

Network Security (NetSec)

IN2101 – WS 17/18

Prof. Dr.-Ing. Georg Carle

Dr. Heiko Niedermayer
Dr. Miguel Pardal
Quirin Scheitle
Acknowledgements: Dr. Cornelius Diekmann

Chair of Network Architectures and Services Department of Informatics Technical University of Munich

Chapter 4: Firewalls and Security Policies

The 3 Security Components

Network Firewalls

Placing Firewalls

What does a Firewall do?

Configuring Firewalls

Example: LAN with Mail Server

Stateless Filtering

Stateful vs. Stateless Firewalls

Example: LAN with Mail Server (Stateless)

The ACK flag

Example: LAN with Web Server

Spoofing Protection

Chapter 4: Firewalls and Security Policies

Common Errors

Shadowing

What Firewalls cannot do

Introduction: What does secure mean?

- Definition: Security Policy
 - "A security policy, a specific statement of what is and is not allowed, defines the system's security." [Bishop03]
- Definition: Security Mechanisms
 - "Security Mechanisms enforce the policies; their goal is to ensure that the system never enters a disallowed state." [Bishop03]
- Examples of Security Mechanisms:
 - IPsec gateways, firewalls, SSL, ...
- A system is secure if, started in an allowed state, always stays in states that are allowed.
- The policy defines security, the security mechanisms enforce it.

Chapter 4: Firewalls and Security Policies

The 3 Security Components

Network Firewalls

Stateless Filtering

Example: LAN with Web Server

Spoofing Protection

Common Errors

- Requirements
 - Define security goals
 -
 - "What do we want?"
- Policy
 - Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - · Enforce the policy

- Requirements
 - Define security goals
 What were those again?
 - ,,,,,
 - "What do we want?"
- Policy
 - Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - Enforce the policy

- Requirements
 - Define security goals

What were those again?

- Data Integrity, , , , ,
- "What do we want?"
- Policy
 - Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - Enforce the policy

- Requirements
 - Define security goals
 What were those again?
 - Data Integrity, Confidentiality, , , ,
 - "What do we want?"
- Policy
 - Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - Enforce the policy

- Requirements
 - Define security goals
 What were those again?
 - Data Integrity, Confidentiality, Availability, , ,
 - "What do we want?"
- Policy
 - Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - Enforce the policy

- Requirements
 - Define security goals
 What were those again?
 - Data Integrity, Confidentiality, Availability, Authenticity, ,
 - "What do we want?"
- Policy
 - · Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - Enforce the policy

- Requirements
 - Define security goals
 What were those again?
 - Data Integrity, Confidentiality, Availability, Authenticity, Accountability,
 - "What do we want?"
- Policy
 - Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - Enforce the policy

- Requirements
 - Define security goals
 - Data Integrity, Confidentiality, Availability, Authenticity, Accountability, Controlled Access
 - "What do we want?"
- Policy
 - Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - Enforce the policy

· A network admin reports:

- Security Requirements:
- · Security Policy:
- Security Mechanisms:

A network admin reports:

- Security Requirements: Sender accountability of all internal eMails
- Security Policy:
- Security Mechanisms:

A network admin reports:

- Security Requirements: Sender accountability of all internal eMails
- Security Policy:
 All eMails must be cryptographically signed
- Security Mechanisms:

A network admin reports:

- Security Requirements: Sender accountability of all internal eMails
- Security Policy:
 All eMails must be cryptographically signed
- Security Mechanisms:
 X.509 certificates + signatures, dropping of unsigned eMails by mailserver

Chapter 4: Firewalls and Security Policies

The 3 Security Components

Network Firewalls

Placing Firewalls

What does a Firewall do?

Configuring Firewalls

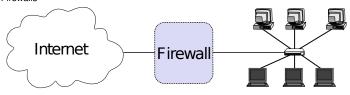
Example: LAN with Mail Server

Stateless Filtering

Example: LAN with Web Server

Spoofing Protection

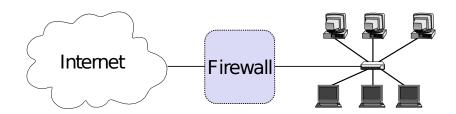
Common Errors

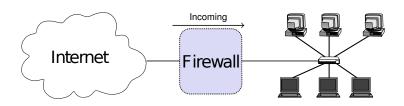

A closer look at policy-heavy security mechanisms

Network Firewalls

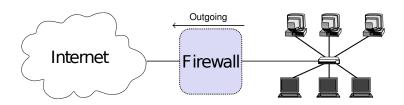
Network Firewalls

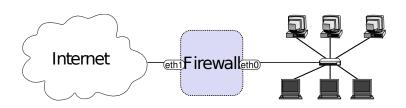
Network Firewalls

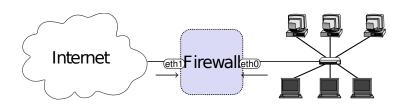

Do not confuse with host-based firewalls!

