd) in order to start sending
packets at a slow rate, increasing it on every successful
transmission indicated by a received acknowledgement
(ACK). This algorithm is now known as TCP Tahoe [3].
Many other congestion control algorithms, such as TCP
Reno and TCP CUBIC, the latter of which has become
the default algorithm in Linux as stated by Sangtae Ha et
al [4], were developed over the years. Lately however, the
rise of wireless network in public venues and ever-growing
buffer sizes have led to packet loss not being a reliable
indicator of congestion anymore [1]. This is where the
BBR algorithm developed by Google comes into play. The
main contribution of this paper is to give an overview of
the current state of BBR congestion control and compare
the different versions that have been developed since.
In the following sections, we first provide an overview
of conventional congestion control methods and discuss
the limitations of relying solely on packet loss. BBR’s
fundamental concepts and goals are then introduced. We
explore how each successive version refines the algo-
rithm’s design, model parameters, and fairness. Finally we
discuss the current challenges, achievements and future
directions for BBR.
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2. TCP Congestion Control

Traditional congestion control algorithms, dating back
to TCP Tahoe and Reno, rely on packet loss as a primary
indicator of congestion and use the cwnd as primary mech-
anism to regulate the sending rate. This cwnd describes
the maximum not yet acknowledged amount of data in
bytes that can be in flight at any given time as described by
Rasool Al-Saadi et al [S]. The sender continually increases
its cwnd until loss is detected, then reduces it aggressively.
The window is then steadily increased again, starting the
process anew. Loss itself is detected via duplicate ACKs
triggered by out-of-order arrivals. Instead of reacting to
the first duplicate ACK the algorithm waits for three or
more duplicates (a process called fast retransmit) [5] to
confirm that out-of-order arrival is a result of congestion.
By how much the cwnd is reduced and in what manner
it is restored thereafter differs between algorithms. Loss-
based algorithms therefore require a low loss environment
to ever efficiently utilize the connection for a prolonged
time. Even if the cwnd ever reaches its maximum, loss-
based algorithms will continue growing it, leading to an
unavoidable loss event and cwnd reduction. Gomez et al.
state that “using Reno in a 10 Gbps link with a 100 ms
propagation delay needs more than an hour to fully utilize
the bandwidth. Avoiding this issue demands a loss rate
lower than 0.00000002%* [6]. One important aspect to
notice here is that by detecting loss on duplicate acknowl-
edgments it takes at least one round-trip time (RTT) to
detect the congestion and make adjustments which is why
longer buffers make it difficult to adapt quickly due to
the delay they inherently introduce by filling the network
bottleneck’s buffer.

2.1. CUBIC

One of the most widely used algorithms is TCP CU-
BIC, which was developed by Sangtae Ha, Injong Rhee,
and Lisong Xu in 2008 [4]. Instead of growing the cwnd
linearly after loss like TCP Reno does, Sangtac Ha et
al. propose to instead use a cubic function to restore the
cwnd, making the recovery of the cwnd much faster. The
cwnd growth after loss can be split into three phases:
slowing growth that grows the cwnd very quickly at
first, plateau and increasing growth. Figure 1 displays the
various phases that CUBIC goes through. Additionally,
the cwnd is only reset by 30% after a loss as compared
to Reno which reduces it by 50%. This process makes
CUBIC and similar loss-based algorithms such as TCP
Reno predictable in terms of their sending behaviour.
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However, CUBIC still does not solve the inherent problem
of loss-based algorithms. These algorithms remain stuck
in a loop: they probe for the maximum speed, then reduce
it again after a loss. This often shows as a sawtooth-like
pattern, although in CUBIC it is less pronounced thanks
to the cubic function. Since packet loss in itself is only
a binary indicator of congestion, it does not provide any
information about how strongly the network is congested,
which means that the algorithms have only the way of
reducing the cwnd by a fixed factor.

congestion avoidance  queue full (no headroom)

|

fast recovery
—

W_max

t

(cubic)

ssthresh

data in fight

slow start

time

Figure 1: Function of data in flight over time in CUBIC
[7].

The question why TCP CUBIC—or, more broadly,
loss-based congestion control approaches—may no longer
be sufficient, and what led to the development of BBR,
arises. Loss-based algorithms and their way of growing
the cwnd makes them inherently suffer from the following
problems:

e With wireless networks becoming more and more
common, packet loss can also be caused by inter-
ference or other factors unrelated to congestion.

o Network nodes with deep buffers can store a lot
of data before they start dropping packet. Long
queueing of packet leading to high RTT make it
hard to adapt to congestion swiftly and can lead
to a lot of data being sent at an excessive rate.

o Network nodes with shallow buffers might simply
be overwhelmed by a short-lived burst of data and
drop packets despite there being no congestion.
Furthermore even just a slight overshoot of the
maximum bandwidth can lead to packet loss and
an adjustment of the cwnd by much more than
would actually be required.

To solve the stated problems a new approach is needed
where the BBR algorithm comes into play.

3. BBR

BBR was originally developed in 2017 and has
since evolved over three versions. This section gives an
overview of what BBR aims to solve as well as its
implementation details and the differences between the
versions.

3.0.1. Kleinrock’s Optimal Operating Point. BBR tries
to operate at a point that is close to the optimal operating
point as described by Kleinrock [8]. Figure 2 shows the
optimal operating point as a function of the bottleneck
bandwidth and the RTT.
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Figure 2: Impact of inflight data volume on RTT and
delivery rate [9].

The two graphs display how the RTT and the delivery
rate change in correlation to the amount of data in flight.
It can be seen that, as the amount of data in flight
increases, there is a limit to the increase in delivery rate.
Furthermore, the round-trip time continues to rise even
long after the delivery rate stopped increasing. This can
be explained by the fact that, while the data volume in
flight is below a certain threshold, there are no queues
yet because the network is under-utilized and delivery-
rate can still be increased by sending more packets. As
the threshold is exceeded, however, the data in flight will
exceed the bottleneck’s capacity, which causes it to be
queued in the nodes buffer resulting in a RTT increase.
Since the bottleneck is already sending as fast as it can, the
delivery rate will not increase anymore as newly arriving
packets are either queued or dropped entirely. While loss-
based algorithms tend to operate at point B as shown in
Figure 2, BBR tries to operate at the point where the
delivery rate is maximized and the RTT is minimized. This
is where the bottleneck is fully utilized excessive forming
of queues, Kleinrock’s optimal operating point [1].

3.1. Goals

BBR departs from the loss-based approach and instead
keeps an updated model of the network path to smoothly
and continuously adapt its sending rate to the current
network conditions. By doing so, it aims to be proactive in
its approach rather than reactive, as loss-based algorithms
are. Keeping continuous track of the network path solves
the issue of only having packet loss as binary indicator
of congestion. The goals of BBR can be summarized as
follows:

o Maximizing Throughput at Minimal Delay:
BBR aims to fully utilize the bottleneck link
by sending at a rate close to the measured bot-
tleneck bandwidth, while keeping the in-flight
data near the bandwidth-delay product (BDP). It
avoids persistent queue buildup (and the resultant
bufferbloat) by doing so and thus maintains low
latency for network traffic [1].

e« Proactive, Model-Based Control: Instead of
waiting for packet loss, BBR continuously moni-
tors both bottleneck bandwidth and minimum RTT
to build a near real-time model of the path. It
adjusts its sending rate according to that model so
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that it operates near Kleinrock’s optimal operating
point.

o Improved Robustness to random loss: By de-
coupling congestion control from packet loss,
BBR is inherently more tolerant of random losses
and does not over-correct when just a slight con-
gestion, which could be solved by just a small
reduction of the sending rate, occurs.

3.2. BBR State Machine Phases

BBR operates by creating a network path model using
the RTT and the bandwidth with which it can calculate
the BDP.

BDP = Max. Bandwidth - Min. RTT

In order to find the minimal RTT one has to send at a rate
that avoids the formation of queues so that no delay is
introduced by the network. On the other hand, in order to
find the maximum bandwidth one has to send at a rate that
makes queues form as those are an indicator of congestion
and therefore a nodes limit. These two measurements are
crucial for BBR to operate at Kleinrock’s optimal operat-
ing point and can only be measured individually as they
are exclusive to each other. BBR does this by utilizing an
internal state machine, see Figure 3, that switches between
probing for exactly these two measurements [7]. During
each of these phases BBR maintains a set of parameters
that influence the sending rate [10]. Some of the most
important parameters are:

e pacing rate: Main parameter that controls the
spacing between packets. It is updated on each
received ACK and aims to match the bottlenecks
rate instead of sending packets in bursts. In a
perfect scenario, the pacing rate would be equal
to the maximum bandwidth, but the distinction
between pacing rate and sending rate is deliber-
ate. The sending rate, i.e. actual throughput, can
however fall below the pacing rate, for example if
the sender is application-limited or the cwnd limit
has been reached.

e pacing_gain: Multiplier for the pacing rate. Used
to increase or decrease the rate for probing in
various phases.

e cwnd: Limits the maximum inflight data volume.
Bound by inflight_hi and inflight_lo.

o cwnd_gain: Multiplier for the cwnd. Used to in-
crease or decrease the cwnd for probing in various
phases.

o inflight_hi: New since BBRv2 inflight_hi is a
long-term upper bound on inflight data based on
past loss events. The congestion window is limited
to this value.

o inflight_lo: New since BBRv2 inflight_lo is a
short-term upper bound on inflight data in the
probing current cycle.

3.2.1. Startup Phase. When establishing a new connec-
tion, BBR will start in the startup phase. This phase
aims to estimate the bottleneck bandwidth very quickly by
setting the pacing_gain and cwnd_gain to high values and
therefore allowing the cwnd and pacing_rate to effectively
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..... (est._BDP, Tast cwnd)
Toss/ECN rate > thresh. (6)

ProbeBW

BDP) or Toss

Frequency
cwnd E)
Duration 200

ProbeRTT

TABLE 1: Evolution of BBR parameters over various
versions [11].

double every round. Generally the maximum bandwidth
is found in around O(log,(BDP)) RTTs in version 3 [10].

This phase is exited as soon as packet loss has reached
a certain threshold or the maximum bandwidth has been
found as indicated by a plateau. In context of BBR a
plateau is reached when the delivery rate has increased
by less than 25% over the last three RTTs.

3.2.2. Drain Phase. During the startup, phase a queue of
around 1 BDP [10] has been built up at the bottleneck.
In order to remove this queue, the drain phase reduces
the pacing gain which in turn reduces the sending rate.
While any value below 0.5 should be able to drain the
queue within < 1 RTTs, BBRv3 uses a value of 0.35 [10].
Once the volume of data in-flight has been reduced to <=
1 BDP the drain phase is exited. If inflight_hi was set
during startup, indicating that there was packet loss, the
drain phase will empty the queue even further to provide
some headroom for better coexistence with other flows.

3.2.3. Probe Bandwidth Phase. The probe bandwidth
phase is a long-lived phase in which BBR oper-
ates most of the time. While originally this phase
was only called ProbeBW it has been split into
four sub-phases in BBRv2 between which the al-
gorithm cycles: ProbeBW_DOWN, ProbeBW_CRUISE,
ProbeBW_REFILL and ProbeBW_UP [12].

e ProbeBW_DOWN: Aims to drain the volume in
flight to below 1 BDP with potentially additional
headroom that can be used by other flows.

o ProbeBW_CRUISE: Sending rate is adjusted to
the maximal available bandwidth with some mar-
gin BBRPacingMarginPercent [10]. If packet
loss occurs bw_lo and inflight_lo are adjusted to
reduce the sending rate as necessary. The phase is
exited after a certain amount of packets depend-
ing on the environment to be more fair towards
coexisting Reno and CUBIC flows [10].

o« ProbeBW_REFILL: Aims to “refill the pipe*
[10] to prepare for the next phase. Necessary to
not underestimate the path by causing packet loss
with a sudden burst of data.

o ProbeBW_UP: Probes for changes in maximum
bandwidth by sending with an increased rate. It
is exited after a delivery rate increase plateau has
been found or packet loss exceeds a threshold.

3.2.4. Probe RTT Phase. ProbeRTT is entered after at
most 5 seconds have passed since the last ProbeRTT phase
and can be switched into from any other phase. The goal
of this phase is to measure the minimal RTT. Because
existing queues would introduce a delay and therefore
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Figure 3: State transitition diagram for BBRv3 [10].

skew the measured minimal RTT they must be drained
by sending a volume of data that is lower than the BDP.
This is done by halving the cwnd_gain to lower inflight
data volume before taking measurements [10].

3.3. Evolution of BBR

The most notable changes between versions are the
incorporation of packet loss when determining the bot-
tleneck bandwidth [11], [13] and the breakdown of the
ProbeBW phase into four sub-phases in BBRv2 [12].
Piotrowska found in a study that BBRv1 caused excessive
packet loss in some scenarios [12] which likely led to this
decision. To further limit the inflight data volume the pa-
rameters inflight hi and inflight lo have been introduced.
The former is used in BBR’s long term path model while
the latter is used in the short term model to limit the cwnd
[10]. The long term model is supposed to be more stable
and keep track of long term safe data rates and volumes,
while the short term model is adjusted more often to adapt
to current network conditions [10]. BBRv3’s changes were
much less radical than the ones introduced in v2. BBRv3
is mostly BBRv3 with the inclusion of fixes for bugs that
affected fairness towards other flows [12], [14]. Further-
more parameters have been adjusted, pacing_gain during
startup has been been lowered to 2.77 and cwnd_gain was
drastically reduced to 2.00. A full overview of parameter
changes can be found in Table 1.

