
Scaling Deep Learning and
Datacenter Applications with

Programmable Networks
Marco Canini

2

HotNets ’17

Is this a dumb idea?
• increased complexity
• new kinds of failure modes
• could affect correctness
• will put application-specific logic

in the network…

3

HotNets ’17

What to compute in network?
When, where and how to do it?

… do it judiciously:
1. network traffic is significantly reduced;

application benefits significantly
2. only a minimal change at the application

level is required
3. the correctness of the overall computation

is not affected

This talk

Will focus on two common DC workloads:

1. Distributed Deep Learning

2. Key-Value Storage Systems

4

Deep
Learning

Increasingly
sophisticated

models

Increasingly
larger

datasets

Innovation fueled by leaps in (costly) infrastructure:
Clusters with hundreds of machines,

each with many HW accelerators (GPUs, TPUs, etc.)

Compute requirements doubling every 3 months!
Training models is still very time-consuming: days or even weeks!

5

Data-parallel distributed DNN training

Data
samples

W1

W3

W2

W4

Gradient synchronization

All-to-all intensive
communication
pattern

6

100s of MBs to GBs
gradient

synchronization
in each iteration

All-to-all reduction

Data
samples

W1

W3

W2

W4

Gradient synchronization+

7

All-to-all reduction

Data
samples

W1

W3

W2

W4

Gradient synchronization+ + +

8

All-to-all reduction

Data
samples

W1

W3

W2

W4

Gradient synchronization+ + + =

9

All-to-all reduction

Data
samples

W1

W3

W2

W4

Gradient synchronization+

10

AllReduce

Data
samples

W1

W3

W2

W4

Gradient synchronization

Form a logical ring
(or tree, etc.) and
run peer-to-peer
communication

11

Parameter server (PS)

Data
samples

W1

W3

W2

W4

PS

1. Push gradients
2. Aggregate

updates at PS
3. Pull aggregated

gradients
• (or updated model

parameters)

12

The network bottleneck

• Compute accelerators performance improvements
have so far outpaced network bandwidth increases

• Newer, larger DNN models spend more time on communication

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

SS
D

Re
sN
et
-50

UG
AT
IT

VG
G1
9

BE
RT NC

F
LS
TM

De
ep
Lig
ht

Profile of benchmark DNNs (10Gbps)

Communication Overlapping communication

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

SS
D

Re
sN
et
-50

UG
AT
IT

VG
G1
9

BE
RT NC

F
LS
TM

De
ep
Lig
ht

Profile of benchmark DNNs (100Gbps)

Communication Overlapping communication

13

A closer look at model synchronization

Switch

Distributed ML scales
poorly due to
communication costs

W1 W3W2 W4

If only I could
help…

14

SwitchML: Co-design ML and networking

6.5 Tbps
programmable

data plane

Challenges
Limited computation

Limited storage

No floating points

Packet loss

Design
• Pool-based streaming aggregation

• Combined switch-host architecture

• Quantized integer operations

• Failure-recovery protocol

• In-switch RDMA implementation

15

~100’s of MB

Streaming aggregation

Switch

U2U1

A2A1

3 4 5 61 2 3 4 5 61 2

Worker 1 Worker 2

3 4 5 61 25 621

1 21 2 3 45 6 3 45 6

43

Pool

~100’s of KB 16

W1 W3W2 W4

Combined switch-host architecture

Switch

Quantization &
failure recovery

Quantization &
failure recovery

Quantization &
failure recovery

Quantization &
failure recovery

Fixed-point
aggregation

17

W1 W3W2 W4

Combined switch-host architecture

Switch

Quantization &
failure recovery

Quantization &
failure recovery

Quantization &
failure recovery

Quantization &
failure recovery

Fixed-point
aggregation

18

Block quantization

Scaling factors
aggregation

Scaling factors
aggregation

Scaling factors
aggregation

Scaling factors
aggregation

Fixed-point
aggregation

Fixed-point
aggregation

Fixed-point
aggregation

Fixed-point
aggregation

Time
RTT

W1 W3W2 W4

Combined switch-host architecture

Switch

Quantization &
failure recovery

Quantization &
failure recovery

Quantization &
failure recovery

Quantization &
failure recovery

Fixed-point
aggregation

19

Quantization allows training to similar accuracy in a similar number of
iterations as an unquantized network

How much faster is SwitchML?

SwitchML provides a speedup in training throughput up to 2.27x on 100Gbps networks
Speedup is higher with faster GPUs that reduce the computation/communication ratio

20

How does SwitchML scale with the number of workers?

SwitchML performance does not depend on the number of workers

M
ill

io
ns

 o
f A

gg
re

ga
te

d
Te

ns
or

El

em
en

ts
 p

er
 s

ec
on

d

21

22

Sparse
Collective

Communication Many gradients in huge models are
highly sparse

How to efficiently
aggregate sparse
gradients?

