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HotNets ’17

Is this a dumb idea?
• increased complexity
• new kinds of failure modes
• could affect correctness
• will put application-specific logic 

in the network…



3

HotNets ’17

What to compute in network?
When, where and how to do it?

… do it judiciously:
1. network traffic is significantly reduced;

application benefits significantly
2. only a minimal change at the application 

level is required
3. the correctness of the overall computation 

is not affected



This talk

Will focus on two common DC workloads:

1. Distributed Deep Learning

2. Key-Value Storage Systems
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Deep 
Learning

Increasingly
sophisticated

models

Increasingly
larger

datasets

Innovation fueled by leaps in (costly) infrastructure:
Clusters with hundreds of machines,

each with many HW accelerators (GPUs, TPUs, etc.)

Compute requirements doubling every 3 months!
Training models is still very time-consuming: days or even weeks!
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Data-parallel distributed DNN training

Data 
samples

W1

W3

W2

W4

Gradient synchronization

All-to-all intensive 
communication 
pattern
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100s of MBs to GBs
gradient 

synchronization
in each iteration



All-to-all reduction

Data 
samples

W1

W3

W2

W4

Gradient synchronization+
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All-to-all reduction

Data 
samples

W1

W3

W2

W4

Gradient synchronization+ + +
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All-to-all reduction

Data 
samples

W1

W3

W2

W4

Gradient synchronization+ + + =
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All-to-all reduction

Data 
samples

W1

W3

W2

W4

Gradient synchronization+
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AllReduce

Data 
samples

W1

W3

W2

W4

Gradient synchronization

Form a logical ring 
(or tree, etc.) and 
run peer-to-peer 
communication
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Parameter server (PS)

Data 
samples

W1

W3

W2

W4

PS

1. Push gradients
2. Aggregate 

updates at PS
3. Pull aggregated 

gradients
• (or updated model 

parameters)
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The network bottleneck

• Compute accelerators performance improvements
have so far outpaced network bandwidth increases

• Newer, larger DNN models spend more time on communication
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A closer look at model synchronization

Switch

Distributed ML scales 
poorly due to 
communication costs

W1 W3W2 W4

If only I could 
help…
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SwitchML: Co-design ML and networking

6.5 Tbps
programmable 

data plane

Challenges
Limited computation

Limited storage

No floating points

Packet loss

Design
• Pool-based streaming aggregation

• Combined switch-host architecture

• Quantized integer operations

• Failure-recovery protocol

• In-switch RDMA implementation
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~100’s of MB

Streaming aggregation

Switch

U2U1

A2A1

3 4 5 61 2 3 4 5 61 2

Worker 1 Worker 2

3 4 5 61 25 621

1 21 2 3 45 6 3 45 6

43

Pool

~100’s of KB 16



W1 W3W2 W4

Combined switch-host architecture

Switch

Quantization &
failure recovery

Quantization &
failure recovery

Quantization &
failure recovery

Quantization &
failure recovery

Fixed-point 
aggregation
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W1 W3W2 W4

Combined switch-host architecture

Switch

Quantization &
failure recovery

Quantization &
failure recovery

Quantization &
failure recovery

Quantization &
failure recovery

Fixed-point 
aggregation
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Block quantization

Scaling factors 
aggregation

Scaling factors 
aggregation

Scaling factors 
aggregation

Scaling factors 
aggregation

Fixed-point 
aggregation

Fixed-point 
aggregation

Fixed-point 
aggregation

Fixed-point 
aggregation

Time
RTT



W1 W3W2 W4

Combined switch-host architecture

Switch

Quantization &
failure recovery

Quantization &
failure recovery

Quantization &
failure recovery

Quantization &
failure recovery

Fixed-point 
aggregation
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Quantization allows training to similar accuracy in a similar number of 
iterations as an unquantized network



How much faster is SwitchML?

SwitchML provides a speedup in training throughput up to 2.27x  on 100Gbps networks
Speedup is higher with faster GPUs that reduce the computation/communication ratio
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How does SwitchML scale with the number of workers? 

SwitchML performance does not depend on the number of workers
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Sparse
Collective 

Communication Many gradients in huge models are 
highly sparse

How to efficiently 
aggregate sparse 
gradients?

Model Task Model size Sparsity

DeepLight CTR prediction 2.3 GB 99%

LSTM Language modeling 1.5 GB 94%

BERT Qs answering 1.3 GB 9%

NCF Recommendation 680 MB 84%

VGG19 Image classification 548 MB 32%

ResNet152 Image classification 230 MB 21%
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OmniReduce: sparse streaming aggregation
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1 1 • Split data into blocks
• Stream non-zero blocks 

to aggregator
• Keep global view of 

next block

High performance 
through fine-grained 
parallelization (pool of 
aggregation slots) and 
pipelining to saturate 
network bandwidth
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Does OmniReduce speed up training?

• SwitchML* is a software-based implementation 
of SwitchML

(fair comparison with software aggregator)
• AGsparse is allgather-based sparse allreduce

method
(compression overheads are not considered) 

OmniReduce is up to 2.23× faster than SwitchML* on 100Gbps networks
Models with higher sparsity gain more from efficient sparse collective communication

OmniReduce is in
trial deployment at
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This talk

Will focus on two common DC workloads:

1. Distributed Deep Learning

2. Key-Value Storage Systems
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CPUs are
busy!

As server CPU cycles are increasingly scarce resource,
offload is gaining in popularity:

especially for common, often-repeated operations

NICs are in the network data path and can carry out operations on in-
flight data with low latency; RDMA NICs are ubiquitous

Can we enable complex offloads on RDMA NICs?
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Basic NIC offloads
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RDMA design oriented to data-movement operations
Lends well to accelerate data IO, shown effective for locking and even consensus
But lacks flexibility to offload “arbitrary” logic onto the NIC

Complex offloads require data-dependent execution

Client

Server

WRITERECVSEND READ CAS



RedN offloads
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Send response

Send RPC
SEND

Client

WQ

Modify posted verb

WRITE

RECV

WRITE

WRITE

Trigger response

Server

WQ2

WQ1

RedN realizes self-modifying RDMA programs
RDMA ops (verbs) are pre-post on “idle” Work Queues
Key insight: A verb can modify subsequent ones; a couple of obscure verbs

can pace their execution
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Loops and conditionals with self-modifying
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Input 𝑥

ADD WQ2

WQ1
RECV NOOP

If 𝑥 == A[𝑖]: Send response (change NOOP to WRITE)

Increment 𝑖
set old to A[𝑖]

CAS CAS

NOOP

ADD

Iteration 1 Iteration 2

1

2

3

Input 𝑥
𝑖 = 0;
while (𝑖 < 2)

if(𝑥 == A[𝑖])
send(𝑖)

𝑖++;

In theory, sufficient for Turing completeness
In practice, useful for Hash Lookups, List Traversal, and more…



Memcached get acceleration
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Summary

Lots of pressure for efficiently handling DC workloads with
intensive communication, low-latency reqs

Our research shows that in-networking computing is an effective tool …

… especially when used judiciously
What can be computed in-network? The answer is, it’s general

But careful design to balance when, where, how

Examples: Deep Learning (in-network aggregation), KV Store (complex offloads)
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Summary

Lots of pressure for efficiently handling DC workloads with
intensive communication, low-latency reqs

Our research shows that in-networking computing is an effective tool …
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