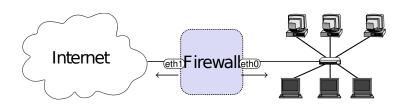

Placing Firewalls

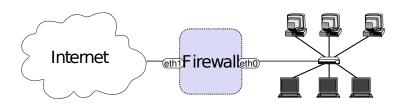
- Controlled Access at the network level
- Install where a protected subnetwork is connected to a less trusted network
- · If not specified otherwise, we assume
 - Firewall is placed between Internet and local network

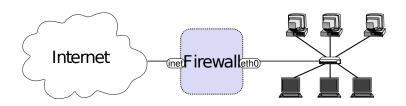


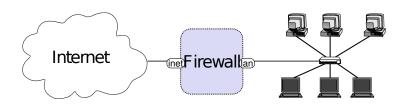

- Different views
- View 1 (e.g. by admin of the LAN)
 - Incoming: from the Internet to the local network
 - Outgoing: from the local network to the Internet


- Different views
- View 1 (e.g. by admin of the LAN)
 - Incoming: from the Internet to the local network
 - Outgoing: from the local network to the Internet


- Different views
- View 1 (e.g. by admin of the LAN)
 - Incoming: from the Internet to the local network
 - Outgoing: from the local network to the Internet
- View 2 (e.g. by firewall man page)
 - · On each interface, there are incoming and outgoing packets


- Different views
- View 1 (e.g. by admin of the LAN)
 - Incoming: from the Internet to the local network
 - · Outgoing: from the local network to the Internet
- View 2 (e.g. by firewall man page)
 - On each interface, there are incoming and outgoing packets


- Different views
- View 1 (e.g. by admin of the LAN)
 - Incoming: from the Internet to the local network
 - Outgoing: from the local network to the Internet
- View 2 (e.g. by firewall man page)
 - On each interface, there are incoming and outgoing packets


• For convenience:

- For convenience:
- # ip link set eth1 name inet

- For convenience:
- # ip link set eth1 name inet
- # ip link set eth0 name lan

What does a Firewall do?

• By default: nothing!

What does a Firewall do?

- By default: nothing!
- Needs to be configured.

Strategies

- Whitelisting
 - Default deny strategy: Everything not explicitly permitted is denied
- Blacklisting
 - Default permit strategy: Everything not explicitly forbidden is permitted

Strategies

- Whitelisting
 - Default deny strategy: Everything not explicitly permitted is denied
 - Increased security
- Blacklisting
 - Default permit strategy: Everything not explicitly forbidden is permitted
 - · Less hassle with users

Strategies

- Whitelisting
 - · Default deny strategy: Everything not explicitly permitted is denied
 - Increased security
- Blacklisting
 - Default permit strategy: Everything not explicitly forbidden is permitted
 - Less hassle with users
- Best Practice: Whitelisting

Example: Strict Whitelisting

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	lan	192.168.0.0/16	0.0.0.0/0	TCP	> 1023	80	New,Est.	Accept
B	inet	0.0.0.0/0	192.168.0.0/16	TCP	80	> 1023	Est.	Accept
C	*	0.0.0.0/0	0.0.0.0/0	*	*	*	*	Drop

- · Policy: Allow outgoing HTTP (TCP port 80), deny the rest
- LAN can initiate outgoing HTTP connections
 - Example: SYN
- The Internet may respond to established connections
 - Example: SYN.ACK
- LAN may use established connections
 - Example: ACK, HTTP GET / HTTP/1.0
- Everything else is prohibited
 - Example: DNS

Example: Strict Whitelisting

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
⇒A	lan	192.168.0.0/16	0.0.0.0/0	TCP	> 1023	80	New,Est.	Accept
B	inet	0.0.0.0/0	192.168.0.0/16	TCP	80	> 1023	Est.	Accept
C	*	0.0.0.0/0	0.0.0.0/0	*	*	*	*	Drop

- Policy: Allow outgoing HTTP (TCP port 80), deny the rest
- LAN can initiate outgoing HTTP connections
 - Example: SYN
- The Internet may respond to established connections
 - Example: SYN.ACK
- LAN may use established connections
 - Example: ACK, HTTP GET / HTTP/1.0
- Everything else is prohibited
 - Example: DNS

Example: Strict Whitelisting

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	lan	192.168.0.0/16	0.0.0.0/0	TCP	> 1023	80	New,Est.	Accept
⇒B	inet	0.0.0.0/0	192.168.0.0/16	TCP	80	> 1023	Est.	Accept
C	*	0.0.0.0/0	0.0.0.0/0	*	*	*	*	Drop

- Policy: Allow outgoing HTTP (TCP port 80), deny the rest
- LAN can initiate outgoing HTTP connections
 - Example: SYN
- The Internet may respond to established connections
 - Example: SYN,ACK
- LAN may use established connections
 - Example: ACK, HTTP GET / HTTP/1.0
- Everything else is prohibited
 - Example: DNS

Example: Strict Whitelisting

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
⇒A	lan	192.168.0.0/16	0.0.0.0/0	TCP	> 1023	80	New,Est.	Accept
B	inet	0.0.0.0/0	192.168.0.0/16	TCP	80	> 1023	Est.	Accept
C	*	0.0.0.0/0	0.0.0.0/0	*	*	*	*	Drop

- Policy: Allow outgoing HTTP (TCP port 80), deny the rest
- LAN can initiate outgoing HTTP connections
 - Example: SYN
- The Internet may respond to established connections
 - Example: SYN.ACK
- LAN may use established connections
 - Example: ACK, HTTP GET / HTTP/1.0
- · Everything else is prohibited
 - Example: DNS

Example: Strict Whitelisting

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A B ⇒C	lan inet	192.168.0.0/16 0.0.0.0/0 0.0.0.0/0	0.0.0.0/0 192.168.0.0/16 0.0.0.0/0	TCP TCP	> 1023 80 *	80 > 1023	New,Est. Est.	Accept Accept Drop

- Policy: Allow outgoing HTTP (TCP port 80), deny the rest
- LAN can initiate outgoing HTTP connections
 - Example: SYN
- The Internet may respond to established connections
 - Example: SYN,ACK
- LAN may use established connections
 - Example: ACK, HTTP GET / HTTP/1.0
- Everything else is prohibited
 - Example: DNS

Configuring Firewalls

- A firewall is configured by a ruleset
 - Actually: rulelist
- For every packet, the ruleset is processed sequentially until a matching rule is found
- · A rule consists of
 - Match condition
 - Action

Rules

- Actions
 - Accept
 - Drop, Reject
 - Log
 - ...
- Match Conditions
 - Incoming interface
 - All I2-I4 packet fields
 - MAC addresses, IP addresses, protocol, ports, flags, ...
 - Stateful matches
 - . The firewall tracks connections for you
 - . e.g. with the IP-5-tuple
 - Further advanced conditions
 - · rate limiting, locally tagged packets, ...

