
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Network Security (NetSec)

IN2101 – WS 17/18

Prof. Dr.-Ing. Georg Carle

Dr. Heiko Niedermayer
Dr. Miguel Pardal

Quirin Scheitle
Acknowledgements: Dr. Cornelius Diekmann

Chair of Network Architectures and Services
Department of Informatics

Technical University of Munich

Chapter 8: Cryptographic Hash Functions and MACs

Motivation

Cryptographic Hash Functions

Definition

Applications

Common Cryptographic Hash Functions

Message Authentication Codes (MAC)

Definition

Application

Attack Against an Insecure MAC

Common MAC Functions

Literature

Chapter 8: Cryptographic Hash Functions and MACs 8-1

Chapter 8: Cryptographic Hash Functions and MACs

Motivation

Cryptographic Hash Functions

Message Authentication Codes (MAC)

Literature

Chapter 8: Cryptographic Hash Functions and MACs 8-2

Motivation

• Common practice in data communications: error detection code, to identify random errors introduced
during transmission
• Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

• Underlying idea of these codes: add redundancy to a message for being able to detect, or even correct
transmission errors

• The error detection/correction code of choice and its parameters is a trade-off between:
• Computational overhead
• Increase of message length
• Probability/characteristics of errors on the transmission medium

Chapter 8: Cryptographic Hash Functions and MACs — Motivation 8-3

Motivation

• Common practice in data communications: error detection code, to identify random errors introduced
during transmission
• Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

• Underlying idea of these codes: add redundancy to a message for being able to detect, or even correct
transmission errors

• The error detection/correction code of choice and its parameters is a trade-off between:
• Computational overhead
• Increase of message length
• Probability/characteristics of errors on the transmission medium

Chapter 8: Cryptographic Hash Functions and MACs — Motivation 8-3

Motivation

• Common practice in data communications: error detection code, to identify random errors introduced
during transmission
• Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

• Underlying idea of these codes: add redundancy to a message for being able to detect, or even correct
transmission errors

• The error detection/correction code of choice and its parameters is a trade-off between:
• Computational overhead
• Increase of message length
• Probability/characteristics of errors on the transmission medium

Chapter 8: Cryptographic Hash Functions and MACs — Motivation 8-3

Motivation

• Essential security goal: Data integrity
• We received message m. Has m been modified by an attacker?

• It is a different (and much harder!) problem to determine if m has been modified on purpose!

• Consequently, we need to add a code that fulfills some additional properties which should make it com-
putationally infeasible for an attacker to tamper with messages

• Outline:

1. Cryptographic Hash Functions
2. Message Authentication Codes

Chapter 8: Cryptographic Hash Functions and MACs — Motivation 8-4

Motivation

• Essential security goal: Data integrity
• We received message m. Has m been modified by an attacker?

• It is a different (and much harder!) problem to determine if m has been modified on purpose!

• Consequently, we need to add a code that fulfills some additional properties which should make it com-
putationally infeasible for an attacker to tamper with messages

• Outline:

1. Cryptographic Hash Functions
2. Message Authentication Codes

Chapter 8: Cryptographic Hash Functions and MACs — Motivation 8-4

Motivation

• Essential security goal: Data integrity
• We received message m. Has m been modified by an attacker?

• It is a different (and much harder!) problem to determine if m has been modified on purpose!

• Consequently, we need to add a code that fulfills some additional properties which should make it com-
putationally infeasible for an attacker to tamper with messages

• Outline:

1. Cryptographic Hash Functions
2. Message Authentication Codes

Chapter 8: Cryptographic Hash Functions and MACs — Motivation 8-4

Motivation

• Essential security goal: Data integrity
• We received message m. Has m been modified by an attacker?

• It is a different (and much harder!) problem to determine if m has been modified on purpose!