3.4. Fairness

BBR is not the only congestion control algorithm
in use and therefore has to compete with others for
bandwidth. While only a couple of congestion control
algorithms have been outlined in this paper, there are many
more in use for various scenarios. All concurrent internet
flows using various algorithms have to compete for their
share of available bandwidth and therefore it is important
that none takes away most of it while others are left
with the bare minimum. This section briefly summarizes
research about BBR’s fairness towards itself as well as
other congestion control algorithms.

3.4.1. Fairness towards BBR. Zeynali et al. have eva-
luted fairness between multiple BBR flows in various
scenarios such as flows starting at the same point in
time and flows being started at different times [11]. They
have found that while for two same version BBR flows
starting at the same time the fairness as described by Jain’s
Fairness Index [15] has indeed improved a little bit, it
has worsened extremely for staggered flows. While two
BBRvI and BBRv2 flows being started with a gap of 15
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s of each other converged to a similar bandwidth rather
quickly, it took almost 5 minutes for the same to happen
among two BBRv3 flows for a buffer with 16*BDP size.
In total, while BBRv1 displays many more retransmissions
due to its complete ignorance of packet loss as a signal
for congestion, it ends up being the fairest when fighting
for bandwidth among itself.

3.4.2. Fairness towards other congestion control al-
gorithms. Gomez et al. have evaluated fairness between
various versions of BBR among themselves as well as
CUBIC [6]. They observed various scenarios such as two
flows competing with each other without any loss, 100
flows (split up in 50 of each version) competing with
each other and 100 flows (split up in 50 of each version)
without loss, as well as the same scenarios with a loss of
0.025%. For 100 flows and a loss of 0.025% they have
found that BBRv3 and CUBIC have similar throughput
for higher buffer sizes. For smaller buffer sizes BBRv3
reaches a higher throughput than CUBIC. This effect is
even worse for BBRv2 and CUBIC, where BBRv2 takes
almost all the bandwidth in shallow buffer settings. All
in all their results show that better resource sharing and
therefore fairness is achieved with bigger buffer sizes the
more flows compete against each other. However, even for
shallow buffers Piotrowska et al. found that BBRv3 does
indeed enhance “fairness by 12%* towards CUBIC [12].
On the other hand Zeynali et al. found that even multiple
CUBIC flows cannot compete against a single BBR flow
in terms of Jain’s Fairness Index and “end up competing
between themselves for the bandwidth leftover]...]“ [13],
[15].

4. Conclusion and future work

In this paper, we presented the past and current state
of Google’s BBR algorithm. BBR, according to Google,
shows much promise in terms of operating at near BDP
and providing high bandwidth. They state that “Play-
backs using BBR show significant improvement in all of
YouTube’s quality-of-experience metrics* [1] and “BBR
reduces median RTT by 53 percent on average globally
and by more than 80 percent in the developing world.*
[1]. BBRvV3 has become the default congestion control
algorithm for traffic in Google’s services [13] and now
accounts for at least more than 40% of the internet’s
total traffic volume according to Mishra et al [16]. It is
consistently developed and improved upon and - given
its parametrized nature and usage of a state machine -
it is easy to imagine that more states could be added
in the future to further improve the algorithm or bet-
ter adapt to specific scenarios. Although BBRv3 brings
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notable improvements over earlier versions, research has
revealed that it can still be highly unfair towards other
BBR connections. Therefore it is critical that further re-
finements are needed to enhance fairness not only when
BBRv3 coexists with other congestion control algorithms,
but especially when several BBRv3 flows share the same
bottleneck, especially if BBRv3 is to become the default
congestion control algorithm of the future. As of March
2024 however, BBRv3 was not yet included in Linux’s
mainline TCP, for which a submission was planned as
soon as possible [17]. Looking at the latest meetings of
the Congestion Control Working Group (ccwg) it becomes
clear that development of BBR is in full force with one
of the most recent topics that are being discussed being
making improvements to BBR for real-time connections
[18].
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Abstract—This paper investigates the design, analysis, and
potential of robust and reliable broadcast protocols in dis-
tributed systems, addressing challenges like fault tolerance,
latency, and communication efficiency in both stand-alone
and simulation-based frameworks. Existing broadcast proto-
cols are examined, with a focus on evaluating their scalability
and resilience under failure conditions. We explore the
limitations of traditional transport protocols like TCP and
introduce modern alternatives such as QUIC, which offer
enhanced performance in high-latency, high-concurrency
environments. QUIC’s built-in encryption, faster connection
setup, and improved multiplexing make it a promising alter-
native for reliable broadcast communication. The study pro-
vides a comparative analysis of TCP and QUIC, highlighting
their strengths, weaknesses, and use cases. Additionally, it
examines the role of advanced cryptographic techniques
like threshold cryptography and Distributed Key Generation
(DKG) and discusses open-source implementations, for in-
stance, libp2p. The findings offer valuable insights for future
research in the deployment of the QUIC protocol in reliable
broadcasts.

Index Terms—reliable broadcast, distributed systems, broad-
cast protocols, fault tolerance, communication efficiency,
scalability, TCP, QUIC, TLS, consensus algorithm, threshold
cryptography, distributed key generation (DKG), libp2p

1. Introduction

Reliable broadcast is a fundamental primitive in dis-
tributed systems, ensuring that messages are consistently
delivered to all intended recipients, even under adverse
conditions such as network failures or malicious attacks
[1]. These protocols underpin critical applications like
blockchain networks, distributed databases, and fault-
tolerant systems. Three primary requirements must be
met for reliability: validity, agreement and integrity [2].
Validity ensures that all correct nodes eventually deliver a
message if the sender is correct; agreement guarantees that
all correct nodes deliver the same message; and integrity
prevents tampering or duplication of messages. These
requirements were first formalized in 1983 [3] and remain
foundational in distributed systems research.

Traditional transport protocols like TCP have been
widely adopted due to their robustness and well-
understood reliability mechanisms. Combined with TLS
(Transport Layer Security) for encryption, TCP has long
been the standard for secure communication. However,
these solutions face challenges in scalability and effi-
ciency, particularly in high-latency environments or under
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heavy network congestion. To address these limitations,
modern alternatives like QUIC [4] have emerged. QUIC
incorporates built-in encryption, multiplexing, and faster
connection setups, presenting a promising alternative for
reliable communication, including broadcast scenarios.

This paper explores the current state of reliable broad-
cast solutions, analyzing existing algorithms and used pro-
tocols with a focus on evaluating the feasibility of QUIC
as a substitute for TCP. This is achieved through a compar-
ative analysis of these transport protocols, their advantages
and disadvantages, and use cases involving advanced cryp-
tographic techniques such as threshold cryptography and
Distributed Key Generation (DKG). Furthermore, we in-
vestigate open-source implementations, including libp2p,
and discuss the possible future developments in reliable
broadcasting.

2. Background, Related Work and Existing
Broadcast Solutions

Ensuring reliable broadcast in distributed systems is a
fundamental challenge, especially in environments where
communication may be unreliable, and nodes may fail. To
address this, various consensus mechanisms and synchro-
nization models have been developed to guarantee mes-
sage delivery and agreement among nodes. This section
explores the principles behind reliable broadcast and con-
sensus, highlighting key algorithms, and examines the role
of different synchronization models in achieving reliable
communication.

2.1. Consensus Algorithms

Consensus algorithms are fundamental to ensuring
consistency in distributed systems, especially when deal-
ing with unreliable communication and potential faults.
These algorithms enable a set of processes or nodes to
agree on a single value, even in the presence of failures,
ensuring reliable broadcast of messages. A few notable
consensus algorithms are widely used to achieve this
reliability:

2.1.1. Paxos. Paxos is a foundational consensus algorithm
used in partially synchronous to synchronous systems.
Paxos ensures that a majority of nodes reach agreement
on a single value despite faults (e.g, node crashes). It
operates under the assumption that at least one correct
process is not faulty, and it guarantees safety and liveness.
Safety in this context means that no two nodes will
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decide on different values and liveness means that a de-
cision will eventually be made under specific conditions.
While Paxos is a breakthrough in consensus protocols, its
implementation is viewed as complex and inefficient in
terms of performance due to frequent communication and
coordination overheads [5].

2.1.2. Raft. Raft was designed as a more understand-
able alternative to Paxos, focusing on clarity and ease
of implementation. Raft divides the consensus process
into three key components: leader election, log replication,
and safety. A leader is elected to manage the consensus
process, and the leader’s log is replicated across follower
nodes. Raft ensures that all changes to the system are
coordinated through the leader, simplifying the process
and improving efficiency in comparison to Paxos. [6].

2.1.3. Byzantine Fault Tolerant (BFT) Algorithms. In
more adversarial environments, where nodes may behave
arbitrarily, BFT algorithms are used. For example, Prac-
tical Byzantine Fault Tolerance (PBFT) is designed to
tolerate up to one-third of the nodes being compromised
by a Byzantine adversary. The algorithm works by having
nodes exchange messages in multiple rounds to achieve
agreement on a transaction, even in the presence of faulty
or malicious participants. [7].

2.2. Sybil resistance approaches

While Consensus algorithms determine how nodes
agree on a single state or value in the system, sybil
resistance determines who gets to participate in the net-
work and ensures that participation is fair, preventing
adversaries from gaining excessive influence. A Sybil
attack occurs when an adversary controls a large number
of nodes, allowing them to disrupt the network by cen-
soring messages, invalidating transactions, or influencing
consensus outcomes. In the context of reliable broadcast,
Sybil resistance ensures that an adversary cannot gain
disproportionate control over message dissemination.

Decentralized systems implement Sybil-resistant
mechanisms to counterfeit sybil attacks by imposing
economic or computational barriers to prevent adversaries
from cheaply creating multiple identities. Proof of Stake
(PoS): Forces participants to stake cryptocurrency as
collateral, ensuring economic penalties for dishonest
behavior.

Sybil resistance mechanisms often incorporate con-
sensus techniques to validate participation. For example,
PoS uses consensus among staked participants to finalize
blocks while preventing Sybil attacks by requiring eco-
nomic commitment. Sybil resistance is a prerequisite for
secure consensus in decentralized networks. Without it,
consensus protocols become vulnerable to 51% attacks (in
PoW) or stake concentration attacks (in PoS), where an
attacker gains the majority influence and disrupts agree-
ment.

Moreover, the efficiency and scalability of consen-
sus mechanisms are influenced by the choice of Sybil
resistance methods. PoW offers strong Sybil resistance
but suffers from high energy consumption, whereas PoS
reduces energy usage but introduces new challenges, such
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as stake centralization risks. Some systems combine multi-
ple mechanisms, such as PoS with reputation-based Sybil
resistance, to balance security, efficiency, and decentral-
ization.

2.2.1. Proof of Work (PoW). In this approach, miners
compete to solve complex mathematical puzzles using
computational power. The first to succeed earns the right
to create a new block and receive rewards. PoW ensures
security by making mining computationally expensive,
deterring Sybil attacks and fraudulent transactions. An
attacker would need to control more than 51% of the
network’s total computational power to alter transactions,
which is highly costly and impractical. However, PoW’s
high energy consumption raises questions regarding its
scalability and environmental impact. Despite this, it re-
mains widely used in networks like Bitcoin, Litecoin, and
Monero, where strong security and decentralization are
prioritized [8].

2.2.2. Proof of Stake (PoS). PoS offers a more energy-
efficient alternative by selecting validators based on the
number of coins they have staked as collateral rather
than computational work. This system ensures security
by making dishonest behavior costly, as malicious valida-
tors risk losing their staked assets [9]. Unlike PoW, PoS
significantly reduces energy consumption while maintain-
ing Sybil resistance, as attackers would need to control
a majority of the staked assets to manipulate the net-
work. It also supports faster transaction finality, making it
more scalable for high-volume applications. PoS is widely
adopted in blockchain platforms like Ethereum 2.0.

2.3. Synchronization Models in Reliable Broad-
casting

In the context of reliable broadcasting, the synchro-
nization model of a system plays a crucial role in deter-
mining the guarantees provided by the underlying com-
munication protocols. These synchronous, partially syn-
chronous, and asynchronous models define the expec-
tations regarding timing and network delays, and they
influence the design and robustness of reliable broadcast
mechanisms.

Synchronous systems operate under strict timing as-
sumptions, where a known finite upper bound (A) ensures
that messages are delivered within a specified timeframe
[10]. This model simplifies protocol design by providing
predictable communication, making it suitable for applica-
tions requiring high reliability and determinism. Examples
include high-frequency trading systems and real-time con-
trol networks. However, the reliance on accurate A value
presents challenges: a conservatively large A may degrade
performance due to long timeouts, while a small A risks
safety violations in real-world conditions.