Details on Packet Fields

- · Link Layer (I2) Ethernet
 - EtherType
 - Usually: 0x0800 (IPv4)
 - Handle other EtherTypes: e.g. Drop 0x86DD (IPv6)
 - Ethernet MAC Address
 - Easily spoofable!
 - # ifconfig eth0 hw ether de:ad:be:ef:de:ad
- Network Layer (I3) IPv4
 - IP addresses
 - Transport protocol
 - TCP, UDP, ICMP, ...
 - Flags: IP fragment
 - · Options: E.g. source routing
 - Please drop source routing!

L2

L3

14

L5-7 App

4-18

Details on Packet Fields

Transport Layer (I4) – TCP/UDP

- Ports
 - · Determine the sending / receiving application.
 - · Limited degree of confidence
 - Well-Known Ports (0-1023):

E.g. HTTP (80), DNS (53), HTTPS (443).

- Registered Ports (1024-49151)
 - E.g. IRC (6667), BitTorrent tracker (6969), ...
- Ephemeral Ports (49152-65535):
 ports meant to be used temporarily by clients.
- Flags
 - ACK: set in every segment of a connection but the very first
 - SYN: only set in the first two segments
 - RST: ungraceful close of a connection

L2 L3 L4 L5-7 App

Details on Packet Fields

- Application Protocol (I5-7)
 - Deep Packet Inspection
 - usually not done by firewalls
 - · easier to realize in proxy systems

L2

L3

L4

L5-7 App

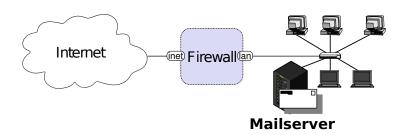
- Arriving packets may generate state in the firewall.
- Connection tracking with the IP-5-tuple
 - (Src IP, Dst IP, Proto, Src Port, Dst Port)

- Arriving packets may generate state in the firewall.
- Connection tracking with the IP-5-tuple
 - (Src IP, Dst IP, Proto, Src Port, Dst Port)
- States of a connection
 - · NEW: First packet of a connection
 - ESTABLISHED: All following packets

- Arriving packets may generate state in the firewall.
- Connection tracking with the IP-5-tuple
 - (Src IP, Dst IP, Proto, Src Port, Dst Port)
- States of a connection
 - NEW: First packet of a connection
 - ESTABLISHED: All following packets
- Optional State tracking (depending on your firewall)
 - · TCP sequence and ack numbers, and flags
 - ICMP sequence numbers and request/response tracking

- Arriving packets may generate state in the firewall.
- Connection tracking with the IP-5-tuple
 - (Src IP, Dst IP, Proto, Src Port, Dst Port)
- States of a connection
 - NEW: First packet of a connection
 - ESTABLISHED: All following packets
- Optional State tracking (depending on your firewall)
 - TCP sequence and ack numbers, and flags
 - ICMP sequence numbers and request/response tracking
- Note: UDP connection tracking is always an approximation!

- Arriving packets may generate state in the firewall.
- Connection tracking with the IP-5-tuple
 - (Src IP, Dst IP, Proto, Src Port, Dst Port)
- States of a connection
 - NEW: First packet of a connection
 - ESTABLISHED: All following packets
- Optional State tracking (depending on your firewall)
 - · TCP sequence and ack numbers, and flags
 - ICMP sequence numbers and request/response tracking
- Note: UDP connection tracking is always an approximation!
 - Example: Attacker sends spoofed DNS replies in the hope that victim might accept one as an answer to a
 previous DNS query.



Security policy

- Incoming and outgoing email should be the only allowed traffic into and out of a protected network
- Email is SMTP, TCP port 25
- . Anyone in the internal network can send out emails to arbitrary mailservers in the Internet
- · Incoming emails must only arrive at the Mailserver

Security policy

- Incoming and outgoing email should be the only allowed traffic into and out of a protected network
- Email is SMTP, TCP port 25
- . Anyone in the internal network can send out emails to arbitrary mailservers in the Internet
- · Incoming emails must only arrive at the Mailserver

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
С	*	*	*	TCP	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTAB-LISHED state.
- Rule D denies the rest (whitelisting)

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
⇒A	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
С	*	*	*	TCP	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTAB-LISHED state.
- Rule D denies the rest (whitelisting)

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	external	mailserver	TCP	*	25	New	Accept
⇒B	lan	internal	external	TCP	*	25	New	Accept
С	*	*	*	TCP	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTAB-LISHED state.
- Rule D denies the rest (whitelisting)

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
Α	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
⇒C	*	*	*	TCP	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTAB-LISHED state.
- Rule D denies the rest (whitelisting)

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
С	*	*	*	TCP	*	*	Est.	Accept
⇒D	*	*	*	*	*	*	*	Drop

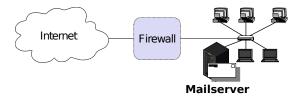
- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTAB-LISHED state.
- Rule D denies the rest (whitelisting)

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
С	*	*	*	TCP	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTAB-LISHED state.
- Rule D denies the rest (whitelisting)

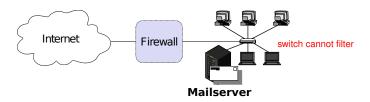
Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
С	*	*	*	*	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTAB-LISHED state.
- Rule D denies the rest (whitelisting)
- Any difference?


Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
С	*	*	*	*	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

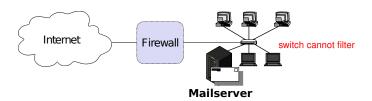
- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTAB-LISHED state.
- Rule D denies the rest (whitelisting)
- Any difference? No, only TCP can get into Est. state!

Example: LAN with Mail Server Discussion


- · Can we do better?
 - Internal hosts can establish connections to the Mailserver
- Can we prevent his?

Example: LAN with Mail Server Discussion

- Can we do better?
 - Internal hosts can establish connections to the Mailserver
- · Can we prevent his?
 - No! The firewall cannot intercept these connections, attributable to the network topology.



This subverts the security policy

Example: LAN with Mail Server Discussion

- Can we do better?
 - Internal hosts can establish connections to the Mailserver
- Can we prevent his?
 - No! The firewall cannot intercept these connections, attributable to the network topology.

- · This subverts the security policy
- Simple fix 1: Check the security requirements, update the policy
- Simple fix 2: Replace the internal switch by a second firewall

- In the range of the well-known ports, is Mailserver on TCP dest. port 25 (incoming) the only entity which can exchange traffic with the Internet?
- Assume we are tcpdumping on the firewall.

- In the range of the well-known ports, is Mailserver on TCP dest. port 25 (incoming) the only entity which can exchange traffic with the Internet?
- Assume we are tcpdumping on the firewall.
 - No!

- In the range of the well-known ports, is Mailserver on TCP dest. port 25 (incoming) the only entity which can exchange traffic with the Internet?
- Assume we are tcpdumping on the firewall.
 - No!
 - Assume an internal host sends out a TCP packet with source and destination port 25 to shadymail.example

- In the range of the well-known ports, is Mailserver on TCP dest. port 25 (incoming) the only entity which can exchange traffic with the Internet?
- Assume we are tcpdumping on the firewall.
 - No!
 - Assume an internal host sends out a TCP packet with source and destination port 25 to shadymail.example
 - Rule B establishes a new state in the firewall.

- In the range of the well-known ports, is Mailserver on TCP dest. port 25 (incoming) the only entity which can exchange traffic with the Internet?
- Assume we are tcpdumping on the firewall.
 - No!
 - Assume an internal host sends out a TCP packet with source and destination port 25 to shadymail.example
 - Rule B establishes a new state in the firewall.
 - Now, for shadymail.example, using source port 25, the internal host is reachable on the well-known port 25!

- In the range of the well-known ports, is Mailserver on TCP dest. port 25 (incoming) the only entity which can exchange traffic with the Internet?
- Assume we are tcpdumping on the firewall.
 - No!
 - Assume an internal host sends out a TCP packet with source and destination port 25 to shadymail.example
 - Rule B establishes a new state in the firewall.
 - Now, for shadymail.example, using source port 25, the internal host is reachable on the well-known port 25!
 - Fix: make sure that only source ports > 1023 are allowed to establish a connection

Example: LAN with Mail Server

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
Α	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
С	*	*	*	*	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

Example: LAN with Mail Server

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
Α	inet	external	mailserver	TCP	> 1023	25	New	Accept
В	lan	internal	external	TCP	> 1023	25	New	Accept
С	*	*	*	*	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

Example: LAN with Mail Server Tuning

- Firewall rules are matched sequentially
- Few packets will establish a new connection
- Many packets will use an established connection
- · Move rule C to the front
- A connection can only be in ESTABLISHED state by rule A and B, the transformation preserves the semantics

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
C	*	*	*	*	*	*	Est.	Accept
Α	inet	external	mailserver	TCP	> 1023	25	New	Accept
В	lan	internal	external	TCP	> 1023	25	New	Accept
D	*	*	*	*	*	*	*	Drop

Example: LAN with Mail Server

- Performance
 - Our firewall (September 2014)
 - > 15 billion packets, 19+ Terabyte data since the last reboot
 - > 95% of all packets match the ESTABLISHED rule
- Management
 - First rule: "enable stateful matching"
 - All following rules: Access control list

Chapter 4: Firewalls and Security Policies

The 3 Security Components

Network Firewalls

Stateless Filtering

Stateful vs. Stateless Firewalls

Example: LAN with Mail Server (Stateless)

The ACK flag

Example: LAN with Web Server

Spoofing Protection

Common Errors

- Only operates on the rules and each individual packet.
- No state information is generated when processing a packet.

- Only operates on the rules and each individual packet.
- No state information is generated when processing a packet.
- Keeping state is expensive and needs fast memory.

- Only operates on the rules and each individual packet.
- · No state information is generated when processing a packet.
- Keeping state is expensive and needs fast memory.
- Only few rules: stateless filtering may be faster
 - O(# rules)

- Only operates on the rules and each individual packet.
- · No state information is generated when processing a packet.
- Keeping state is expensive and needs fast memory.
- · Only few rules: stateless filtering may be faster
 - O(# rules)
- Many rules: stateful filtering may be faster
 - Majority matches first rule, $\mathcal{O}(1)$ lookup

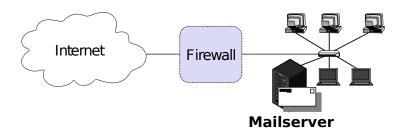
- Only operates on the rules and each individual packet.
- No state information is generated when processing a packet.
- Keeping state is expensive and needs fast memory.
- · Only few rules: stateless filtering may be faster
 - O(# rules)
- Many rules: stateful filtering may be faster
 - Majority matches first rule, O(1) lookup
 - Possible DOS attacks
 - sending packets which need O(# rules) processing
 - Filling the state table

