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Motivation

• Common practice in data communications: error detection code, to identify random errors introduced
during transmission
• Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

• Underlying idea of these codes: add redundancy to a message for being able to detect, or even correct
transmission errors

• The error detection/correction code of choice and its parameters is a trade-off between:
• Computational overhead
• Increase of message length
• Probability/characteristics of errors on the transmission medium
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Motivation

• Essential security goal: Data integrity
• We received message m. Has m been modified by an attacker?

• It is a different (and much harder!) problem to determine if m has been modified on purpose!

• Consequently, we need to add a code that fulfills some additional properties which should make it com-
putationally infeasible for an attacker to tamper with messages

• Outline:

1. Cryptographic Hash Functions
2. Message Authentication Codes
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Definition

• A function h is called a hash function if:

• Compression: h maps an input x of arbitrary length to an output h(x) of fixed length n:
h: {0, 1}∗ → {0, 1}n

• Ease of computation: Given h and x it is easy to compute h(x)

• A function h is called a one-way function if
• h is a hash function
• For all pre-specified outputs y, it is computationally infeasible to find an x with h(x) = y

• Example: given a large prime number p and a primitive root g in Z∗p
Let h(x) = gx mod p
Then h is a one-way function
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Definition

• A function H is called a cryptographic hash function if:

1. H is a one-way function (1st pre-image resistance):
For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y

2. 2nd pre-image resistance:
Given x it is computationally infeasible to find any second input x’ with x 6= x’ such that H(x) = H(x’)
Note: This property is very important for digital signatures.

3. Collision resistance:
It is computationally infeasible to find any pair (x, x’) with x 6= x’ such that H(x) = H(x’)

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-7



Definition

• A function H is called a cryptographic hash function if:

1. H is a one-way function (1st pre-image resistance):
For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y

2. 2nd pre-image resistance:
Given x it is computationally infeasible to find any second input x’ with x 6= x’ such that H(x) = H(x’)
Note: This property is very important for digital signatures.

3. Collision resistance:
It is computationally infeasible to find any pair (x, x’) with x 6= x’ such that H(x) = H(x’)

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-7



Definition

• A function H is called a cryptographic hash function if:

1. H is a one-way function (1st pre-image resistance):
For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y

2. 2nd pre-image resistance:
Given x it is computationally infeasible to find any second input x’ with x 6= x’ such that H(x) = H(x’)
Note: This property is very important for digital signatures.

3. Collision resistance:
It is computationally infeasible to find any pair (x, x’) with x 6= x’ such that H(x) = H(x’)

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-7



Definition

• A function H is called a cryptographic hash function if:

1. H is a one-way function (1st pre-image resistance):
For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y

2. 2nd pre-image resistance:
Given x it is computationally infeasible to find any second input x’ with x 6= x’ such that H(x) = H(x’)
Note: This property is very important for digital signatures.

3. Collision resistance:
It is computationally infeasible to find any pair (x, x’) with x 6= x’ such that H(x) = H(x’)

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-7



Definition
Comparison to CRC:

• In networking there are codes for error detection.

• Common example: Cyclic redundancy checks (CRC)
• Based on binary polynomial division with Input / CRC divisor.
• The remainder of the division is the resulting error detection code.
• CRC is a fast compression function.

• Why not use CRC?
• CRC is not a cryptographic hash function
• CRC does not provide 2nd pre-image resistance and collision resistance
• CRC is additive

• If x’ = x ⊕4, then CRC(x’) = CRC(x) ⊕ CRC(4)

• CRC is useful for protecting against noisy channels
• But not against intentional manipulation
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Applications
Can Hashing ensure Integrity?

Alice (A) Bob (B)
m, H(m)

Alice (A) Bob (B)
m, H(m) m‘, H(m‘)

ok

ok

Case:
No attacker

Case:
With attacker

• Applying a hash function is not sufficient to secure a message.

• H(m) needs to be protected.
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Applications
Can Hashing ensure Integrity?

Alice (A) Bob (B)
m, MACK (m)

Alice (A) Bob (B)
m, MACK (m) m', MACK (m)

ok

not ok

Case:
No attacker

Case:
With attacker

share symmetric key K

• Simply hashing a message and appending the hash is not secure against intentional manipulation (com-
pare with CRC)!