The partially synchronous model bridges the gap be-
tween synchrony and complete asynchrony. It assumes
an unknown finite upper bound (A) on message delays,
which holds only after a Global Stabilization Time (GST)
[11]. Before GST, the system behaves asynchronously.
This model is highly applicable in real-world distributed
systems where networks experience transient disruptions
but eventually stabilize.
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Asynchronous systems place no bounds on message
delivery times, making them highly flexible but challeng-
ing for achieving consensus. The lack of timing guaran-
tees means that protocols must ensure eventual message
delivery and consensus without relying on temporal as-
sumptions. This model is essential for environments with
unpredictable delays, such as highly decentralized peer-
to-peer networks.

3. Comparative Analysis: TCP vs. QUIC for
Reliable Broadcast

Reliable broadcast depends heavily on the underly-
ing transport protocol, which influences factors such as
latency, security, and message delivery efficiency. This
section explores the strengths and weaknesses of TCP and
QUIC protocols and compares them.

3.1. TCP as the traditional transport layer

TCP (Transmission Control Protocol) [12] is the cor-
nerstone of reliable data transmission in modern net-
working. It offers reliability through mechanisms such as
retransmissions, in-order delivery, and congestion control.
These guarantees make TCP essential for applications like
file transfers, web browsing, and distributed databases like
Google Spanner. TCP’s acknowledgment system ensures
data integrity, while its flow control mechanisms [13] aim
to prevent network congestion.

3.1.1. Challenges of TCP. TCP suffers from inherent
latency due to its three-way handshake and sequential
acknowledgment system. The Round-Trip Time (RTT) for
a TCP connection establishment is at least one RTT for
the handshake, and additional RTTs are incurred for data
transfer, especially with larger datasets. Moreover, the
sequential acknowledgment of packets introduces head-
of-line blocking, where a single lost packet can delay the
entire stream, a significant drawback for time-sensitive
applications [14].

The inefficiency of TCP becomes more pronounced
in large-scale systems, particularly where high throughput
and low-latency communication are required, such as in
real-time media streaming or large distributed systems.

3.1.2. Deployment in Real-World Broadcast Systems.
TCP is integral to traditional, reliability-sensitive systems
like distributed databases (e.g., Apache Cassandra, Mon-
goDB) where data consistency and integrity are critical.
The established ecosystem around TCP and different ver-
sions of TLS guarantees secure and reliable connections
in transactional systems. However, the latency and lack
of multiplexing are limitations in dynamic, distributed
environments, where faster connection establishment and
handling of multiple streams are required [15].

3.2. QUIC as an Alternative

QUIC is a modern transport protocol designed by
Google to address some of the TCP limitations, especially
in terms of connection setup time, security, and multiplex-
ing. Key Features of QUIC are:
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Built-in Encryption: QUIC integrates Transport
Layer Security (TLS) 1.3 directly into the protocol, elim-
inating the need for a separate security layer as required
by protocols like HTTP/2 over TLS.

Reduced handshake: This built-in encryption also
reduces connection setup time by consolidating the trans-
port(previously TCP) and security(TLS) handshakes into
a single phase. QUIC establishes secure connections more
efficiently compared to TCP, as the TLS handshake occurs
alongside the initial connection establishment, reducing
latency significantly [4].

Fast Connection Establishment: QUIC also supports
O0-RTT (zero round-trip time) connection establishment,
allowing data to be sent in the initial packet even before
the handshake is complete. This is particularly beneficial
in environments where latency is a concern, such as high-
frequency trading or live-streaming applications. [4]

Multiplexing: QUIC improves the efficiency of mul-
tiplexing by allowing multiple independent data streams
within a single connection [4]. Unlike TCP, where head-
of-line blocking can occur, QUIC allows independent
streams to proceed without interference. This is partic-
ularly important in modern applications where multiple
data types are transmitted simultaneously.

3.2.1. Potential Advantages in Reliable Broadcasting.
QUIC’s design introduces new possibilities for use in
reliable broadcasting scenarios, particularly in distributed
systems where rapid and fault-tolerant message delivery
is crucial.

QUIC’s low-latency connection setup and inherent
support for multiplexing make it suitable for distributed
systems requiring rapid message dissemination. This,
combined with its resistance to head-of-line blocking, en-
sures that broadcast messages can be delivered quickly and
efficiently, even in environments with unreliable network
conditions, where network changes are a possibility. This
is due to the fact that QUIC relies on a Connection ID
to identify connections, and not on the IP Addresses and
Sockets of the participants.

3.2.2. Limitations and Open Questions. Despite its
many advantages, QUIC presents certain challenges that
may affect its adoption in all contexts.

One significant challenge to QUIC’s adoption is its
limited compatibility with legacy systems, particularly
those that rely on TCP-based communication stacks.
QUIC requires modern infrastructure and support for UDP
(User Datagram Protocol), making it less suitable for en-
vironments where legacy protocols are deeply integrated.

4. Analysis and open-source implementations

In this section we explain existing implementation ap-
proaches and make assumptions about possible enhance-
ments through future work.

4.1. Implementations focusing on TCP-based so-
lutions

One notable example where TCP outperforms QUIC

in reliable broadcast scenarios is its role in PBFT con-
sensus. A study evaluating the performance of QUIC in
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PBFT-based blockchain networks found that TCP achieves
better execution times due to its optimized message repli-
cation and congestion control mechanisms [16]. PBFT re-
lies on frequent and structured message exchanges across
multiple communication rounds, requiring consistent, in-
order delivery and efficient retransmission of lost packets.
TCP, with its persistent connections and built-in relia-
bility mechanisms, efficiently handles this high message
volume, ensuring that consensus operations proceed with
minimal delays. In contrast, QUIC must implement re-
liability and congestion control at the transport layer,
leading to additional processing overhead. QUIC reduces
connection establishment latency and supports multiplex-
ing, but the study showed that these benefits do not im-
prove PBFT execution times. QUIC’s congestion control
mechanisms, such as BBR and New Reno, don’t consis-
tently outperform TCP due to their handling of packet
loss and congestion feedback in high-frequency message
replication scenarios. The simulation results indicate that
TCP remains the preferred choice for PBFT and similar
consensus protocols, where timely, ordered message deliv-
ery and efficient network congestion handling are crucial.
However, the study suggests that QUIC may become more
viable with further optimizations in congestion control for
large-scale distributed systems. Protocols designed for par-
tial synchrony, such as Paxos or Raft [17], can be imple-
mented over TCP/TLS, especially when message delivery
times are uncertain but the system can eventually stabilize.
These protocols ensure that once a system reaches GST,
reliable communication can be achieved, with TCP/TLS
offering secure and reliable transport. However, when low-
latency and high-throughput are required, QUIC may be
favored.

4.2. QUIC use cases

Asynchronous Byzantine Fault Tolerant (ABFT) algo-
rithm is an example of an asynchronous protocol that
can be implemented over QUIC in cases where low
latency is critical, especially in decentralized or mobile
networks. QUIC offers distinct advantages over TCP
in asynchronous systems due to its reduced handshake
overhead, which allows for faster message exchanges.
However, those are mainly assumptions that haven’t been
consolidated by by research.

In asynchronous environments, TCP can still be used,
but it is typically less efficient compared to QUIC due
to the higher latency introduced by TCP’s handshake
and slower connection re-establishment after packet loss.
TCP and TLS are more suitable for environments with
moderate to low network instability, while QUIC performs
better in volatile networks(e.g, mobile environments or
global-scale decentralized systems).

4.2.1. Potential of QUIC for Reliable Broadcast in
Decentralized Transactions. QUIC has shown promise
in decentralized transaction systems, particularly in peer-
to-peer Bitcoin transactions and payment channels. Stud-
ies highlight that QUIC’s low-latency handshake, built-in
encryption, and multiplexing make it well-suited for fast
and secure financial transactions in blockchain networks.
QUIC Bitcoin Transactions leverage QUIC’s Connection
ID mechanism to enable direct, unpublished transaction
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exchanges between peers, reducing reliance on interme-
diaries and mitigating security risks such as man-in-the-
middle (MITM) attacks [18]. Additionally, QUIC Bit-
coin Channels introduce efficient payment channels that
maintain state even during network switches, allowing
seamless transactions between users and machines. These
capabilities suggest that QUIC could be a valuable alterna-
tive to TCP for high-speed, trustless financial exchanges,
particularly in use cases requiring lightweight, adaptable,
and encrypted communication channels in decentralized
networks.

4.2.2. Threshold Cryptography and Distributed Key
Generation (DKG). Threshold cryptography, particularly
Distributed Key Generation (DKG), plays a fundamental
role in decentralized security mechanisms. As outlined in
Das and Ren’s work [19], DKG ensures that signing keys
are securely distributed among multiple participants rather
than being held by a single entity. Their scheme employs
adaptively secure BLS threshold signatures, which main-
tain security even if an adversary selects corrupted nodes
dynamically. The protocol minimizes overhead compared
to prior DKG approaches, ensuring efficient key man-
agement in distributed environments. This decentralized
key-sharing mechanism is particularly relevant for secure
broadcast systems, where maintaining integrity and fault
tolerance in adversarial conditions is crucial.

QUIC, on the other hand, integrates cryptographic
handshakes with transport-layer encryption, minimizing
round-trip times and ensuring secure data transmission [4].
While QUIC itself does not inherently implement DKG,
its built-in encryption and low-latency communication
may offer advantages in scenarios where distributed key
agreement protocols like DKG are deployed. Specifically,
QUIC’s multiplexed streams and rapid reconnection ca-
pabilities could potentially reduce the overhead associated
with key exchange and cryptographic signing in decentral-
ized networks. However, no existing research—including
that of Das and Ren—has explicitly evaluated QUIC’s
interaction with DKG. Further studies would be required
to determine whether QUIC’s performance benefits align
with the security guarantees of threshold cryptographic
protocols.

4.2.3. DAG-Based Consensus Mechanisms:. QUIC’s
low-latency and efficient communication protocols align
well with Directed Acyclic Graph (DAG) structures used
in systems like IOTA [20]. DAGs enable parallel transac-
tion processing without the bottleneck of sequential blocks
typical of traditional blockchain systems. QUIC’s quick
message propagation and connection setup are beneficial
for the high-throughput and low-latency requirements of
DAG-based consensus, where real-time message delivery
is essential for scalability and network efficiency.

4.2.4. libp2p. In libp2p, reliable broadcast is essential
for efficient message delivery across peers. TCP and
QUIC—play key roles in this functionality.

TCP’s head-of-line blocking can be a significant draw-
back in real-time applications. Additionally, TCP’s re-
liance on middleboxes for header inspection can cre-
ate challenges for deploying new protocol features [21].
QUIC avoids head-of-line blocking which makes it ideal
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for real-time and high-concurrency environments. Web-
Transport, built on QUIC, offers an alternative to Web-
Sockets by enabling bidirectional communication over
stream multiplexing [22]. Unlike WebSockets, which use a
single connection, WebTransport allows multiple streams
to operate in parallel, improving performance. It also
enables browsers to connect to libp2p nodes securely
using self-signed certificates, addressing WebSocket’s lim-
itations in peer-to-peer networks. A standard WebSocket
connection is conducted through 6 RTTs:

e 1 RTT for TCP handshake.

e | RTT for TLS 1.3 handshake.

e 1 RTT for WebSocket upgrade.

e 1 RTT for multistream security negotiation (Noise
or TLS 1.3).

e 1 RTT for security handshake (Noise or TLS 1.3).

e 1 RTT for multistream muxer negotiation (mplex
or yamux).

In comparison, WebTransport only requires 3 RTTs:

e 1 RTT for QUIC handshake.

e 1 RTT for WebTransport handshake.

e 1 RTT for libp2p handshake; one for multistream
and one for authentication(with a Noise hand-
shake) [22].