- Only operates on the rules and each individual packet.
- No state information is generated when processing a packet.
- Keeping state is expensive and needs fast memory.
- · Only few rules: stateless filtering may be faster
 - O(# rules)
- · Many rules: stateful filtering may be faster
 - Majority matches first rule, O(1) lookup
 - Possible DOS attacks
 - sending packets which need O(# rules) processing
 - Filling the state table
- Many network boxes have stateless firewall features embedded
 - Router access lists
 - Some switches
 - •

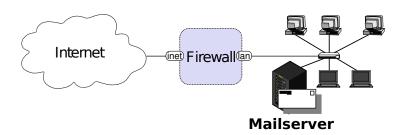
Rule of thumb:

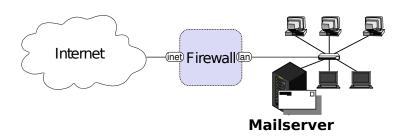
Stateless firewalls are more complex to configure

- Stateless firewalls are more complex to configure
- Which makes configuration errors more likely



- Stateless firewalls are more complex to configure
- Which makes configuration errors more likely
- Whenever possible, go for the stateful firewall!


- Stateless firewalls are more complex to configure
- Which makes configuration errors more likely
- Whenever possible, go for the stateful firewall!
- Hardware is cheap


- Incoming and outgoing email should be the only allowed traffic into and out of a protected network
- Email is SMTP, TCP port 25
- . Anyone in the internal network can send out emails to arbitrary mailservers in the Internet
- · Incoming emails must only arrive at the Mailserver

- Incoming and outgoing email should be the only allowed traffic into and out of a protected network
- Email is SMTP, TCP port 25
- . Anyone in the internal network can send out emails to arbitrary mailservers in the Internet
- Incoming emails must only arrive at the Mailserver

- Incoming and outgoing email should be the only allowed traffic into and out of a protected network
- Email is SMTP, TCP port 25
- · Anyone in the internal network can send out emails to arbitrary mailservers in the Internal
- . Incoming emails must only arrive at the Mailserver

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack Action
A ₁	inet	external	mailserver	TCP	*	25	Accept
A ₂	lan	mailserver	external	TCP	*	> 1023	Accept
B ₁	lan	internal	external	TCP	*	25	Accept
B ₂	inet	external	internal	TCP	*	> 1023	Accept
С	*	*	*	*	*	*	Drop

- Rule A₁ allows incoming email to enter the network.
 Rule A₂ allows the mailserver's answers to exit the network.
- Rules B₂ and B₂ are analogous for outgoing email.
- · Rule C denies all other traffic.

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack Action
$\Rightarrow A_1$	inet	external	mailserver	TCP	*	25	Accept
$\Rightarrow A_2$	lan	mailserver	external	TCP	*	> 1023	Accept
B₁	lan	internal	external	TCP	*	25	Accept
B ₂	inet	external	internal	TCP	*	> 1023	Accept
С	*	*	*	*	*	*	Drop

- Rule A₁ allows incoming email to enter the network.
 Rule A₂ allows the mailserver's answers to exit the network.
- Rules B₂ and B₂ are analogous for outgoing email.
- Rule C denies all other traffic.

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack Action
A ₁	inet	external	mailserver	TCP	*	25	Accept
A ₂	lan	mailserver	external	TCP	*	> 1023	Accept
\Rightarrow B ₁	lan	internal	external	TCP	*	25	Accept
\Rightarrow B ₂	inet	external	internal	TCP	*	> 1023	Accept
C	*	*	*	*	*	*	Drop

- Rule A₁ allows incoming email to enter the network.
 Rule A₂ allows the mailserver's answers to exit the network.
- Rules B₂ and B₂ are analogous for outgoing email.
- · Rule C denies all other traffic.

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack Action
A ₁	inet	external	mailserver	TCP	*	25	Accept
A ₂	lan	mailserver	external	TCP	*	> 1023	Accept
B ₁	lan	internal	external	TCP	*	25	Accept
B ₂	inet	external	internal	TCP	*	> 1023	Accept
⇒C	*	*	*	*	*	*	Drop

- Rule A₁ allows incoming email to enter the network.
 Rule A₂ allows the mailserver's answers to exit the network.
- Rules B₂ and B₂ are analogous for outgoing email.
- Rule C denies all other traffic.

Example: LAN with Mail Server (Stateless)

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack Action
A ₁	inet	external	mailserver	TCP	*	25	Accept
A ₂	lan	mailserver	external	TCP	*	> 1023	Accept
B ₁	lan	internal	external	TCP	*	25	Accept
B ₂	inet	external	internal	TCP	*	> 1023	Accept
С	*	*	*	*	*	*	Drop

- Rule A₁ allows incoming email to enter the network.
 Rule A₂ allows the mailserver's answers to exit the network.
- Rules B₂ and B₂ are analogous for outgoing email.
- Rule C denies all other traffic.

