Network Security (NetSec)

IN2101 - WS 17/18

Prof. Dr.-Ing. Georg Carle

Dr. Heiko Niedermayer
Quirin Scheitle
Acknowledgements: Dr. Cornelius Diekmann
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Chapter 2: LangSec

Def.: Communications protocol

Problem 1

Problem 2
Recap (Theoretical Comp. Sci.): Chomsky Hierarchy

Problem 3
More on Problem (3): "Weird Machines"

Problem 4
Problem: Mutual Understanding

Examples

Literature and Sources

Chapter 2: LangSec

Def.: Communications protocol

```
Problem 1
Problem 2
Problem 3
Problem 4
Examples
Literature and Sources
```

- Defines the procedure and the format of exchanged messages
- Examples
- IP
- TCP
- UDP
- HTTP
- HTTPS
- SSH
- ...
- Alice and Bob might speak the same protocol ...
- but do they also have the same understanding?

Chapter 2: LangSec

Def.: Communications protocol

Problem 1

```
Problem 2
```

Problem 3

Problem 4

Examples

Literature and Sources

- Assume you own zombo.com
- Then, all subdomains *. zombo. com also belong to you
- And you can buy certificates for them

Example: the X. 509 NULL Character "issue"

- Assume you own zombo.com
- Then, all subdomains *.zombo. com also belong to you
- And you can buy certificates for them
- What about
www.paypal.com\0www.zombo.com
- where $\backslash 0$ is the C string terminator (NULL character)
- If a browser accidentally uses strncmp to validate certificates ...

Example: the X. 509 NULL Character "issue"

- Assume you own zombo.com
- Then, all subdomains *.zombo. com also belong to you
- And you can buy certificates for them
- What about
www.paypal.com\0www.zombo.com
- where $\backslash 0$ is the C string terminator (NULL character)
- If a browser accidentally uses strncmp to validate certificates ...
- ... you just got a certificate for www. paypal .com
- Alice and Bob spoke the same "protocol": X. 509
- But had a different understanding!
- Alice certified the URL: www.paypal. com\0www. zombo.com
- Bob parsed the URL: www. paypal .com
- Coder's implicit assumption

Input is well-formed

- Reality

Input is controlled by attacker

- Apply full recognition to inputs before processing them!
- Do not scatter recognition throughout your code!

Chapter 2: LangSec

Def.: Communications protocol

Problem 1

Problem 2
Recap (Theoretical Comp. Sci.): Chomsky Hierarchy

Problem 3

Problem 4

Examples

Literature and Sources

Example: Recognizing Valid Inputs

- My favorite RFC

Content-Length $=1 *$ DIGIT
[...]
Any Content-Length field value greater than or equal to zero is valid. Since there is no predefined limit to the length of a payload, a recipient MUST anticipate potentially large decimal numerals and prevent parsing errors due to integer conversion overflows

- Quiz: Which RFC is this taken from?

Example: Recognizing Valid Inputs

- My favorite RFC

Content-Length $=1 *$ DIGIT
[...]
Any Content-Length field value greater than or equal to zero is valid. Since there is no predefined limit to the length of a payload, a recipient MUST anticipate potentially large decimal numerals and prevent parsing errors due to integer conversion overflows

- Quiz: Which RFC is this taken from?
- 7230, HTTP/1.1 Message Syntax and Routing

Example: Recognizing Valid Inputs

- My favorite RFC

Content-Length $=1 *$ DIGIT
[...]
Any Content-Length field value greater than or equal to zero is valid. Since there is no predefined limit to the length of a payload, a recipient MUST anticipate potentially large decimal numerals and prevent parsing errors due to integer conversion overflows

- Quiz: Which RFC is this taken from?
- 7230, HTTP/1.1 Message Syntax and Routing
- Translation:
- The length of the content can be arbitrary
- The length of the Content-Length field can be arbitrary
- Just parse it right
- What type of grammar is HTTP?
- In the Chomsky hierarchy, at least type 1 - context-sensitive
- What type of grammar is HTTP?
- In the Chomsky hierarchy, at least type 1 - context-sensitive
- Are two HTTP parsers equivalent?