5. Conclusion and future work

In conclusion, while the exploration of TCP and
QUIC for reliable broadcast in distributed systems has
provided valuable insights, it is clear that further re-
search is needed, particularly regarding QUIC’s evolving
capabilities and potential for broader adoption. QUIC’s
inherent advantages in latency reduction, multiplexing,
and built-in encryption make it an increasingly promising
candidate for high-performance applications, especially in
real-time communication, streaming, and large-scale de-
centralized systems. QUIC is still undergoing development
and its full potential in diverse distributed environments
remains an area for continued investigation. QUIC con-
tinues to mature and gain support across the industry. In
my opinion it is expected that QUIC’s deployment will
expand, offering new opportunities for optimizing reliable
broadcasting in environments where speed, scalability, and
fault tolerance are critical. Future research should focus
on refining QUIC’s interoperability with legacy systems,
exploring hybrid solutions that combine the strengths of
both TCP and QUIC, and further integrating advanced
cryptographic techniques to enhance the security and effi-
ciency of reliable broadcast protocols. As the adoption
of QUIC accelerates, it is anticipated that it will play
an increasingly integral role in shaping the next gener-
ation of communication protocols, driving innovation in
distributed systems and beyond.
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Abstract—Technical implementations of the QUIC protocol
differ significantly despite its in-depth RFC 9000 specifica-
tion. The design choice of an appropriate QUIC library is
crucial for the available functionality and performance of a
launching project. This paper analyzes the application and
internal architecture of Cloudflare’s QUIC implementation
quiche using the C4 model, its relation to the host appli-
cation, and quiche-specific features not explicitly stated in
the RFC. Our findings are subsequently added to the QUIC
Explorer, a tool for developers that facilitates this decision.
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zation, BoringSSL

1. Introduction

Since the Internet became increasingly important in
our daily lives, TCP has been one of the most used
protocols for data transmission, but it faces challenges
regarding throughput, latency, and security. In 2016, the
first Internet-Draft of Quick UDP Internet Connections
(QUIC) was published by Google’s developer team on the
IETF forum [1]. The main goal of QUIC was to merge the
advantages of TCP and UDP in one protocol with a focus
on security, reliability and performance. In 2021, after sev-
eral iterations and improvements, the IETF published the
RFC 9000 that defines the QUIC protocol [2]. Cloudflare
had already released version 0.1.0 of their QUIC imple-
mentation called quiche on GitHub in October 2019 [3].
Since then, the library has been continuously developed
and improved.

According to Alessandro Ghedini, one of quiche’s
leading developers, a major design goal was providing
most of QUIC’s functionality to the host application via a
minimal and intuitive Application Programming Interface
(API). However, quiche’s application areas should not be
restricted by any assumptions taken during the develop-
ment process [3].

In this paper, we will analyze quiche’s architecture and
internal relations from an abstract point of view. Mainly,
two abstraction levels (container & component) of the C4
model by Simon Brown will be considered [4]. We will
deliberately not analyze and discuss the code level, as it
goes beyond our scope and could be outdated shortly due
to quick development. In Section 2, the communication
between quiche, its environment, and inner elements will
be analyzed. Section 3 discusses features of quiche not
strictly defined in the RFC 9000. Furthermore, to enable
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easy access to our analysis results, we add them to the
QUIC Explorer [5]. This information pool is designed for
developer teams to gain a comprehensive overview of the
different capabilities of different QUIC implementations
and faciliate their design choices.

2. C4 Model-Based Analysis

To strike a balance between an abstract view of
quiche’s integration into a software project and a detailed
analysis of its internal structure, we chose the C4 model
to visualize and describe the architectural elements of the
library. Unlike the prevalent Unified Modeling Language
(UML), the C4 model is less formal and more lightweight,
which makes it easier to understand, especially for peo-
ple without a deep knowledge of software architecture.
Nevertheless, it can represent a system as complex as the
architecture of quiche in a simple but precise way [6]. In
total, the C4 model consists of four abstraction levels:
system context, container, component, and code. Each
level focuses on a certain degree of abstraction to address
different stakeholders [7, p. 920].

Since we want to focus on a structural analysis of
quiche, we start in Section 2.1 at the container level to
point out the interaction of the library with the software
environment. Afterwards, we will dive deeper into the
component level (Section 2.2) to analyze the library’s
architecture. To clarify the terms container and component
in the context of the C4 model, we consider a component
as a cohesive set of functionalities that is not separately
deployable. It functions as a facade with a well-defined
interface implemented by its underlying elements (e.g.,
structs, classes, instances) one level deeper. In contrast,
a container is composed of several logically separate
components that operate as a single deployable unit [4].

2.1. Container Level

quiche is designed as a multifunctional user-space
library that enables rapid, iterative development and the
possibility to be integrated into various services of differ-
ent purposes [8]. Cloudflare developed quiche for their
application in their Content Delivery Network (CDN)
backbone, where it needs to be highly performant and
reliable [3], [9]. At the same time, since its initial release,
quiche has been an open-source project to be co-developed
by the community and integrated into a wide range of
applications outside of Cloudflare. As an example, Google
integrated quiche in Android for secure and fast DNS
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Figure 1: Software Architecture of a QUIC-enabled Ser-
vice at the Container Level

resolution via DNS-over-HTTP/3 (DoH3) [10]. This ac-
centuates the flexibility and adaptability of quiche for
different architectures and use cases.

Figure 1 illustrates the container level of an arbi-
trary QUIC-enabled service that uses quiche as its net-
work communication library. The core element is the
host application, which implements the main logic and
functionality of the software. Since quiche is designed
as a low-level, rather passive library, the host application
is responsible for the entire network processing. quiche
itself implements the entire logic and algorithmic of QUIC
according to the RFC 9000 [2] and administrates the cur-
rent connection state but does not proceed autonomously.
As shown, quiche never interacts directly with the OS’
network stack. It instead serves as a simultaneous inter-
preter and decision maker for the QUIC communication.
The enforcement of the library’s ruling is part of the
host application’s accountability based on the provided
metadata. To accomplish connection establishment (hand-
shake), sending/receiving data, handling packet recovery,
etc. quiche offers a well-defined API. Nevertheless, every
action must be triggered, and every active part, like I/O
events, polling mechanisms, timeout handling, etc. must
be implemented by the host application.

2.2. Component Level

To understand how quiche was designed and works
internally, we will go one level deeper into the C4 model
and analyze its structure on the component level. Figure 2
clarifies the general calling behaviour. For reasons of
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intelligibility, not all information flows are shown but are
described in this Section.

The core element of quiche is the Connection com-
ponent. It provides the central part of the API for the
host application and processes or delegates, respectively,
incoming communication (control and data) to the cor-
responding subcomponents. Moreover, this component
manages the entire internal communication and the flow
of information within the library. The connection state
and connection-specific properties (e.g. TLS handshake
parameters, transport statistics, IDs, timers) are stored,
updated and accessible via this component.

Before a connection can be established, the host appli-
cation must create an instance of the Config component.
It stores global, non-connection-specific (but often device-
or application-specific) properties and settings (e.g. se-
curity certificates and settings, supported protocols and
algorithms, initial and maximum values). Therefore, the
same Config instance can initialize multiple connections
with the same settings. Especially the server side that can
connect to multiple clients benefits from this feature.

Keeping Round-Trip Time (RTT) low and ensuring
a high level of security, QUIC combines the session and
TLS 1.3 handshake into one step. This part is managed by
the Crypto & TLS component, which relies on an exter-
nal library (BoringSSL or OpenSSL) for Transport Layer
Security (TLS) and ring for cryptographic primitives and
hash functionality. Section 3.3 takes a closer look at their
integration.

To send the first payload data to the communication
partner, which is already possible during the handshake
procedure, the Packet/Frame component is responsi-
ble for creating, manipulating and verifying packets and
frames. Outgoing data is assembled into packets, encoded
and encrypted using ring whereby the Authenticated En-
cryption with Associated Data (AEAD) parameters (algo-
rithm and secrets) are provided by the Config. For the
incoming packets, the procedure is reversed, but with the
addition that the integrity is verified as well.

Among other things, QUIC was designed to solve the
Head-of-Line blocking problem faced by TCP. Therefore,
the Stream component is responsible for multiplexing all
streams within a connection. It manages the current states
and flow control of each stream individually. Additionally,
it implements stream prioritization and scheduling based
on the decisions made by the host application and pro-
vided by the Config. The quiche-specific implementation
of this feature is illustrated in Section 3.2.

To provide a connection-oriented and lossless data
transmission on top of UDP, the CC & Recovery com-
ponent implements the Congestion Control (CC) logic
and recovery mechanisms. It keeps track of the current
transmission state (congestion window (CWND), RTT,
pacing and loss rate, ...), updates its properties and sends
ACK frames for received packets. If packets are lost or
run into a timeout, this component triggers retransmis-
sions. Section 3.1 discusses the possibilities of the natively
implemented CC algorithms and how newly developed
algorithms can be added.
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Figure 2: Internal Architecture of quiche at the Component Level

3. Special Features

The RFC 9000 is a comprehensive document that spec-
ifies QUIC. Fundamental mechanisms such as the connec-
tion establishment (including the handshake process) or
the state and error handling are defined with a high level of
detail. The line format in particular (e.g. layout of packets,
frame types, ID ranges) is standardised with a high level
of detail in the RFC. On the other hand, some parts define
boundary conditions or optional features instead and leave
room for user-specific implementations [2]. In this section,
we will focus on some quiche-specific implementations
that are not explicitly specified in the RFC 9000.

3.1. Congestion Control

In RFC 9000, CC is defined as a mandatory feature
of QUIC, but no exact implementation or algorithm is
prescribed. It only provides TCP-based guidelines. Cloud-
flare implemented a couple of different CC algorithms in
quiche to provide a wide range of options for different net-
work conditions. Two of them, Reno and Cubic, are well-
known and widely used in TCP and were implemented
with a few minor adjustments to fit the QUIC environ-
ment. One reason these “old” algorithms are still available
is their well-known behaviour and the fact that they are
easy to implement. In this way, Cloudflare intends to boost
the deployment of QUIC, and of course also of quiche, by
providing a familiar environment for developers [11]. To
improve their performance HyStart++ was implemented
according to RFC 9406. This feature enhances the ini-
tial slow start phase by gracefully transitioning into the
congestion avoidance phase when early congestion is de-
tected. In contrast to the loss-based algorithms, the library
also provides two delay-based CC algorithms: Bottleneck
Bandwidth and Round-trip propagation time (BBR) and
BBRv2 [12].
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A major advantage of quiche is the interchangeability
of its CC algorithms. It offers a simple API to switch
between them or to implement custom ones. As a real-
world example, hosts and servers can dynamically switch
between the algorithms based on the current network
conditions. For high-capacity and relatively stable links,
more aggressive algorithms like BBRv2 can be effective,
while on mobile or high-latency networks — where con-
ditions are more variable — more conservative algorithms
like Cubic generally provide more stable and predictable
performance.

3.2. Stream Prioritization and Scheduling

According to the RFC 9000, a QUIC implementa-
tion should provide the possibility for the application
to prioritize streams relative to each other [2]. quiche
satisfies these specifications with its stream prioritiza-
tion and scheduling feature. Every stream carries a
Stream Priority Key, which contains three parameters:
urgency, incremental and id. The id orchestrates all
stream priorities in a Red-Black Tree. It is ordered by the
urgency (0 to 255, default: 127), where a lower value
indicates a higher priority. The incremental boolean
indicates if the data can be sent in a round-robin fashion
or processed online in pieces. If the urgency of two
streams is the same, non-incremental streams are priori-
tized over incremental ones. quiche itself only implements
the scheduling logic and provides an API to set and update
the stream priorities. The decision-making process is the
host application’s responsibility, which communicates the
listed parameters to quiche and thus triggers the schedul-
ing [12].
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3.3. Integration of Crypto and TLS

As mentioned, QUIC’s security is based on the TLS
1.3 protocol. Therefore, quiche relies on the external
library BoringSSL, a fork of OpenSSL developed and
maintained by Google. Cloudflare migrated their Secure
Sockets Layer (SSL) connection termination stack already
in 2017 to BoringSSL to reduce maintenance [13]. It offers
a dedicated API that can be used by QUIC implemen-
tations [3], but as shown in Figure 2, it is not directly
applicable since BoringSSL is a C library and quiche is
written in Rust. Therefore, the Crypto & TLS component
uses Rust’s Foreign Function Interface to interact with the
external library and provides the necessary functionality to
the inside of quiche. Nevertheless, the usage of OpenSSL
is still natively available in quiche.

Even though BoringSSL offers the entire crypto-
graphic primitives that are mandatory for QUIC, quiche
employs another external library for this purpose: ring.
As ring uses in parts the same implementation of crypto-
graphic primitives as BoringSSL, this does not noticeably
affect the performance of quiche [3]. This design choice
was, moreover, security-driven, as this library is written
in Rust, so it can guarantee memory safety and prevent
undefined behaviour by default [14].

A slight anomaly that contrasts with the general com-
munication structure within quiche is the direct inter-
action between Packet/Frame and ring. Furthermore,
QUIC uses common symmetric AEAD (AES-128-GCM,
AES-256-GCM, ChaCha20-Poly1305) for payload en-
cryption and integrity protection, but the headers are pro-
tected (masked) with a different set of keys [15].

4. Conclusion

In order to meet all specifications of the extensive
RFC 9000, Cloudflare’s developer team inevitably had to
choose a well-considered architecture for quiche. At the
container level, we examined the relation between the
host application and the library. It offers a simple but
well-defined API for interaction and, therefore, defines a
precise division of tasks and responsibilities concerning
the host application. One level deeper, at the component
level, we recognized the same design principle among the
components of quiche. Nearly every information flow was
initialised by the central Connection component. This
demonstrates a low coupling within and a high cohesion
of the library to the outside world.

However, from a methodological point of view, the
analysis based on the source code was very challenging
because some central files are built up of thousands of
lines of code (e.g. lib.rs: > 17.000). In combination
with better documentation, especially of helper functions,
this is a starting point for structural improvement.