Example: LAN with Mail Server (Stateless) Discussion

- Packets with spoofed IP addresses
 - Inbound packets must have an external source address Rules A₁ and B₂
 - ---- successfully blocked
 - Same for outbound packets; Rules A₂ and B₁
- Telnet traffic
 - telnet server: TCP port 23
 - Allowed inbound traffic must be to port 25 or port > 1023
 - \longrightarrow incoming packets to initiate telnet connection blocked
 - Same for outgoing telnet connections

Example: LAN with Mail Server (Stateless) Discussion – A possible attack

- Ruleset does not block the X11-protocol for the Mailserver
 - X11-server listens at port 6000, clients use port numbers > 1023
 - X11-protocol allows reading/manipulating the display and keystrokes
 - Incoming X11-request is not blocked (Rule B₂)
 - neither is any answer (Rule A₂)

Example: LAN with Mail Server (Stateless)

Fix # 1

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack Action
A ₁ A ₂ B ₁ B ₂ C	inet lan lan inet *	external mailserver internal external *	mailserver external external internal	TCP TCP TCP TCP *	> 1023 25 > 1023 25 *	25 > 1023 25 > 1023 *	Accept Accept Accept Accept Drop

- · Fixing the flaw: include source ports
 - Outbound traffic to ports > 1023 only allowed if the source port is 25 (Rule A₂)

 — traffic from internal X-clients or -servers blocked
 - Same for inbound traffic to ports > 1023 (Rule B₂)
- Fix the attack: use non-standard port 25 for attacking X-client
 - · Firewall will let this traffic pass

Fix # 2

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
A ₁	inet	external	mailserver	TCP	> 1023	25	*	Accept
A ₂	lan	mailserver	external	TCP	25	> 1023	Yes	Accept
B ₁	lan	internal	external	TCP	> 1023	25	*	Accept
B ₂	inet	external	internal	TCP	25	> 1023	Yes	Accept
С	*	*	*	*	*	*	*	Drop

- Checking whether the TCP ACK flag is set
- ACK flag not set is required for establishing new connection
 - C.f. TCP 3-way handshake
- Rule of thumb: ACK ≈ not NEW

The ACK flag

- ACK flag: approximate the state of TCP connections
- Assumes that information in packets can be trusted
 - Attacker could send SYN/ACK as initial packet
 - Passes the firewall.
 - Hosts will ignore it.

The ACK flag

- ACK flag: approximate the state of TCP connections
- Assumes that information in packets can be trusted
 - · Attacker could send SYN/ACK as initial packet
 - Passes the firewall.
 - Hosts will ignore it if they don't have a flaw in their network stack.

The ACK flag

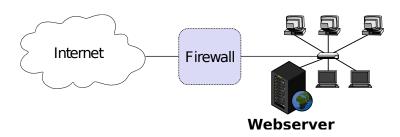
- ACK flag: approximate the state of TCP connections
- Assumes that information in packets can be trusted
 - Attacker could send SYN/ACK as initial packet
 - · Passes the firewall.
 - Hosts will ignore it if they don't have a flaw in their network stack.
- Protocols such as UDP don't have state information
 - Not possible to differentiate between initiator and responder.
 - UDP has no ACK field: Always set ACK to *

Chapter 4: Firewalls and Security Policies

The 3 Security Components

Network Firewalls

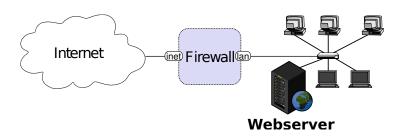
Stateless Filtering


Example: LAN with Web Server

Spoofing Protection

Common Errors

Example: LAN with Web Server



- Allow HTTP traffic initiated by external hosts to webserver
- Allow internal hosts to initiate HTTP and DNS
 - HTTP: TCP port 80
 - DNS: UDP port 53
- Do not allow other communication, in particular no communication initiated by external hosts to the local hosts other than the webserver.

Example: LAN with Web Server

- Allow HTTP traffic initiated by external hosts to webserver
- Allow internal hosts to initiate HTTP and DNS
 - HTTP: TCP port 80
 - DNS: UDP port 53
- Do not allow other communication, in particular no communication initiated by external hosts to the local hosts other than the webserver.

Rule Iface	Src IP Dst IP	Protocol	Src Port [Ost Port State	Action

• First rule?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
Α	*	*	*	*	*	*	Est.	Accept

• First rule?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
Α	*	*	*	*	*	*	Est.	Accept

- First rule?
- Allow HTTP traffic initiated by external hosts to webserver?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	*	*	*	*	*	Est.	Accept
B		external	webserver	TCP	> 1023	80	New	Accept

- First rule?
- Allow HTTP traffic initiated by external hosts to webserver?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	*	*	*	*	*	Est.	Accept
B		external	webserver	TCP	> 1023	80	New	Accept

- First rule?
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A B C	inet lan	* external internal	* webserver external	* TCP TCP	* > 1023 > 1023	* 80 80	Est. New New	Accept Accept Accept

- First rule?
- · Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A B C	* inet lan	* external internal	* webserver external	TCP	* > 1023 > 1023	* 80 80	Est. New New	Accept Accept Accept

- First rule?
- · Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP? and DNS?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	*	*	*	*	*	*	Est.	Accept
В	inet	external	webserver	TCP	> 1023	80	New	Accept
С	lan	internal	external	TCP	> 1023	80	New	Accept
D	lan	internal	external	UDP	> 1023	53	New	Accept

- First rule?
- · Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP? and DNS?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	*	*	*	*	*	*	Est.	Accept
В	inet	external	webserver	TCP	> 1023	80	New	Accept
С	lan	internal	external	TCP	> 1023	80	New	Accept
D	lan	internal	external	UDP	> 1023	53	New	Accept

- First rule?
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP? and DNS?
- Do not allow other communication ... ?

Stateful Firewall

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
Α	*	*	*	*	*	*	Est.	Accept
В	inet	external	webserver	TCP	> 1023	80	New	Accept
С	lan	internal	external	TCP	> 1023	80	New	Accept
D	lan	internal	external	UDP	> 1023	53	New	Accept
E	*	*	*	*	*	*	*	Drop

- First rule?
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP? and DNS?
- Do not allow other communication ... ?