• Solution:
• Include a secret in the hash.
• Since the secret key k is unknown to the attacker, the attacker cannot compute MACK (m’) (see next section).
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Applications
Other applications of cryptographic hash functions which require some caution:

• Pseudo-random number generation
• The output of a cryptographic hash function is assumed to be uniformly distributed
• Although this property has not been proven in a mathematical sense for common cryptographic hash functions,

such as MD5, SHA-1, it is often used
• Start with random seed, then hash

• b0 = seed
• bi+1 = H(bi |seed)

• Encryption
• Remember: Output Feedback Mode (OFB) - encryption by generating a pseudo random stream, and performing

XOR with plain text
• Generate a key stream as follow:
• k0 = H(KA ,B |IV )
• ki+1 = H(KA ,B |ki )
• The plain text is XORed with the key stream to obtain the cipher text.
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Applications

• Authentication with a challenge-response mechanism

Alice Bob

rA

• Given only Alice and Bob know the shared secret KA ,B , Alice knows that an attacker is not able to
compute H(KA ,B , rA ). Therefore the response must be from Bob.

• Mutual authentication can be achieved by a 2nd exchange in opposite direction

• This type of authentication is based on a authentication method called challenge-response and used, for
example, by HTTP digest authentication
• It avoids transmitting the transport of the shared key (e.g. password) in clear text

• Another type of a challenge-response would be, for example, if Bob signs the challenge “rA ” with his
private key

• Note that this kind of authentication does not include negotiation of a session key.

• Protocols for key negotiation will be discussed in subsequent chapters.
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Common Cryptographic Hash Functions

• Cryptographic Hash Functions:

• Message Digest 5 (MD5): Considered broken.
• Invented by R. Rivest, Successor to MD4. Considered broken.

• Secure Hash Algorithm 1 (SHA-1): Considered broken.
• Old NIST standard.
• Invented by the National Security Agency (NSA). Inspired by MD4.

• Secure Hash Algorithm 2(SHA-2)
• Also a NIST standard and invented by the National Security Agency (NSA).
• The SHA-2 family consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 bits
• SHA-1 attacks have not been successfully extended to SHA-2

• Secure Hash Algorithm 3 (SHA-3):
• Current NIST standard (since October 2012).
• Keccak algorithm by G. Bertoni, J. Daemen, M. Peeters und G. Van Assche.
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Definition

• (Cryptographic) hashes alone do not protect against tampering!

• MACs include a secret key K in addition to the message m they aim to protect.
• Only the persons with knowledge of K can (re-)compute the MAC.

• Procedure:
• Sender s computes MACK (m).
• <m,MACK (m)> is sent to the receiver r.
• r receives <m′,MACK (m)>.

• r can compute MACK (m
′

) based on his knowledge of K and m
′

.

• If MACK (m
′

)=MACK (m), he knows that m=m
′

, since nobody else had knowledge of K .

• MACs:
• Prove message authenticity↔ integrity.
• Do detect tampering.
• Cannot be forged.
• Can be replayed.
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Application

Alice (A) Bob (B)

share symmetric key K

m, MACK (m)

• Alice protects/authenticates her message m with a MAC function

• Alice has to send m and the MAC value to Bob.

• Examples for potential MAC constructions:
• HMAC
• CBC-MAC / CMAC
• EncK (h(m))→ NO!!
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Application

Alice (A) Bob (B)

share symmetric key K

m, MACK (m)

• Bob can verify the MAC code by using the shared key:
• He reads Alice’s MACK (m)
• He can check if his MACK (m

′
) matches the one sent by Alice.

• Only Alice and Bob who know K can do this.

• Take home message: for authenticity checks the receiver needs to know m and a secure modification
check value that it can compare.
• Think about it: Why is EncK (m) usually not sufficient?
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Application

• Reasons for constructing MACs from cryptographic hash functions:
• Cryptographic hash functions generally execute faster than symmetric block ciphers (Note: with AES this is not

much of a problem today)
• There are no export restrictions to cryptographic hash functions

• Basic idea: “mix” a secret key K with the input and compute a hash value.