A further example of a good design choice is the
integration of BoringSSL and ring. These libraries are
extensively tested and used under real-world conditions
and satisfy all requirements (security, performance, reli-
ability) of QUIC. In addition, the facade-like design of
all components, but Crypto & TLS in particular, indicates
high abstraction and encapsulation.

According to Google, the utilization of BoringSSL
for third parties is expressly not recommended, as the
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stability of API, for example, is not guaranteed [16].
Even if Cloudflare’s internal migration to BoringSSL was
reasonable, and quiche relies only on a snapshot of it, this
potential risk should be treated with caution, as changes
and incompatibilities can occur in the future.

Nevertheless, the quiche library is a well-designed
and well-structured QUIC implementation that can be
further developed to improve the overall structure and
maintainability.
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Abstract—Despite its ever-increasing complexity, the man-
agement of networks, for example those operated by Internet
Service Providers, is still heavily relying on human inter-
vention that need to monitor the infrastructure and react
accordingly to any unforseen changes. This task is becoming
harder as networks nowadays generate large amounts of
telemetric data that require human intervention to analyse
it.

Fortunately, self-managing networks can automate tasks
such as monitoring, troubleshooting and optimizing network
performance while reducing human intervention. These self-
managing networks rely on machine learning (ML) which
has emerged as a powerful tool for automating such tasks.
However, feeding a large amount of unprocessed data into the
ML model will greatly reduce its accuracy. For ML models
to work effectively, they require preprocessing steps like
feature selection (FS) to identify the most relevant features
and metrics of our data.

This paper presents different approaches for feature selection
in machine learning as well as idetify those that can be
applied to self-managing networks.

Index Terms—{feature selection, self-managing networks, net-
work telemetry

1. Introduction

Modern networks are becoming increasingly complex
with diverse devices, high traffic and new protocols. How-
ever, as they grow in scale and complexity, their manage-
ment also becomes harder and more complex. While these
tasks are still heavily relying on human intervention, it is
clear that we will some day reach a point where it is not
feasible anymore and will simply become unsustainable.
To address this challenge, self-managing networks (SMN)
have emerged. These networks can automate tasks such
as monitoring, anomaly detection, traffic optimization,
resource allocation... [1]. These SMNs rely on machine
learning models that must interpret the vast amount of
telemetric data generated by network devices and act
accordingly.

Machine learning models must process and interpret
this data efficiently and deliver accurate predictions. The
sheer volume of the data that is fed into the model makes
this task tedious as it usually consists of a very high
number of features that may have bad repercussions on our
models predictions. To overcome this challenge, feature
selection comes into play. It is commonly used in ML
models as it can improve their performance and speed by
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identifying the most relevant data attributes or features of
a dataset and eliminating those it deems unnecessary. By
reducing the dimensionality of the data, feature selection
not only improves ML model performance but also min-
imizes computational overhead and enhances scalability.

In this paper, we provide a comprehensive overview
of existing feature selection methods that are used in ML.
This will be done in Section 2. In Section 3, we will briefly
introduce self-managing networks as well as the datasets
that can be used by ML models. Finally, in Section 4 we
apply the feature selection methods introduced in Section
2 to SMNs and summarize advantages, disadvantages and
scalability of these methods.

2. Feature Selection Methods

Feature selection aims mainly at identifying and se-
lecting a subset of relevant features for use in model
construction. This process is a critical aspect of machine
learning as it helps reduce the dimensionality of data with
many features. Feature selection is therefore the removal
of features that are redundant and increase computational
overhead while decreasing the accuracy for no gain [1].

It is also a good solution for the curse of dimension-
ality. According to Bishop [2], that phenomenon occurs
in high-dimensional datasets where the number of config-
urations grows exponentially as the dimensionality of the
dataset increases.

Feature selection has the following goals according to
Guyon and Elisseeff [3]:

Remove useless or insignificant data.

Enhance the model’s performance by reducing
overfitting.

Improve its accuracy.

Reduce training time.

Each method, given a set of features, has its own criteria
and will output a subset of features that should contain
only the most relevant ones.

This section presents feature selection methods that
are used in machine learning in general. According to
Girish and Ferat [4] , most feature selection methods can
be classified into three types :

Filter Methods
Wrapper Methods
Embedded Methods
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2.1. Filter Methods

Filtering is a preprocessing step that is applied before
the learning phase and is therefore independent of the
learning algorithm and has no bias toward the models. The
main idea behind filtering is to assign a rank or a weight
to each feature by using some criteria, sorting them the
features according to their score, and finally selecting the
features with the highest scores while discarding those
under a certain threshold [4]. However, we still have to
determine how exactly we can assign a rank to each
feature.

According to Law et al. [5], a feature can be con-
sidered irrelevant if it is conditionally independent of the
class labels given other features. What this implies is that
a feature that has no influence on the class labels can be
considered irrelevant, as it does not contain useful infor-
mation about the data. Such features should be discarded.
On the other hand, features which contain information
about the labels should be kept. Many filter methods use
statistical functions to determine the degree of dependency
of a feature with its output or label. In the following, we
can observe two filter methods:

Chi-square statistic According to Ray et al. [6]
Chi-square statistic can be used to compute the re-
lation of each individual feature with the outcome.
It can be calculated as follows

=~ (0; — E;)*

Where:

O;: The observed frequency in category <.
E;: The expected frequency in category ¢,
calculated under the null hypothesis.

n: The total number of categories.

A larger x? value indicates a greater dependency
between the feature and the output.

Mutual information Mutual information is based
on a concept called entropy which is a measure
of uncertainty or unpredictability of the variable.
It measures "the amount of information that one
random variable has about another variable" [7].
The mutual information between two variables X
and Y can be defined as follows :

I(X;Y) =YY Plx,y) 1og(
Where :

zeX yeyY
P(X) and P(Y) are the probabilites of X
and Y respectively
P(X,Y) is the joint probability of X and
Y

P(z,y)

P(x)P(y)

2.2. Wrapper Methods

While filter methods evaluate the relevance of a fea-
ture, wrapper methods evaluate the relevance of a subset
of features. The criterion for choosing the right subset is
the performance of the learning algorithm. The latter is
used as a black box (i.e no knowledge of the algorithm
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is required). Wrapper-based techniques use an iterative
approach, choosing a different subset of features in each
iteration and fitting it in a model to determine the most
optimal subset, i.e the subset that outputs the highest
performance or accuracy will be chosen [4].

This also means that the algorithm has an influence
on the results and is tightly connected to it unlike filter
methods. However, for N features, there are 2V subsets.
Naively evaluating all possible subsets is therefore impos-
sible since it is an NP-hard problem [8].

One of the most basic algorithms is called Sequential
forward Selection (SFS). The algorithm starts with an
empty set of features and iteratively adds the one that
gives the highest value for some objective function until
the number of wanted features is reached. Pudil et al. [9]
present an algorithm called Sequential Forward Floating
Selection (SFFS) which utilises SFS. Just like SFS, it iter-
atively chooses the best feature. However, before starting
the next iteration it makes sure that the current subset is
the most optimal one of its size. Figure 1a showcases how

this algorithm works.
Leave out the conditio-
nally excluded feature

SFFS INITIALIZE

Conditionally

Apply exclude one
one step of|_| 7|-91 feature found by
SF_S k=k+1 applying one step
algorithm of SBS algorithm

( sTOP —
Return the conditionally
excluded feature back

(a) How the SFFS algorithm works [10]

Another version of it called Sequential Backward Se-
lection exists, in which the algorithm starts with the full
set of features and iteratively removes the one that gives
the lowest value. [4]

2.3. Embedded Methods

Both methods presented above share the similarity that
they are a preprocessing step applied to the data before
performing the training. Embedded methods on the other
hand do not separate the feature selection part from the
training and share the benefits of both of these methods
[1]. They are therefore more efficient in terms of computa-
tional costs in comparison to wrapper methods since they
do not need to perform classification on different subsets.
Commonly used techniques include

Regularization-Based Methods such as Lasso or
L1 Regression which adds an L1 penalty term to
the loss function during training: L1 = """ |w;]|
where w; is the i-th feature [11].

Features with coefficients reduced to exactly zero
are effectively removed from the model.
Decision Trees which inherently rank features
based on their importance during training. These
trees split data using features that maximize im-
purity, for example using Gini index or entropy

[2].
2.4. Other Methods

There are also other feature selection methods that
cannot be classified into the three types described above
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since they differ from our definition of FS. They are
also called feature extraction methods [1] and the main
difference is that instead of choosing a subset of the
features, feature extraction methods create a completely
new set of features that is smaller than the original one,
while also preserving its most important characteristics
[12].

2.4.1. Autoencoder FS.

Han et al. [13] propose an Autoencoder based feature
selection (AEFS) method. Autoencoders are a type of
neural networks (NN) whose main goal is to receive an
input and encode it into a compressed representation and
are then able to reconstruct or decode it into a state that
should resemble the original input [14].

AEFS works by squeezing or encoding the input fea-
ture space into a lower dimensional one. By decoding the
data we are left with only the most relevant features. This
is done by minimizing the equation

2
1 B i
J(©) = S IX—g(fFONE+al WD o0+ > W2

i=1
where

e X denotes the (unlabeled) data matrix and m the
number of samples.

e f and g are the encoder and decoder functions
respectively.

o W], is a regularization on W), which is
the weight matrix in the input layer.

e « is the trade-off parameter of the reconstruction
loss and the regularization term.

o 32 [[W®|2 denotes the weight decay regular-
ization.

e [ is the penalty parameter.

The figure 2a showcases how AEFS can be used to only
keep relevant features.

Hidden Units

Input Output

Original Features Reconstructed Features

(a) AEFS applied to faces. On the left we can see the original
ones with all their features. On the right, we can see the
reconstructed features that represent the most important ones
[13].

2.4.2. PCA.
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According to Jolliffe [15], principal component anal-
ysis (PCA) is a technique used for reducing the di-
mensionality of such datasets, where a lot of features
are correlated. It also increases interpretability while at
the same time minimizing information loss. PCA works
by creating new uncorrelated variables that successively
maximize variance. For example, for an input data of
dimension d, it is reshaped into a new coordinate system,
which also has d dimensions and is ordered in such a
way that the first ones, also called principal components,
contain most of the variance of the input features. It can
also be applied to feature extraction by only keeping the
first few principal components which contain most of the
information needed.

3. Applying FS to SMNs

In this section we explain what exactly network
telemetry is. We also define SMNSs, as well as their roles
and tasks. We will do so in subsections 3.1 and 3.2,
respectively.

3.1. Network telemetry

RFC9232 [16] defines network telemetry as being
"information that can be extracted from networks". It can
then be analyzed and used by humans or even ML. It
contains information about network configuration, logs,
event records as well as statistics.

Network telemetry serves as the backbone for self-
managing networks since it provides the essential data
that needs to be analyzed and studied by the ML model,
which will then take action accordingly.

There are various methods or frameworks to extract
telemetry data from a network. An example is YANG:
"YANG is a data modeling language used to model con-
figuration data, state data, Remote Procedure Calls, and
notifications for network management protocols" [17].

"enabled”: true,
"forwarding": true,
"mtu": 65536,
"neighbor”: []

"admin_status”: "up”,
"description™: null,
"enabled": true,
"ifindex": 1,

"ipvd": { 0
"address™: [ "link-up-down-trap-enable": false,
{ "name": "lo",
"ip": "127.0.0.1", "oper-status”: "unknown",
"origin": "static", "phys-address": "00:00:00:00:00:00",
“prefix-length”: 8 "statistics": {
} "in-crc_errors™: @,

1
"enabled”: true,
“forwarding”: true,
“mtu”: 65536,
"neighbor”: []

"in-discarded”: @,
"in-errors": @,
"in-fifo_errors™: @,
"in-frame_errors”: @,
"in-length_errors”: @,
I " "in-missed_errors”: @,
19"? z:jd{ "in-multicast-pkts": 17872,
address™: [ “in-octets": 18781974,
"in-packets": 17872,
"out-aborted_errors”: @,
"out-carrier_changes": @,
"out-carrier_errors": @,
] "out-discarded": @,
"out-errors": @,
"out-fifo_errors”: @,
"out-octets": 18781974,
"out-packets”: 17872,
"out-window_errors”: @

TipT: "::1%,
"origin": “static",
“prefix-length": 128

»
"autoconf": {
"create-global-address”: false,
"create-tempeorary-addresses”: false,
"temporary-preferred-lifetime™: @,
"temporary-valid-lifetime™: @ }
}

“;iup—addr'fdete:t—tr'ansmits": false, ";)’PE”: "loopback™
(a) Example of a data in YANG
As we can observe in the figure 3a the data contains
a lot of features and not all of them are relevant. The

irrelevant ones have to be filtered using the filter selection
methods described in section 2.

doi: 10.2313/NET-2025-05-1 20



3.2. Self-Managing Networks

According to Behringer et al. [18], self-managing
networks, also referred to as autonomic networks, are
systems capable of performing key management functions
autonomously and are able to adapt to a changing envi-
ronment on their own. This autonomy is comprised of the
following properties:

e Self-Configuration: They should be able to auto-
matically configure themselves with minimal hu-
man intervention.