UNDECIDABLE

Grammar	Language	Recognized by
Type 3	Regular	Finite state automaton
Type 2	Context-free	Pushdown automaton
Type 1	Context-sensitive	Some weird stuff
Type 0	recursively enumerable	Turing machine

Type $3 \subset$ Type $2 \subset$ Type $1 \subset$ Type 0

Recap (Theoretical Comp. Sci.): Chomsky Hierarchy

Grammar	Language	Recognized by
Type 3	Regular	Finite state automaton
Type 2	Context-free	Pushdown automaton
Type 1	Context-sensitive	Some weird stuff
Type 0	recursively enumerable	Turing machine
	Type 3 \subset Type 2 \subset Type 1 \subset Type 0	

- Remember all those undecidable problems in theo. comp. sci.?

Recap (Theoretical Comp. Sci.): Chomsky Hierarchy

Grammar	Language	Recognized by
Type 3	Regular	Finite state automaton
Type 2	Context-free	Pushdown automaton
Type 1	Context-sensitive	Some weird stuff
Type 0	recursively enumerable	Turing machine
	Type 3 \subset Type 2 \subset Type 1 \subset Type 0	

- Remember all those undecidable problems in theo. comp. sci.?
- If the grammar of your protocol is Type 1 or Type 0 , you will run into them!
- Don't define Turing-complete protocols
- Recognizing is undecidable
- Testing equivalence of different implementations is undecidable
- With Content-Length fields, you easily run into this problem!

Chapter 2: LangSec

Def.: Communications protocol

```
Problem 1
```


Problem 2

Problem 3
More on Problem (3): "Weird Machines"

Problem 4

Examples

Literature and Sources

Example: Unintended Survey of Visited Porn Pages

- You are visiting my website
- You are visiting my website
- I host a hidden list of links to the most common porn sites
- You are visiting my website
- I host a hidden list of links to the most common porn sites
- Your browser renders
- Not visited: blue
- Visited: purple

Example: Unintended Survey of Visited Porn Pages

- You are visiting my website
- I host a hidden list of links to the most common porn sites
- Your browser renders
- Not visited: blue
- Visited: purple
- Using JavaScript, the color of the links is send back to me
- Reduce computing power
- Power that is not there cannot be exploited
- In particular in input handling code

- Complex protocols require complex parsers
- Complex parsers (anything beyond Type 2 and 3) expose almost unlimited computational power to the attacker
- Which leads to "weird machines"
- A weird machine is a machine programmable by an attacker
- Which was not intended or expected by the programmer
- Make your protocol context-free or regular
- And use an appropriate parser
- Parser generators, parser combinators, ...
- import re is not an acceptable solution

Def.: Communications protocol

Problem 1

Problem 2

Problem 3

Problem 4
Problem: Mutual Understanding

Examples

Literature and Sources
https://www.google.de/webhp?ie=UTF-8\&q=ponies\&q=cats
https://www.google.de/webhp?ie=UTF-8\&q=ponies\&q=cats

- Alice: "The user asked for ponies"
- Bob: "The user asked for cats"
https://www.google.de/webhp?ie=UTF-8\&q=ponies\&q=cats
- Alice: "The user asked for ponies"
- Bob: "The user asked for cats"
- Google: "Let's go for both (cats preferred)"

- Entities may have a different understanding of the meaning of a protocol
- In the example
- Alice recognized the first q parameter
- Bob recognized the last q parameter
- Messages must be interpreted the same by all participants
- Parsers must be equivalent
- Only decidable for regular and context-free languages

Chapter 2: LangSec

Def.: Communications protocol

Problem 1

Problem 2

Problem 3

Problem 4

Examples

Literature and Sources

- Familiar from exercises
- Every message is delimited by a ' $\backslash n$ '
- Nice library support: sf.readline()
- Language is Regular (Type 3)

- Context Free (Type 2)

- Context Free (Type 2)

- But: If unique keys are required \rightarrow no longer context-free

Chapter 2: LangSec

Def.: Communications protocol

Problem 1

Problem 2

Problem 3

Problem 4

Examples

Literature and Sources

- Len Sassaman, Meredith L. Patterson, Sergey Bratus, Michael E. Locasto, Anna Shubina, Security Applications of Formal Language Theory, 2013, http://langsec.org/papers/langsec-tr.pdf
- http://langsec.org/
- Photoshopped protest signs by Kythera of Anevern (www. anevern.com)