• The assumption that an attacker needs to know K to produce a valid MAC nevertheless raises some
cryptographic concern:
• The construction H(K ‖ m) is not secure
• The construction H(m ‖ K ) is not secure
• The construction H(K ‖ p ‖ m ‖ K ) with p denoting an additional padding field does not offer sufficient

security
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Attack Against an Insecure MAC

• For illustrative purposes, consider the following MAC definition:
• Input: message m = (x1 , x2 , ..., xn ) with xi being 128-bit values, and key K
• Compute4(m) := x1 ⊕ x2 ⊕ ...⊕ xn with⊕ denoting XOR
• Output: MACK (m) := EncK (4(m)) with EncK (x) denoting AES encryption

• The key and the MAC length are both 128 bit, so we would expect an effort of about 2127 operations to
break the MAC (being able to forge messages).

• Unfortunately the MAC definition is insecure:
• Attacker Eve wants to forge messages. Eve does not know K.
• Alice and Bob exchange a message (m, MACK (m)), Eve eavesdrops it.
• Eve can construct a message m’ that yields the same MAC:

• Let y1, y2, ..., yn−1 be arbitrary 128-bit values
• Define yn := y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕4(m)
• This yn allows to construct the new message m’ := (y1, y2, ..., yn )
• Therefore, MACK (m’) = Enc(4(m’))

= EncK (y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕ yn ))
= EncK (y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕ y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕4(m)))
= EncK (4(m))) = MACK (m)

• Therefore, MACk (m) is a valid MAC for m’, since4m = 4m’
• When Bob receives (m’, MACK (m)) from Eve, he will accept it as being originated from Alice.
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Common MAC Functions

• MAC Functions:
• Hash MAC (HMAC):

• Standardized in RFC 2104.
• Used in conjunction with cryptographic hash functions (e.g. SHA-3)
• See following slides.

• Cipher Block Chaining MAC (CBC-MAC):
• Recommended by NIST.
• Based on CBC mode encryption (e.g. with AES).
• See following slides.

• Cipher based MAC (CMAC):
• AES-CMAC is standardized by IETF as RFC 4493 and its truncated form in RFC 4494.
• See following slides.

• Poly1305:
• Standardized in RFC 7539.
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Common MAC Functions: Hash MACs (HMAC)

• The construction H(K | m | K), called prefix-suffix mode, has been used for a while.
• See for example RFC 1828
• It has been also used in earlier implementations of the Secure Socket Layer (SSL) protocol (until SSL 3.0)
• However, it is now considered vulnerable to attack by the cryptographic community.

• The most used construction is HMAC: H ( K ⊕ opad | H ( K ⊕ ipad | m ))
• The length of the key K is first extended to the block length required for the input of the hash function H by

appending zero bytes.
• Then it is xor’ed respectively with two constants opad and ipad
• The hash function is applied twice in a nested way.
• Currently no attacks have been discovered on this MAC function.
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Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

• A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last ciphertext block or
a part of it as the MAC:

m1

c1

Enck

m2

c2

Enck

...

...

...

mn

cn

Enck

IV cn−1

• MACk (m) = cn for some publicly known, fixed, IV .

• This MAC needs not to be mixed with a secret any further, as it has already been produced using a
shared secret K.

• This scheme works with any block cipher (AES, Twofish, 3DES, ...)

• It is used, e.g., for IEEE 802.11 (WLAN) WPA2, many modes in SSL / IPSec use some CBC-MAC
construction.
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Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

• CBC-MAC security
• CBC-MAC must NOT be used with the same key as for the encryption
• In particular, if CBC mode is used for encryption, and CBC-MAC for authenticity with the same key, the MAC will

be equal to the last cipher text block
• If the length of a message is unknown or no other protection exists, CBC-MAC can be prone to length extension

attacks. CMAC resolves the issue.

• CBC-MAC performance
• Older symmetric block ciphers (such as DES) require more computing effort than dedicated cryptographic hash

functions, e.g. MD5, SHA-1 therefore, these schemes are considered to be slower.
• However, newer symmetric block ciphers (AES) is faster than conventional cryptographic hash functions.
• Therefore, AES-CBC-MAC is becoming popular.
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Common MAC Functions: Cipher-based MACs (CMAC)

• CMAC is a modification of CBC-MAC
• Compute keys k1 and k2 from shared key k.
• Within the CBC processing

• XOR complete blocks before encryption with k1
• XOR incomplete blocks before encryption with k2
• k is used for the block encryption

• Output is the last encrypted block or the l most significant bits of the last block.

• XCBC-MAC (e.g. found in TLS) is a predecessor of CMAC where k1 and k2 are input to algorithm and
not derived from k.
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