Rule Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
				1			

• A first rule comparable to the stateful case?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
				[

• A first rule comparable to the stateful case? No.

Rule If	ace Src IF	P Dst	IP Protoc	col Src F	Port Dst F	ort Ack	Action

- A first rule comparable to the stateful case? No.
- · Allow HTTP traffic initiated by external hosts to webserver?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
B ₁	inet	external	webserver	TCP	> 1023	80	*	Accept Accept
B ₂	Ian	webserver	external	TCP	80	> 1023	Yes	

- A first rule comparable to the stateful case? No.
- · Allow HTTP traffic initiated by external hosts to webserver?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
B ₁	inet	external	webserver	TCP	> 1023	80	*	Accept Accept
B ₂	Ian	webserver	external	TCP	80	> 1023	Yes	

- A first rule comparable to the stateful case? No.
- · Allow HTTP traffic initiated by external hosts to webserver?
- · Allow internal hosts to initiate HTTP?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
B ₁ B ₂ C ₁ C ₂	inet lan lan inet	external webserver internal external	webserver external external internal	TCP TCP TCP TCP	> 1023 80 > 1023 80	80 > 1023 80 > 1023	Yes * Yes	Accept Accept Accept Accept

- A first rule comparable to the stateful case? No.
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
B ₁ B ₂ C ₁ C ₂	inet Ian Ian inet	external webserver internal external	webserver external external internal	TCP TCP TCP TCP	> 1023 80 > 1023 80	80 > 1023 80 > 1023	Yes * Yes	Accept Accept Accept Accept

- A first rule comparable to the stateful case? No.
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP? and DNS?

Stateless Firewall

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
B ₁	inet	external	webserver	TCP	> 1023	80	*	Accept
B ₂	lan	webserver	external	TCP	80	> 1023	Yes	Accept
C ₁	lan	internal	external	TCP	> 1023	80	*	Accept
C ₂	inet	external	internal	TCP	80	> 1023	Yes	Accept
D ₁	lan	internal	external	UDP	> 1023	53	-	Accept
D ₂	inet	external	internal	UDP	53	> 1023	-	Accept

- · A first rule comparable to the stateful case? No.
- Allow HTTP traffic initiated by external hosts to webserver?
- · Allow internal hosts to initiate HTTP? and DNS?

Stateless Firewall

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
B ₁	inet	external	webserver	TCP	> 1023	80	*	Accept
B ₂	lan	webserver	external	TCP	80	> 1023	Yes	Accept
C ₁	lan	internal	external	TCP	> 1023	80	*	Accept
C ₂	inet	external	internal	TCP	80	> 1023	Yes	Accept
D ₁	lan	internal	external	UDP	> 1023	53	-	Accept
D ₂	inet	external	internal	UDP	53	> 1023	-	Accept

- A first rule comparable to the stateful case? No.
- Allow HTTP traffic initiated by external hosts to webserver?
- · Allow internal hosts to initiate HTTP? and DNS?
- Do not allow other communication ... ?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
B ₁	inet	external	webserver	TCP	> 1023	80	*	Accept
B ₂	lan	webserver	external	TCP	80	> 1023	Yes	Accept
C ₁	lan	internal	external	TCP	> 1023	80	*	Accept
C ₂	inet	external	internal	TCP	80	> 1023	Yes	Accept
D ₁	lan	internal	external	UDP	> 1023	53	-	Accept
D ₂	inet	external	internal	UDP	53	> 1023	-	Accept
E	*	*	*	*	*	*	*	Drop

- · A first rule comparable to the stateful case? No.
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP? and DNS?
- Do not allow other communication ... ?

Chapter 4: Firewalls and Security Policies

The 3 Security Components

Network Firewalls

Stateless Filtering

Example: LAN with Web Server

Spoofing Protection

Common Errors

- Outgoing (to the Internet)
 - Only allow source IPs which belong to you

- Outgoing (to the Internet)
 - Only allow source IPs which belong to you
 - Don't be an operator who facilitates spoofed DOS attacks to the Internet!

- Outgoing (to the Internet)
 - · Only allow source IPs which belong to you
 - Don't be an operator who facilitates spoofed DOS attacks to the Internet!
- Incoming (from the Internet)
 - Only allow 'valid' source IPs

- Outgoing (to the Internet)
 - Only allow source IPs which belong to you
 - Don't be an operator who facilitates spoofed DOS attacks to the Internet!
- Incoming (from the Internet)
 - Only allow 'valid' source IPs
 - For a varying definition of 'valid'

- Outgoing (to the Internet)
 - Only allow source IPs which belong to you
 - Don't be an operator who facilitates spoofed DOS attacks to the Internet!
- Incoming (from the Internet)
 - Only allow 'valid' source IPs
 - · For a varying definition of 'valid'
 - IPs which belong to you are not valid

- Outgoing (to the Internet)
 - Only allow source IPs which belong to you
 - Don't be an operator who facilitates spoofed DOS attacks to the Internet!
- Incoming (from the Internet)
 - Only allow 'valid' source IPs
 - · For a varying definition of 'valid'
 - · IPs which belong to you are not valid
 - Local and special purpose IPs are not valid

- · Outgoing (to the Internet)
 - Only allow source IPs which belong to you
 - Don't be an operator who facilitates spoofed DOS attacks to the Internet!
- Incoming (from the Internet)
 - Only allow 'valid' source IPs
 - For a varying definition of 'valid'
 - IPs which belong to you are not valid
 - Local and special purpose IPs are not valid
 - Rule of thumb: UNIV \ (Your IPs ∪ Special Purpose IPs)

- Outgoing (to the Internet)
 - Only allow source IPs which belong to you
 - Don't be an operator who facilitates spoofed DOS attacks to the Internet!
- Incoming (from the Internet)
 - Only allow 'valid' source IPs
 - For a varying definition of 'valid'
 - IPs which belong to you are not valid
 - Local and special purpose IPs are not valid
 - Rule of thumb: UNIV \ (Your IPs ∪ Special Purpose IPs)
- Spoofing must always be filtered close to the source. Why?