• Consequently, we need to add a code that fulfills some additional properties which should make it com-
putationally infeasible for an attacker to tamper with messages

• Outline:

1. Cryptographic Hash Functions
2. Message Authentication Codes

Chapter 8: Cryptographic Hash Functions and MACs — Motivation 8-4

Chapter 8: Cryptographic Hash Functions and MACs

Motivation

Cryptographic Hash Functions

Definition

Applications

Common Cryptographic Hash Functions

Message Authentication Codes (MAC)

Literature

Chapter 8: Cryptographic Hash Functions and MACs 8-5

Definition

• A function h is called a hash function if:

• Compression: h maps an input x of arbitrary length to an output h(x) of fixed length n:
h: {0, 1}∗ → {0, 1}n

• Ease of computation: Given h and x it is easy to compute h(x)

• A function h is called a one-way function if
• h is a hash function
• For all pre-specified outputs y, it is computationally infeasible to find an x with h(x) = y

• Example: given a large prime number p and a primitive root g in Z∗p
Let h(x) = gx mod p
Then h is a one-way function

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-6

Definition

• A function h is called a hash function if:
• Compression: h maps an input x of arbitrary length to an output h(x) of fixed length n:

h: {0, 1}∗ → {0, 1}n

• Ease of computation: Given h and x it is easy to compute h(x)

• A function h is called a one-way function if
• h is a hash function
• For all pre-specified outputs y, it is computationally infeasible to find an x with h(x) = y

• Example: given a large prime number p and a primitive root g in Z∗p
Let h(x) = gx mod p
Then h is a one-way function

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-6

Definition

• A function h is called a hash function if:
• Compression: h maps an input x of arbitrary length to an output h(x) of fixed length n:

h: {0, 1}∗ → {0, 1}n

• Ease of computation: Given h and x it is easy to compute h(x)

• A function h is called a one-way function if
• h is a hash function
• For all pre-specified outputs y, it is computationally infeasible to find an x with h(x) = y

• Example: given a large prime number p and a primitive root g in Z∗p
Let h(x) = gx mod p
Then h is a one-way function

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-6

Definition

• A function h is called a hash function if:
• Compression: h maps an input x of arbitrary length to an output h(x) of fixed length n:

h: {0, 1}∗ → {0, 1}n

• Ease of computation: Given h and x it is easy to compute h(x)

• A function h is called a one-way function if
• h is a hash function
• For all pre-specified outputs y, it is computationally infeasible to find an x with h(x) = y

• Example: given a large prime number p and a primitive root g in Z∗p
Let h(x) = gx mod p
Then h is a one-way function

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-6

Definition

• A function H is called a cryptographic hash function if:

1. H is a one-way function (1st pre-image resistance):
For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y

2. 2nd pre-image resistance:
Given x it is computationally infeasible to find any second input x’ with x 6= x’ such that H(x) = H(x’)
Note: This property is very important for digital signatures.

3. Collision resistance:
It is computationally infeasible to find any pair (x, x’) with x 6= x’ such that H(x) = H(x’)

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-7

Definition

• A function H is called a cryptographic hash function if:

1. H is a one-way function (1st pre-image resistance):
For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y

2. 2nd pre-image resistance:
Given x it is computationally infeasible to find any second input x’ with x 6= x’ such that H(x) = H(x’)
Note: This property is very important for digital signatures.

3. Collision resistance:
It is computationally infeasible to find any pair (x, x’) with x 6= x’ such that H(x) = H(x’)

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-7

Definition

• A function H is called a cryptographic hash function if:

1. H is a one-way function (1st pre-image resistance):
For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y

2. 2nd pre-image resistance:
Given x it is computationally infeasible to find any second input x’ with x 6= x’ such that H(x) = H(x’)
Note: This property is very important for digital signatures.

3. Collision resistance:
It is computationally infeasible to find any pair (x, x’) with x 6= x’ such that H(x) = H(x’)

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-7

Definition

• A function H is called a cryptographic hash function if:

1. H is a one-way function (1st pre-image resistance):
For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y

2. 2nd pre-image resistance:
Given x it is computationally infeasible to find any second input x’ with x 6= x’ such that H(x) = H(x’)
Note: This property is very important for digital signatures.