Model Task Model size Sparsity

DeepLight CTR prediction 2.3 GB 99%

LSTM Language modeling 1.5 GB 94%

BERT Qs answering 1.3 GB 9%

NCF Recommendation 680 MB 84%

VGG19 Image classification 548 MB 32%

ResNet152 Image classification 230 MB 21%

global next block: -∞

-∞ -∞

2 2

next block: 2

2 2

next block: 2

global next block: 2

2 3

global next block: 3

3 3

1 1

next block: 3

1 1

next block: 3

2 2

next block: ∞

global next block: -∞

-∞ -∞

2 2

next block: ∞

Aggregator

OmniReduce: sparse streaming aggregation

W1 1 1 0 0 1 1 1 1

W2 1 1 0 0 0 0 1 1

1 1

next block: 2

1 1

next block: 3

2 2

2 2 0 0

0 0

1 1

1 1

next block: ∞

1 1

next block: ∞

2 2

2 2

1 1

next block: 3

1 1 • Split data into blocks
• Stream non-zero blocks

to aggregator
• Keep global view of

next block

High performance
through fine-grained
parallelization (pool of
aggregation slots) and
pipelining to saturate
network bandwidth

23

W1 W2

Does OmniReduce speed up training?

• SwitchML* is a software-based implementation
of SwitchML

(fair comparison with software aggregator)
• AGsparse is allgather-based sparse allreduce

method
(compression overheads are not considered)

OmniReduce is up to 2.23× faster than SwitchML* on 100Gbps networks
Models with higher sparsity gain more from efficient sparse collective communication

OmniReduce is in
trial deployment at

24

This talk

Will focus on two common DC workloads:

1. Distributed Deep Learning

2. Key-Value Storage Systems

25

CPUs are
busy!

As server CPU cycles are increasingly scarce resource,
offload is gaining in popularity:

especially for common, often-repeated operations

NICs are in the network data path and can carry out operations on in-
flight data with low latency; RDMA NICs are ubiquitous

Can we enable complex offloads on RDMA NICs?
26

Basic NIC offloads

27

RDMA design oriented to data-movement operations
Lends well to accelerate data IO, shown effective for locking and even consensus
But lacks flexibility to offload “arbitrary” logic onto the NIC

Complex offloads require data-dependent execution

Client

Server

WRITERECVSEND READ CAS

RedN offloads

28

Send response

Send RPC
SEND

Client

WQ

Modify posted verb

WRITE

RECV

WRITE

WRITE

Trigger response

Server

WQ2

WQ1

RedN realizes self-modifying RDMA programs
RDMA ops (verbs) are pre-post on “idle” Work Queues
Key insight: A verb can modify subsequent ones; a couple of obscure verbs

can pace their execution

4

3

2
1

ENABLEWAIT

Loops and conditionals with self-modifying

29

Input 𝑥

ADD WQ2

WQ1
RECV NOOP

If 𝑥 == A[𝑖]: Send response (change NOOP to WRITE)

Increment 𝑖
set old to A[𝑖]

CAS CAS

NOOP

ADD

Iteration 1 Iteration 2

1

2

3

Input 𝑥
𝑖 = 0;
while (𝑖 < 2)

if(𝑥 == A[𝑖])
send(𝑖)

𝑖++;

In theory, sufficient for Turing completeness
In practice, useful for Hash Lookups, List Traversal, and more…

Memcached get acceleration

30

64 1K 4K 16K 64K

Value Size (B)

L
a

te
n
cy

 (
u
s)

0
1

0
2
0

3
0

4
0

5
0

RedN One−sided Two−sided (VMA)

2.6x

Extra memory copiesRequires 2 RTTs

Summary

Lots of pressure for efficiently handling DC workloads with
intensive communication, low-latency reqs

Our research shows that in-networking computing is an effective tool …

… especially when used judiciously
What can be computed in-network? The answer is, it’s general

But careful design to balance when, where, how

Examples: Deep Learning (in-network aggregation), KV Store (complex offloads)

31

References

• [SwitchML, NSDI ’21]
Scaling Distributed Machine Learning with In-Network Aggregation
A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krishnamurthy,
M. Moshref, D. R. K. Ports, P. Richtarik

• [OmniReduce, SIGCOMM ’21]
Efficient Sparse Collective Communication and its application to
Accelerate Distributed Deep Learning
J. Fei, C.-Y. Ho, A. N. Sahu, M. Canini, A. Sapio
• [RedN, NSDI ’22]

RDMA is Turing complete, we just did not know it yet!
W. Reda, M. Canini, D. Kostic, S. Peter

32

https://mcanini.github.io/papers/switchml.nsdi21.pdf
https://mcanini.github.io/papers/omnireduce.sigcomm21.pdf
https://mcanini.github.io/papers/redn.nsdi22.pdf

Summary

Lots of pressure for efficiently handling DC workloads with
intensive communication, low-latency reqs

Our research shows that in-networking computing is an effective tool …

… especially when used judiciously
What can be computed in-network? The answer is, it’s general

But careful design to balance when, where, how

Examples: Deep Learning (in-network aggregation), KV Store (complex offloads)

33

Contact: marco@kaust.edu.sa