Spoofing Protection Example

Assume your institution owns 131.159.20.0/24

Rule	Iface	Src IP	Dst IP	Action
Α	lan	! 131.159.20.0/24	*	Drop
В	inet	131.159.20.0/24	*	Drop
В	inet	192.168.0.0/16	*	Drop
В	inet	10.0.0.0/8	*	Drop
В	inet	172.16.0.0/12	*	Drop
В	*	*	*	Accept

There are more addresses you might want to drop [RFC6890]

Automatic Spoofing Protection

- The Linux kernel offers some spoofing protection for free
- /proc/sys/net/ipv4/conf/all/rp_filter
- If a packet arrives at interface i, the kernel checks
 - Is the source IP of the packet reachable through i
 - If not, drop the packet
- Only considers local routing and interface configuration

Chapter 4: Firewalls and Security Policies

The 3 Security Components

Network Firewalls

Stateless Filtering

Example: LAN with Web Serve

Spoofing Protection

Common Errors

Shadowing

What Firewalls cannot do

Common Errors

- How is your firewall management interface reachable?
 - From the Internet? From the complete internal network?
 - Via telenet? Via UPnP?
- What is allowed over the Internet?
 - NetBIOS? NFS? RPC? Telnet?
 - Other ICMP than Unreachable, Fragmentation Needed, TTL Exceeded, Ping?
 - IP header options?
- IPv4 and IPv6?
 - Are the rule sets compliant?
- Outbound rule ANY? (c.f. spoofing)
 - Even private IP ranges or IP ranges that don't belong to you?
- Policy's vs. Firewalls understanding of Inbound and Outbound?
 - If eth0 is your internal interface and the firewall says inbound on eth0, policy might say outbound.

Shadowing

"refers to the case where all the packets one rule intends to deny (accept) have been accepted (denied) by preceding rules" [fireman06]

Rule	Iface	Src IP	Dst IP	Action
A B	*	*	192.168.0.0/16 192.168.42.0/24	Accept Drop

Rule B will never match!

Another Example

• No spoofing for the following networks:

eth0 ←→ 10.0.0.0/16

eth1 ←→ 10.1.0.0/16

eth2 ←→ 10.2.0.0/16

Accessible by all three networks: 10.1.1.1

Rule	Iface	Src IP	Dst IP	Action
A	eth0	! 10.0.0.0/16	*	Drop
B C	eth1 *	! 10.1.0.0/16 *	10.1.1.1	Drop Accept
D F	eth2	! 10.2.0.0/16	*	Drop Drop
				Пор

· Correct?

Another Example

- · No spoofing for the following networks:
 - eth0 ←→ 10.0.0.0/16
 - eth1 ←→ 10.1.0.0/16
 - eth2 ←→ 10.2.0.0/16
- Accessible by all three networks: 10.1.1.1

Rule	Iface	Src IP	Dst IP	Action
Α	eth0	! 10.0.0.0/16	*	Drop
В	eth1	! 10.1.0.0/16	*	Drop
С	*	*	10.1.1.1	Accept
D	eth2	! 10.2.0.0/16	*	Drop
E	*	*	*	Drop

- Correct?
- Anyone at eth2 can send spoofed packets to 10.1.1.1

Another Example

No spoofing for the following networks:

eth0 ←→ 10.0.0.0/16

eth1 ←→ 10.1.0.0/16

eth2 ←→ 10.2.0.0/16

Accessible by all three networks: 10.1.1.1

Rule	Iface	Src IP	Dst IP	Action
Α	eth0	! 10.0.0.0/16	*	Drop
В	eth1	! 10.1.0.0/16	*	Drop
С	*	*	10.1.1.1	Accept
D	eth2	! 10.2.0.0/16	*	Drop
E	*	*	*	Drop

- Correct?
- Anyone at eth2 can send spoofed packets to 10.1.1.1
- · Rule D is partly shadowed

A firewall

cannot protect against malicious insiders

- cannot protect against malicious insiders
- cannot protect against connections that don't go through it

- · cannot protect against malicious insiders
- · cannot protect against connections that don't go through it
- cannot protect against completely new threats

- · cannot protect against malicious insiders
- · cannot protect against connections that don't go through it
- cannot protect against completely new threats
- cannot fully protect against viruses

- cannot protect against malicious insiders
- · cannot protect against connections that don't go through it
- cannot protect against completely new threats
- cannot fully protect against viruses
- does not perform cryptographic operations, e.g. message authentication

- cannot protect against malicious insiders
- cannot protect against connections that don't go through it
- cannot protect against completely new threats
- cannot fully protect against viruses
- does not perform cryptographic operations, e.g. message authentication
- cannot set itself up correctly

- M. Bishop. What is computer security? Security and Privacy, 2003
- L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, P. Mohapatra. FIREMAN: a toolkit for firewall modeling and analysis. Security and Privacy, 2006
- A. Wool. A quantitative study of firewall configuration errors. Computer, IEEE 37(6), 2004, pp. 62 67
- man iptables
- man iptables-extensions
- J. Engelhardt, Towards the perfect ruleset. May 2011. http://inai.de/documents/Perfect_Ruleset.pdf
- M. Cotton, L. Vegoda, R. Bonica, and B. Haberman, SpecialPurpose IP Address Registries. RFC 6890
- BCP38, http://www.bcp38.info/