3. Collision resistance:
It is computationally infeasible to find any pair (x, x’) with x 6= x’ such that H(x) = H(x’)

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-7

Definition
Comparison to CRC:

• In networking there are codes for error detection.

• Common example: Cyclic redundancy checks (CRC)
• Based on binary polynomial division with Input / CRC divisor.
• The remainder of the division is the resulting error detection code.
• CRC is a fast compression function.

• Why not use CRC?
• CRC is not a cryptographic hash function
• CRC does not provide 2nd pre-image resistance and collision resistance
• CRC is additive

• If x’ = x ⊕4, then CRC(x’) = CRC(x) ⊕ CRC(4)

• CRC is useful for protecting against noisy channels
• But not against intentional manipulation

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-8

Definition
Comparison to CRC:

• In networking there are codes for error detection.

• Common example: Cyclic redundancy checks (CRC)
• Based on binary polynomial division with Input / CRC divisor.
• The remainder of the division is the resulting error detection code.
• CRC is a fast compression function.

• Why not use CRC?

• CRC is not a cryptographic hash function
• CRC does not provide 2nd pre-image resistance and collision resistance
• CRC is additive

• If x’ = x ⊕4, then CRC(x’) = CRC(x) ⊕ CRC(4)

• CRC is useful for protecting against noisy channels
• But not against intentional manipulation

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-8

Definition
Comparison to CRC:

• In networking there are codes for error detection.

• Common example: Cyclic redundancy checks (CRC)
• Based on binary polynomial division with Input / CRC divisor.
• The remainder of the division is the resulting error detection code.
• CRC is a fast compression function.

• Why not use CRC?
• CRC is not a cryptographic hash function
• CRC does not provide 2nd pre-image resistance and collision resistance
• CRC is additive

• If x’ = x ⊕4, then CRC(x’) = CRC(x) ⊕ CRC(4)

• CRC is useful for protecting against noisy channels
• But not against intentional manipulation

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-8

Applications
Can Hashing ensure Integrity?

Alice (A) Bob (B)
m, H(m)

Alice (A) Bob (B)
m, H(m) m‘, H(m‘)

ok

ok

Case:
No attacker

Case:
With attacker

• Applying a hash function is not sufficient to secure a message.

• H(m) needs to be protected.

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-9

Applications
Can Hashing ensure Integrity?

Alice (A) Bob (B)
m, H(m)

Alice (A) Bob (B)
m, H(m) m‘, H(m‘)

ok

ok

Case:
No attacker

Case:
With attacker

• Applying a hash function is not sufficient to secure a message.

• H(m) needs to be protected.

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-9

Applications
Can Hashing ensure Integrity?

Alice (A) Bob (B)
m, MACK (m)

Alice (A) Bob (B)
m, MACK (m) m', MACK (m)

ok

not ok

Case:
No attacker

Case:
With attacker

share symmetric key K

• Simply hashing a message and appending the hash is not secure against intentional manipulation (com-
pare with CRC)!

• Solution:
• Include a secret in the hash.
• Since the secret key k is unknown to the attacker, the attacker cannot compute MACK (m’) (see next section).

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-10

Applications
Can Hashing ensure Integrity?

Alice (A) Bob (B)
m, MACK (m)

Alice (A) Bob (B)
m, MACK (m) m', MACK (m)

ok

not ok

Case:
No attacker

Case:
With attacker

share symmetric key K

• Simply hashing a message and appending the hash is not secure against intentional manipulation (com-
pare with CRC)!

• Solution:
• Include a secret in the hash.
• Since the secret key k is unknown to the attacker, the attacker cannot compute MACK (m’) (see next section).

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-10

Applications
Other applications of cryptographic hash functions which require some caution:

• Pseudo-random number generation
• The output of a cryptographic hash function is assumed to be uniformly distributed
• Although this property has not been proven in a mathematical sense for common cryptographic hash functions,

such as MD5, SHA-1, it is often used
• Start with random seed, then hash

• b0 = seed
• bi+1 = H(bi |seed)

• Encryption
• Remember: Output Feedback Mode (OFB) - encryption by generating a pseudo random stream, and performing

XOR with plain text
• Generate a key stream as follow:
• k0 = H(KA ,B |IV)
• ki+1 = H(KA ,B |ki)
• The plain text is XORed with the key stream to obtain the cipher text.