Self-Healing: Detection and mitigation of failures
or anomalies without external guidance.
Self-Optimizing: They automatically determine
ways to optimize their behavior against a set of
well-defined goals.

Self-Protection: They should identify potential
attacks and implement security measures to defend
against them.

4. Comparison of FS methods

In this section, we compare the different feature selec-
tion methods we presented in Section 2 as well as sum-
marize the advantages and disadvantages of each method.
Since we also know the roles of self-managing networks,
we can also identify which methods can be used for which
tasks.

This comparison is mainly based on how applicable
they are to supervised or unsupervised learning.

4.1. Supervised Methods

Supervised learning is a category in ML where the
class labels of the data are known [2].

4.1.1. Filter methods.

Filter methods, especially the two methods we explained,
are mainly used for classification [12] since the data needs
to be labeled.

Advantages: The main advantage of filter meth-
ods is that they classify features based on their
relative performace and have no bias toward the
classification algorithm used [4]. They also do not
require much computing.

Disadvantages: Since these methods are indepen-
dent of the learning algorithm, the selected fea-
tures can be not optimal for it [19].

Application: Filter methods should be used as a
preprocessing step and can therefore be combined
with other methods such as embedded methods
[8]. They can be applied in many tasks such
as self-healing tasks [20] and traffic classifica-
tion [21].

4.1.2. Wrapper methods.

According to Bommert et al. [8] "Wrapper methods con-
sider subsets of the set of all features. For each of the
subsets, a supervised learning (e.g. classification) model
is fitted". This makes them also supervised methods.

Advantages: They are more precise than filter
methods since the features are studied.
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Disadvantages: Since there are a lot of subsets to
consider, they require a lot of computing which
makes them slower than filter methods. The re-
sult is also biased toward the learning algorithm
[12] and they rely on the relative accuracy of the
classifier which makes them prone to overfitting
[4].

Application: It is not a good idea to use wrapper
methods since they "are computationally infea-
sible for high-dimensional data sets" [8]. They
can, however, be used in combination with filter
methods to enhance their performace.

4.1.3. Embedded methods.

In the case of embedded methods, the feature selection
part is embedded in the training of the model. The model
therefore determines if it is supervised or unsupervised.

Advantages: They share the advantages of both
filter and wrapper methods since the features in-
teract with the learning algorithm like wrapper
methods. However they are much more efficient
since they do not need to evaluate all subsets [19].
Disadvantages: Just like wrapper methods, the
result may be dependant on the algorithm used.
Application: Applications include Traffic classifi-
cation [22], Misuse Detection [23], Load balanc-
ing [24].

4.2. Unsupervised Methods

In contrast to supervised learning, there are no class
labels used in unsupervised learning.

4.2.1. AEFS.

AEFS is an unsupervised algorithm since the data used
is not labelled and autoencoders are mainly used in unsu-
pervised learning [14].

Advantages: Just like embedded methods, AEFS
is efficient and has great accuracy and performance
[13]. It has also been proven to be better than
PCA since it can capture non-linear dependencies
among the features [25].

Disadvantages: Autoencoders are prone to over-
fitting [14].

Application: Anomaly detection [25].

4.2.2. PCA.
PCA is an unsupervised algorithm since it is a clustering
algorithm [15].

Advantages: Also very efficient in reducing the
dimensionality of the data while only preserving
the most important features.

Disadvantages: Can only capture linear depen-
dencies among the features [25].

Application: Anomaly detection [25].

5. Conclusion
In this paper we explained what feature selection is.

We also presented different methods and ways to do it.
Then we discussed network telemetry and the roles and
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tasks of self-managing networks. Finally we compared

the

different feature selection methods, evaluating their

advantages, drawbacks and also applying them to self-
managing networks.
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Abstract—Commercial virtual private networks (VPNs) have
gained immense popularity because of their claims to provide
secure, fast and obfuscated connectivity. This is especially
important, as the number of data breaches is on the rise and
user’s seek to protect themselves [1]. It is the goal of this
paper to review the claims made by large commercial VPN
providers and determine whether they are correct or not.
To this extent, four of the most popular VPN providers and
their protocols are evaluated in terms of security, obfuscation
capabilities, speed and trustworthyness. Overall, Nord VPN
offers great security and speed in their service and only
suffers from the fact that their custom VPN protcol is not
open-sourced. ExpressVPN shares this problem and also logs
identifiable information. Surfshark offers a slightly slower
VPN experience and shares user data with advertisers.
Hide.me uses secure and open-sourced protocols by default
and logs very little and non-identifiable data. Their service,
however, is also the slowest. None of the VPN providers are
able to obfuscate VPN traffic and make VPN usage invisible.

Index Terms—networks, VPN, OpenVPN, IKEv2/IPSec,
WireGuard, NordLynx, Lightway

1. Introduction

The rising number of data breaches and censorship in
countries around the world leads to a growing interest
in VPN services [1]. VPN providers claim that, with
their services, users are able to use the Internet more
securely and circumnavigate governmental censorship and
geoblocking, while suffering minimal latencies. However,
these claims can be incorrect or misleading and might
lead consumers to make poor buying decisions. This paper
seeks to address this issue by analyzing different providers
and their protocols to determine if their claims of security,
obfuscation capabilities and speed hold up to reality. The
criterium for security will be that all of the protocols used
by a provider are either open-sourced or audited regularly
and haven’t had major security vulnerabilities in the past.
To compare speed, the latencies of the connections of
the providers are measured. Finally, a VPN provider is
considered to offer decent obfuscation, if it can hide the
fact that their customers are using their service.

2. Background

A private network is a network that is isolated from
other networks. Communication within a private network
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cannot leak to the outside. This can be achieved by leasing
physical private communication lines and connecting hosts
with it. A VPN (Virtual Private Network) is a private
network, built on top of a public network. In a VPN,
hosts are blocked off from a public network and can only
be connected to over secure tunnels [2, section 8.6.3].
A tunnel is a special connection between hosts. When a
data packet passes through a tunnel, it is encrypted and
encapsulated. This is useful, when communication needs
to be secure or the tunnel ends at a location other than
the final destination of the packet. These tunnels do not
have to be formed via private communication lines but
instead over the public Internet. This allows any host
on the Internet with the necessary credentials to connect
to a VPN. [2, section 8.6.1] In order to connect to a
VPN, a user first needs to authenticate themselves, often
followed by a negotiation of a cipher suite with the VPN
server. The client then agrees to a tunneling protocol and
exchanges secrets with the server. [3] A tunneling protocol
determines how data is encrypted and encapsulated before
being sent over a tunnel. It is the backbone of a VPN.

Commercial VPN providers offer a VPN which con-
sists of a set of proxy servers, that their customers can
connect to. Thanks to the properties of a VPN, customers
can therefore communicate over an encrypted connection,
while obfuscating their IP address and physical location.

A single VPN provider may support a number of tun-
neling protocols which is why it is important to understand
them in order to be able to compare providers.

2.1. OpenVPN

OpenVPN is one of the most popular tunnel protocols
used by VPN providers. It uses the widespread SSL/TLS
mechanisms to authenticate hosts, exchange cryptographic
secrects between them and encrypt messages. It uses the
OpenSSL library to implement this. In addition, it runs on
all major operating systems, including Windows, macOS,
Linux, Android, iOS and even OpenBSD [4]. Packets
traveling through an OpenVPN tunnel can be encapsulated
in TCP, as well as UDP packets [5]. OpenVPN can also
be configured to establish connections via the port 443.
This is the same port used for HTTPS, which makes it
harder for ISPs to use firewalls to block VPN traffic [6,
section 8.2.3]. Additionaly, OpenVPN is open-sourced
which reduces the risk of unpatched vulnerabilities and
backdoors
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2.2. IKEv2/IPSec

This protocol is a combination of two different
mechansims. The first is IPSec, which is used for encryp-
tion. The second is the the Internet Key Exchange Version
2 (IKEv2), which is used for authentication and the ex-
change of secrets [6, section 3.1]. Once keys have been
generated and exchanged, IPSec is used to encapsulate
and encrypt packets. IPSec offers different encapsulation
mechanisms, however, for IKEv2/IPSec, the Encapsula-
tion Security Payload (ESP) is used. This works by first
encrypting the original message and wrapping it with an
ESP header and trailer. The resulting message is wrapped
inside another IP packet [6, section 4.1]. This approach
of wrapping an entire packet within another IP packet is
called the tunnel mode of IPSec. The resulting packet has
two IP addresses. The “inner” IP address is that of the
original message and the “outer” address is that of the
message after encapsulation. One benefit of this protocol
is that it supports MOBIKE, which can handle changes
in the outer IP address of a device while still preserving
the connection to a VPN [6, section 3.9]. This makes
IKEv2/IPSec especially well suited for VPN usage on
mobile devices and laptops.

2.3. WireGuard

WireGuard is a new and open-sourced VPN Proto-
col. It uses public keys instead of SSL certificates for
authentication and the Noise Protocol Framework, which
is based on Diffie-Hellman, for key exchanges [7]. As
opposed to the previous protocols, WireGuard does not
work with a suite of cryptographic ciphers and instead
handles all encryption using the stream cipher ChaCha20-
Poly1305. The WireGuard protocol does not specify how
to dynamically assign IP addresses to clients connecting
to a server. Instead, a naive implementation of WireGuard
would simply store the static IP addresses of those clients.
All in all, WireGuard is a fast and secure protocol but has
some anonymity concerns that come with storing static IP
addresses [6, section 8.3]

2.4. SSTP

The SSTP protocol is a closed-source VPN protocol
developed by Microsoft. It is similar to OpenVPN in that
it uses SSL/TLS for authentication, key exchanges and
encryption. SSTP can be configured to use TCP, as well
as UDP for encapsulation. SSTP connections can also be
set up over port 443, achieving some level of obfuscation,
as described in 2.1. Overall SSTP servers are easier to
setup than OpenVPN servers. However, the protocol is
only supported by Windows [6, section 8.2.1].

2.5. L2TP

The Layer 2 Transport Protocol (L2TP) uses IKE for
authentication and key exchange and IPSec for encryption
and encapsulation. L2TP is an older VPN protocol and can
be configured with IKEv1 which leads to the use of a weak
group PSK. Even if an implementation of L2TP is config-
ured correctly, it adds layers of unnecessary encapsulation
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TABLE 1: VPN Provider Protocol Support

NordVPN  ExpressVPN  Surfshark Hide.me

OpenVPN v v v v

IKEv2/IPSec v v v v

WireGuard v v

SSTP v v

L2TP/IPSec v
NordLynx v

Lightway v

[12] [13] [14] [15] [16]

which increases network issues like packet fragmentation.
Also, L2TP does not support AEAD algorithms which
leads to an increased CPU usage [6, section 8.5.2].

2.6. NordLynx

NordLynx is a VPN protocol built on top of Wire-
Guard and created by the VPN provider NordVPN. It ad-
dresses the anonymity issues of WireGuard by construct-
ing a layer of double NATs around a WireGuard server.
The first NAT assigns the same IP address to every user,
making them indistinguishable to the server. The second
NAT assigns a unique address to a user from a pool of
IP addresses. This obfuscates traffic. While the NordLynx
protocol is not open-sourced, its foundation WireGuard is.
This makes it more transparent than completely closed-
source protocols, such as SSTP [8].

2.7. Lightway

Lightway is a protocol created by the provider Ex-
pressVPN. Similar to NordLynx, it seeks to address the
anonimity issues of WireGuard. Different from NordLynx
however, it has no association with WireGuard and is in-
stead built from the ground up. Lightway utilizes SSL/TLS
for authentication, key exchange and encryption [9]. A
collection of components of the Lightway protocol is also
open-sourced under the name lightway-core. However,
the protocol itself is not. To assure users of its security,
ExpressVPN has also issued independent audits of its
protocol [10].

3. Analysis

In order to evaluate VPN providers based on the proto-
cols they offer one needs an overview over which protocol
is offered by which provider. In this paper, the focus will
be on four VPN providers in total, namely NordVPN,
ExpressVPN, Surfshark and Hide.me. The first three were
chosen as they are among the largest commercial VPN
providers. Hide.me is an another interesting provider as it
is free and has been operating with a long and positive
track record [11]. An overview over what protocols are
supported by them and what their default protocols are, is
provided in table 1. As shown by the overview, the most
popular protocols such as OpenVPN and IKEv2/IPSec
are offered by every provider. However, there are some
protocols that are only supported by a single provider. This
is especially the case for the custom protocols developed
by a provider. The difference between these protocols will
be a deciding factor in the evaluation of providers.
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4. Design

In this paper, providers will be evaluated based on four
criteria.

The first is security. For many consumers, the main
reason of using a VPN is for the additional layer of
security provided by it. How secure a protocol, and by
extension its provider is, is determined by the security
of the key exchange mechanisms and encryption ciphers
that they use. Offering outdated protocols to customers
can pose a security risk.

The second criterium is obfuscation. Many VPN users
suffer from government censorship and use VPNs to work
around them. Since VPN are also deemed illegal in many
countries they want to obsucre their traffic as much as
possible and avoid their VPN usage being detected.

The third criterium is speed. This is a deciding factor
for VPN users when picking a provider. How fast a VPN
connection is, is determined by the protocol used but also
by the density of a provider’s network of VPN servers.

Lastly, customers value transparency in VPN
providers. They want to be sure that their VPN provider
has their privacy and security interests at heart. Providers
can do this by using open-sourced protocols, running
frequent and independent audits and avoiding logging
user data whenever possible.

5. Findings

The following sections outline the findings of the
reasearch into provider claims regarding security, speed,
obfuscation and trustworthyness.

5.1. Security

As explained in 2.1, OpenVPN is an SSL-VPN which
offers every cipher supported by SSL/TLS. This means
that it has access to very secure encryption algorithms
such as AES-256, but it also means that it can be miscon-
figured. In the past there have been instances of OpenVPN
implementations using the outdated and insecure hashing
algorithm MDS5 [17]. However, as long as it is configured
properly, OpenVPN is widely considered secure.

IKEv2/IPSec is a secure protocol and all implementa-
tions adhere to strong cryptographic standards [18].

WireGuard uses ChaCha20-Poly1305, which does not
have any known significant security problems [19, section
4]. Despite this, the encryption algorithm is not approved
by NIST [6, section 8.3].

L2TP is considered deprecated by NIST and can
be misconfigured quite easily. This is why it is sug-
gested that L2TP implementations should be migrated to
IKEvV2/IPSec [6, section 8.5.2].

NordLynx uses the same encryption as WireGuard,
since it is built on top of it [8].

Lightway can use any cipher, wolfSSL provides, in-
cluding AES-256 [12]. Independent audits have also con-
firmed that Lightway is secure [10].

While SSTP offers the encryption and integrity algo-
rithms of SSL/TLS [6, section 8.2.1], it also had severe
vulnerabilities in the recent past which allowed for remote
code execution [20].
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5.2. Obfuscation

While OpenVPN can be configured to use port 443
to form connections, it is still vulnerable to fingerprint-
ing, meaning that OpenVPN traffic can be identified and
blocked with a very low false-negative rate [21].

IKEv2/IPSec services can be blocked easily by re-
stricting acces to the ports it uses, namely UDP ports 500
and 4500 [6, section 3.1]

Like with anonomity, WireGuard leaves traffic obfus-
cation up to the VPN providers that implement it [22].
In this regard, NordVPN, Surfshark and Hide.me all offer
obfuscated VPN servers, which they claim make Open-
VPN traffic invisible [23] [24] [25]. This claim, however,
is false as it has been shown that all of these obfuscated
VPN services suffer from insufficient obfuscation over
the length of packets [21, section 8]. This allows for the
identification of VPN traffic, rendering it anything but
invisible.

5.3. Speed

Figure 1: Comparison of OpenVPN UDP speeds across
VPN providers
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Figure 2: Comparison of IKEv2/IPSec speeds across VPN
providers
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All providers make claims about the speed of their
connections. ExpressVPN and Surfshark both refer-
ence third party reviews that give top ratings to their
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Figure 3: Comparison of default protocol speeds across
VPN providers
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speed [26] [27]. NordVPN claims that it is among the
fastest VPN providers on the market [28] and Hide.me
boldly states that they are the fastest VPN ever seen [29].
To compare the performance of the different protocols
on offer by each provider, speed tests were conducted
for every provider and their protocols. The protocols that
were compared are OpenVPN, IKEv2 and the default
protocols for each provider, namely NordLynx, Lightway
and WireGuard. These protocols were chosen because they
are supported by every provider. For each protocol and
provider, a connection was established to the provider’s
best choice for a server in the United States. Then,
speedtest.net was used to determine the the download and
upload speed of the connection. The US was chosen as
all providers have a high server density there [30] [31]
[32] [33]. The result of these speed tests are shown in
figures 1, 2 and 3.

5.4. Transparancy and Trustworthyness

As mentioned in 2, OpenVPN and WireGuard are both
open-sourced, which makes them trustworthy protcols.

Similarly, IKEv2/IPSec is defined via an RFC stan-
dard [34], for which open-source implementations exist.

SSTP on the other hand is a closed-source protocol,
which still showed severe vulnerabilities in the past as
shown in 5.1. This and the fact that Microsoft has collab-
orated with governmental institutions, such as the NSA,
in the past raises trust issues [35].

While NordLynx itself is not open-sourced, its foun-
dation is, meaning that this protocol offers an acceptable
amount of trustworthyness.

The other VPN-provider-made protcol, ExpressVPN is
open-sourced in some form, via the lightway-core repos-
itory which contains certain components of the protocol.
However the documentation of this repository is anything
but in-depth and quite incomplete with lots of sections
marked as “Coming Soon” [9]. ExpressVPN advertises
that they run security audits on their software, including
Lightway, [12], however, the last audit was two years
ago [10]. Also, reviews online praising Lightway are
financed directly by the parent company of ExpressVPN,
namely Kape Technologies [36]. While this does not have
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any impact on the actual security of the protcol it at least
raises a few eyebrows.

A trustworthy VPN provider should log as little user
data as possible. In this regard, NordVPN stores only
usernames and timestamps of their customers connections
in order to determine how many concurrent users are
active. This information is deleted 15 minutes after the
session terminates [37].

ExpressVPN stores more information, including the
days, on which a user has established a successful con-
nection to which VPN server location from which country.
They also log how much data has been transferred by a
given user [38].

Surfshark stores metrics, such as how much data has
been transferred by a user and the number of times they
have used Surfshark’s services. In addition, Surfshark
collects data, including their users’ mobile device id,
the browsers they used and what network was used to
access the VPN. They use this data in collaboration with
advertisers to provide tailored ads to their customers [39].

Hide.me in comparison stores only very little data.
Namely a user’s, randomly generated, username and in-
ternally assigned IP address. This is only done for trou-
bleshooting purposes and their logs are cleared every few
hours. They also log traffic metrics of users in order to
bill them properly [40].

6. Evaluation

In terms of security, all of the providers offer secure
protocols, such as WireGuard, NordLynx or Lightway as
their default. The most insecure protocol on offer by any
provider is L2TP/IPSec, which Surfshark still supports.
However in order to use L2TP, Surfshark users need to
really go out of their way, as it is buried in options and
configurations. They also make it clear in their online
resources that they strongly advise against it’s use [15].

In terms of VPN traffic obfuscation, ExpressVPN is
the only provider which does not make wrong claims
about obfuscated VPN servers that make traffic invisible.
NordVPN [23], Surfshark [24] and Hide.me [25] all make
these claims, which gives their customers a false sense of
security [21, section 8].

The speed measurements make it clear that NordVPN
and ExpressVPN are the fastest VPN providers. Therefore
they are the most attractive provider for consumers who
value faster connections. Surfshark falls slightly behind in
terms of speed and Hide.me is by far the slowest provider
among them.

In terms of transparency, NordVPN and ExpressVPN
underperform as their custom protocols, NordLynx and
Lightway, are both closed-source. Though NordLynx fares
a little better as it is based off of WireGuard. Surfshark
and Hide.me on the other hand only offer open-sourced
protocol as their defaults. The logging policies of Ex-
pressVPN and Surfshark are quite intrusive. ExpressVPN
is capable of determining that a given user has accessed
their services. This puts customers at risk that live in
countries where VPN usage is illegal. Surfshark uses the
data they log to collaborate with advertisers which should
raise red flags for consumers who seek out VPNs to
enhance their privacy online.
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7. Related work

Other works have already evaluated VPN providers
based on different criteria, such as speed, security, server
locations and confidentiality [41] [42]. This paper is
different from these evaluations because it focuses on
the protocols offered by the providers instead of their
general characteristics. It also performs measurements of
all the available protcols instead of just using a provider’s
default. There are also papers which have shown that vpn
providers make false claims [21, section 8]. Those are,
however, often focused on certain aspects, such as the lack
of obfuscation in a particular protocol. This paper instead
offers a broad examination of several characteristics and
puts them in relation to one another.

8. Conclusion and future work

Even though the set of observed providers is quite
small with just four providers, it nevertheless showed
that false and misleading claims are not uncommon in
this industry. Many providers state that they are able to
completely obfuscate VPN traffic or that they log zero
information that can trace users back to them. Every
provider that has been examined here is guitly of at least
one of those claims. In addition, if a provider offers a
custom protocol, it is advertised heavily and unrealistic
claims about it are made, such that it is the “most secure”
protocol in existence [12]. Also, all of the providers men-
tioned in this work offer at least one proprietary tunneling
protocol. In future work, the set of examined providers
could be expanded to include smaller providers that have
a greater focus on transparency and trust.
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Abstract—The Domain Name System (DNS) is a fundamental
component of the Internet. Even so, DNS and DNS delegation
face several challenges: nameservers have no way of signaling
which protocols they support, there are complexities in
domain control outsourcing, parent and child nameservers
have inconsistent record sets and lame delegations occur
frequently. This paper explores these challenges and presents
two solutions proposed by the DELEG working group, which
was brought to life by the IETFE. The first solution places
SVCB records under _deleg labels at zone apexes, offering
simpler deployment but potentially doubling DNS traffic
and undermining DNS’s consistent naming structure. The
second solution introduces a new DELEG record type, which
maintains DNS’s hierarchical integrity but requires more ex-
tensive infrastructure changes. Both solutions effectively ad-
dress capability signaling and operator outsourcing through
their use of SVCB-style records, but neither addresses the
persistent issues of parent-child inconsistencies or lame del-
egations. Our analysis concludes that while the DELEG
record approach offers better architectural alignment with
DNS principles, significant work remains to address the full
spectrum of DNS delegation challenges.

Index Terms—dns, domain name system, dns delegation,
deleg

1. Introduction

The Domain Name System (DNS) has been a corner-
stone of the Internet since its inception, allowing users
to refer to web pages by their domains instead of their
IP addresses [1]. As the Internet continues to grow and
evolve, with billions of users and complex applications,
the reliability and efficiency of DNS operations become
even more critical. Although DNS has proven to be a scal-
able mechanism, certain challenges persist, in particular in
relation to DNS delegation as well as nameserver opera-
tions. Operator outsourcing is associated with unnecessary
overhead, which has become an increasingly prevalent
problem as the relationships between domain owners, op-
erators and registrars have become more complex. Despite
the invention of additional protocols to enhance security,
there is no standardized mechanism for nameservers to
signal which protocols they support [2]. Furthermore,
there are many cases in which inconsistencies between
records in parent and child zones occur (section 3.3), and
lame delegations (section 3.4) take place frequently.

These problems have significant practical implications
for the Internet. In particular, they lead to additional traffic,
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slower query resolution, more overhead for the operators
and even security weaknesses.

To combat some of these issues, the Internet Engineer-
ing Task Force (IETF) established the DNS Delegation
and Operation (DELEG) working group.

This paper describes the functionality of the Domain
Name System, analyzes present challenges, examines so-
lutions proposed by the DELEG working group, and
discusses remaining issues.

2. Background

Using domain names instead of numerical IP addresses
yields many benefits: Domain names are easier to remem-
ber, less cumbersome to type out, and they do not change
whenever a server is moved. To allow users to do just that,
DNS was introduced: A hierarchical system functioning
as the Internet’s address book.

2.1. Domain Namespace

com org net de
lgoogle ietf tum
campus [students|

Figure 1: Hierarchical Namespace Structure

As seen in Figure 1, the domain namespace comprises
a tree, where each node is a string representing a part of a
domain name, called a label. At the root of the namespace,
there is a “.’. The first layer below the root contains top-
level-domains (TLDs), such as the generic domains .com,
.net and .org as well as the country-specific domains,
e.g. .us and .de. Below each TLD, there are second-
level domains, sold by different registrars. For instance,
below .com, there is google.com and below .de, there
is tum.de. Domain owners can create additional sub-
domains beneath their second-level domains. The owner
of tum.de can create subdomains like campus.tum.de,
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students.tum.de or even accounts.students.tum.de.
Every sequence of labels is a domain-name, but a domain
name is only called a fully qualified domain name (FDQN)
if it is a continuous sequence of labels starting anywhere
in the tree and ending at the root. Searching for a domain
that is not fully qualified, such as campus.tum, yields no
results. The “.” at the end of an FDQN is left out, since
it is redundant [1].

A domain can have associated resource records, con-
sisting of fields for the domain name, the time to live,
as well as the class, type, and value. The type specifies
the kind of information held by the resource record.
For instance, records with a start of a zone of author-
ity (SOA) type define authoritative information about a
DNS zone, whereas A and AAAA records map domain
names to IPv4 and IPv6 addresses respectively. CNAME
records are used to provide an alias for a domain. For in-
stance, the CNAME record www.example.de. IN CNAME
www.tum.de. aliases www.example.de to www.tum.de.
When someone searches for www.example.de, they will
be directed to www.tum.de [1].

2.2. Nameservers

Nameservers are responsible for answering DNS
queries by providing authoritative information about their
zones. The DNS namespace is split into multiple disjunct
zones, which are managed by one or more nameservers.
Each zone has a primary nameserver, and there can
additionally be secondary nameservers, which replicate
the data from the primary nameserver to create redun-
dancy [1].

2.2.1. DNS Delegation. Parent nameservers can dele-
gate authority over part of their namespace to child-
nameservers in a mechanism called DNS Delegation. This
is implemented through the use of Name Server records
(NS records), where the authoritative nameservers for a
certain zone are specified [3]. The border point between
two zones is called a zone cut and the topmost node of a
zone is calles zone apex.

The parent zone can enhance security by using delega-
tion signer records (DS records) at a zone cut, specifying
that the zone below is signed with a key stated in the
record. Both the parent and the child zone have their own
key pair. The child zone signs its own records with its
own private key and shares its public key with the parent
zone. The DS record contains a hash of the child zone’s
public key, and it is signed with the parent zone’s private
key. If a resolver trusts the parent zone’s key, and can
therefore verify the parent’s records, it can also validate
the child zone’s key and their records. A chain of trust
is created. These mechanisms are called DNS Security
Extensions (DNSSEC) [4].

2.2.2. Resolver. DNS resolvers act as intermediary
servers that accept client queries and resolve them. When
a client queries the address campus.tum.de, the query
resolution roughly works as follows:

1y

A query is sent to a preconfigured resolver, which
contacts one of the root servers.
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2) The root server responds with NS records point-
ing to the authoritative nameservers for the .de
TLD.

The resolver queries one of these nameservers,
which responds with NS records for the authori-
tative nameservers managing tum.de.

The resolver again queries one of the given
servers, and receives NS records for the authori-
tative nameservers managing campus.tum.de.
Lastly, the resolver queries one of these servers,
retrieves A or AAAA records for campus. tum.de
and returns them to the client.

3)

4)

5)

This process is depicted in Figure 2. Note that caching
mechanisms exist, but they are out of scope for this
paper [1].

——de nameserver

Resolver

1: query 6: query

Client

tum.de nameserver

—— ——

7: tum
&

10: campus.tum.de

__campus.tum.de nameserver

Figure 2: Query Resolution Graphic [1, Figure 7.6]
3. Issues with DNS Delegation

The DNS delegation mechanism has remained funda-
mentally unchanged for the last four decades. As such, it
has become increasingly misaligned with modern require-
ments. Multiple issues have arisen in relation to DNS and
DNS delegation, four of which will be described in the
following paragraphs.

3.1. Capability Signaling

Various protocols have been developed, aimed at en-
hancing the security or performance of DNS . For in-
stance, Encrypted Client Hello (ECH) encrypts client hello
parameters like the Server Name Indication (SNI), thereby
preventing observers from seeing which domain a client
is attempting to connect to during the initial TLS hand-
shake [5]. DNS-over-TLS [6], DNS-over-HTTPS [7] and
DNS-over-QUIC [8] prevent man-in-the-middle attacks
through query encryption. DNS-over-QUIC additionally
prevents head-of-line blocking issues, which occur when
packets in a network queue are delayed because the
first packet in the queue is being processed or has been
lost, even if the subsequent packets could be processed
independently. However, nameservers have no way of
communicating to resolvers which protocols they sup-
port [2]. Instead, resolvers have to spend additional time
and resources to find out which protocols are supported,
for instance by using dummy-queries [6]. This results in
additional traffic as well as slower resolution.

3.2. Outsourcing Challenges
Domain owners frequently delegate control of their do-

mains to web-hosting providers or DNS service providers,
commonly referred to as operators.. While the DNS
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protocol supports basic authority delegation through NS
records, it lacks mechanisms for service providers to
update nameserver configurations independently [2]. For
instance, to change DNSSEC keys, the updated keys must
be submitted to the registrar, which manages domain
registrations, so they can be updated in the parent zone’s
records (see section 2.2.1). While an operator can create
new keys and DS records, they cannot directly submit the
records to the registrar, since they do not own the domain.
Instead, they have to contact their customer and ask them
to submit the records to the registrar, and then wait for
the customer to do so. This three-way communication is
suboptimal since it requires action from the customer, who
may make mistakes or be slow to respond. It also creates
additional overhead to the operator, in particular, if they
are managing multiple domains [2].

3.3. Inconsistencies Between Parent and Child
Nameservers

For a given domain, the sets of NS records (NSset)
maintained by parent and child server should be identical,
meaning both should agree on which nameservers are
authoritative for that domain. However, Sommese et al.
found that across the .com, .org and the .net zones,
there were inconsistencies between the NSsets of parent-
and child-nameservers for approximately 8% of the do-
mains [9].

Four different types of inconsistencies in the NSsets
were found: The parent and child nameservers’ sets are
disjunct, the parent set is a subset of the child set, the child
set is a subset of the parent set or the sets have a non-
empty intersection, but neither set is a subset of the other
set. These inconsistencies result in additional latency, un-
responsive nameservers, improper load balancing, added
fragility and a higher risk of human error [9].

Disjoint sets may also cause lame delegations, which
will be expanded on in section 3.4 [9].

To prevent these inconsistencies, operators should ver-
ify that parent and child are consistent, and resolvers
should explicitly query child NS records when possible
[9]. In addition, Child-to-Parent Synchronization records
(CSYNC records) can be used, which provide an auto-
mated mechanism for signaling when delegation records
in the parent zone should be updated to match the records
in the child zone [10].

3.4. Lame Delegations

A lame delegation occurs when a DNS nameserver
is listed in a domain’s NS records, despite not being
the authoritative nameserver for that domain. The DNS
queries are sent to servers that lack information about
the given domain, or even to hosts that do not run a
nameserver [11].

In some cases, lame delegations only lead to additional
latency, but the correct result is returned, since the query
times out and is redirected to nameservers with correct
configurations. Additionally, lame delegations add more
traffic to other nameservers. Akiwate et al. [3] found that
around 12% of the requests to GoDaddy’s nameservers
queried domains outside their authoritative zones. Lastly,
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lame delegations can be a security risk. When a domain
has an NS record for a nameserver that is not registered, an
attacker can register it and control the DNS resolution for
all queries going through it. To prevent lame delegations,
domain owners are advised to monitor the configurations
of their own domains [3].

4. The DELEG Working Group

The DELEG working group was brought to life by
the Internet Engineering Task Force (IETF) to address
current issues of DNS. They have set the goal to address
the challenges related to operator outsourcing as well as
capability signaling (see sections 3.2 and 3.1 respectively).
parent-child inconsistencies and lame delegations (see sec-
tions 3.3 and 3.4 respectively) are not objects of their
work. Note that issues related to capability signaling are
not directly related to DNS delegation, but they are still
addressed by the DELEG Working Group.

4.1. Technical Foundations

To combat issues with capability signaling and out-
sourcing, two different solutions were proposed by the
DELEG working group, both of which rely on SVCB
records. These records consist of a SvcPriority field, a
TargetName field, and a ServiceParams field. Depending
on the value of the SvcPriority, a record is either in
ServiceMode or in AliasMode [12].

Records in ServiceMode associate connection con-
figuration parameters with service endpoints. The
TargetName specifies the service endpoint (or . to indicate
the owner name itself), and the ServiceParams field con-
tains connection parameters such as supported protocols,
IP hints, ports, and other configuration details that clients
may use to reach the service. Potentially, this reduces the
number of needed DNS queries [12].

Records in AliasMode serve a similar purpose to
CNAME records; they provide an aliasing function where
the TargetName field specifies another name whose SVCB
records should be looked up for the actual service con-
figuration. A key advantage over CNAME records is that
SVCB records in AliasMode can be placed at the zone
apex, which is not possible with CNAME records [12].

4.2. Proposed Solutions

The first solution that will be described is called incre-
mental deleg and it places SVCB records under label in
the zone apex. The second solution uses DELEG resource
records, which are based on SVCB records, with only
minor differences.

4.2.1. Commonalities of Incremental DELEG and DE-
LEG Records. In both proposed solutions, SVCB records
or DELEG records in ServiceMode are used to address
challenges related to capability signaling. Through the
ServiceParams, support for DoT, DoH, and DoQ can
be signaled, but not for Encrypted Client-Hello. However,
since ServiceParams were designed to be extensible, this
could be added in the future [2], [13].

To solve operator outsourcing issues, using the respec-
tive records in AliasMode has been proposed. This offers
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two advantages for operators. For one, the AliasMode
functionality enables operators to have multiple customer
domains point to a single service configuration [2], [13].

For another, dealing with DS records can be facili-
tated, because the operator no longer has to communicate
changes in the DS records to the parent zone of the
client’s domain. Instead, the operator’s zone is aliased
under the respective records, and the operator simply
needs to update the DS record for this zone, over which
they have control. The operator can use DS records to
establish a chain of trust with their own parent zone with-
out involving the client’s parent zone. This way, security
is provided through DS records without the overhead of
contacting the customer whenever a DNSSEC key change
happens. Additional specification is still needed to define
how exactly this mechanism will work [2].

Within a resource record set maintained by a name-
server, records in AliasMode and ServiceMode can be
stored, whereby both problems can be solved simulta-
neously. While both proposed solutions leverage SVCB
records for these capabilities, they differ significantly in
how they integrate them into the DNS infrastructure.

4.2.2. Incremental DELEG. The first proposed solution,
described by Homburg et al. [13], is storing delegation
information under a special “_deleg”-label in the parent
zone. For instance, for the domain example.com, the
delegation information is stored at example._deleg.com
in the parent zone. NS records for example.com and the
new delegation information under the _deleg label are
stored in the .com zone [13].

The query resolution process in incremental DELEG
varies, based on whether a query is for the zone apex
or not. Queries for the zone apex are resolved the same
way traditional queries are resolved, since there is no
delegation to a subdomain. For all other queries, two
parallel queries are sent out by the resolver, as shown
in Fig. 3: A legacy query following the conventional
DNS resolution process, and an SVCB query directed
at the _deleg label to obtain new delegation information.
Three possible outcomes can result from the process. If
an SVCB resource record set is found, the TargetName
specified in that record is used as the nameserver. If
the name of the domain does not exist or there is no
_deleg record, NXDOMAIN is returned and the resolver
falls back to using legacy queries. If the response is
received but contains no data, NOERROR is returned [13].

legacy query: www.in.tum.de

deleg query: in._deleg.tum.de

Resolver - Nameserver

W

legacy response

Figure 3: Parallel Queries
Incremental DELEG is compatible with existing DNS
infrastructure because the delegation information stays in
the delegation zone. This prevents the need for changes of
the zone authority rules and most existing DNS software
can remain unchanged [13].
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4.2.3. DELEG Record. The second proposed solution,
described by April et al. [2], is to implement a new
DELEG resource record type, based on the SVCB format.
DELEG records appear in the authority section of a DNS
response, alongside NS and DS records. Like DS records,
DELEG records only appear at zone cuts.

A key feature that distinguishes DELEG records from
SVCB records is that parent zones can return DELEG
records in ServiceMode and in AliasMode, which differs
from standard SVCB specification. This allows operators
to directly specify authoritative nameserver information
through ServiceMode or manage multiple delegations
through indirection by using AliasMode at the delegation
point [2].

DELEG-aware resolvers should prioritize information
in DELEG records over the information in NS and Glue
records [2].

April et al. offer the following example of a query
for the domain www.example.com. The resolver queries
the root server about the given domain, and receives a
response containing an NS record and a DELEG record.
The NS record points to nsl.example.com, whereas the
DELEG record points to configl.example.com with an
IPv6 address hint. The resolver uses the information in
the DELEG record to query configl.example.com and
receives an A or AAAA record containing the [P-address
of www.example.com [2].

4.3. Comparison

The deployment of incremental DELEG offers po-
tential benefits in terms of simplicity, since it does not
require a new record type. However, incremental DELEG
has been criticized for other reasons. In particular, placing
delegation control of a domain under a special _deleg la-
bel undermines DNS’s consistent naming structures since
parent zones no longer have direct control over their child
domains. Furthermore, _deleg label may also make resolu-
tion more complex and traffic could potentially be doubled
due to the parallel queries in incremental DELEG [2].

Meanwhile, DELEG records preserve DNS’s consis-
tent naming structure, but require introducing a new record
type into the DNS protocol.

Both proposed solutions fulfill the DELEG working
group’s goal of simplifying operator outsourcing and ca-
pability signaling. However, as of February 2025, it has
not been decided, which solution will be chosen.

5. Conclusion

This paper presents four major problems relating to
DNS and DNS Delegation: A lack of a mechanism for
the nameserver to signal supported protocols, complexities
relating to operator outsourcing, inconsistencies between
NS records in parent and child nameservers, and lame
delegations. The DELEG working group addresses the
first two problems. Two different approaches are proposed,
both of which leverage SVCB records. The first proposed
approach, incremental DELEG, places an SVCB record
under a _deleg label in the zone apex. The second ap-
proach is introducing a new DELEG record, similar to
SVCB records. Although incremental DELEG allows for
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simple and smooth deployment, it leads to significantly
more traffic and undermines the consistent naming struc-
ture in DNS. The other two issues have not been addressed
by the DELEG working group and could be subject to
future work.
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