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-11

Applications
Other applications of cryptographic hash functions which require some caution:

• Pseudo-random number generation
• The output of a cryptographic hash function is assumed to be uniformly distributed
• Although this property has not been proven in a mathematical sense for common cryptographic hash functions,

such as MD5, SHA-1, it is often used
• Start with random seed, then hash

• b0 = seed
• bi+1 = H(bi |seed)

• Encryption
• Remember: Output Feedback Mode (OFB) - encryption by generating a pseudo random stream, and performing

XOR with plain text
• Generate a key stream as follow:
• k0 = H(KA ,B |IV)
• ki+1 = H(KA ,B |ki)
• The plain text is XORed with the key stream to obtain the cipher text.

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-11

Applications

• Authentication with a challenge-response mechanism

Alice Bob

rA

• Given only Alice and Bob know the shared secret KA ,B , Alice knows that an attacker is not able to
compute H(KA ,B , rA). Therefore the response must be from Bob.

• Mutual authentication can be achieved by a 2nd exchange in opposite direction

• This type of authentication is based on a authentication method called challenge-response and used, for
example, by HTTP digest authentication
• It avoids transmitting the transport of the shared key (e.g. password) in clear text

• Another type of a challenge-response would be, for example, if Bob signs the challenge “rA ” with his
private key

• Note that this kind of authentication does not include negotiation of a session key.

• Protocols for key negotiation will be discussed in subsequent chapters.

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-12

Applications

• Authentication with a challenge-response mechanism

Alice Bob

rA

• Given only Alice and Bob know the shared secret KA ,B , Alice knows that an attacker is not able to
compute H(KA ,B , rA). Therefore the response must be from Bob.

• Mutual authentication can be achieved by a 2nd exchange in opposite direction

• This type of authentication is based on a authentication method called challenge-response and used, for
example, by HTTP digest authentication
• It avoids transmitting the transport of the shared key (e.g. password) in clear text

• Another type of a challenge-response would be, for example, if Bob signs the challenge “rA ” with his
private key

• Note that this kind of authentication does not include negotiation of a session key.

• Protocols for key negotiation will be discussed in subsequent chapters.

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-12

Applications

• Authentication with a challenge-response mechanism

Alice Bob

rA

• Given only Alice and Bob know the shared secret KA ,B , Alice knows that an attacker is not able to
compute H(KA ,B , rA). Therefore the response must be from Bob.

• Mutual authentication can be achieved by a 2nd exchange in opposite direction

• This type of authentication is based on a authentication method called challenge-response and used, for
example, by HTTP digest authentication
• It avoids transmitting the transport of the shared key (e.g. password) in clear text

• Another type of a challenge-response would be, for example, if Bob signs the challenge “rA ” with his
private key

• Note that this kind of authentication does not include negotiation of a session key.

• Protocols for key negotiation will be discussed in subsequent chapters.

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-12

Applications

• Authentication with a challenge-response mechanism

Alice Bob

rA

• Given only Alice and Bob know the shared secret KA ,B , Alice knows that an attacker is not able to
compute H(KA ,B , rA). Therefore the response must be from Bob.

• Mutual authentication can be achieved by a 2nd exchange in opposite direction

• This type of authentication is based on a authentication method called challenge-response and used, for
example, by HTTP digest authentication
• It avoids transmitting the transport of the shared key (e.g. password) in clear text

• Another type of a challenge-response would be, for example, if Bob signs the challenge “rA ” with his
private key

• Note that this kind of authentication does not include negotiation of a session key.

• Protocols for key negotiation will be discussed in subsequent chapters.

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-12

Common Cryptographic Hash Functions

• Cryptographic Hash Functions:

• Message Digest 5 (MD5): Considered broken.
• Invented by R. Rivest, Successor to MD4. Considered broken.

• Secure Hash Algorithm 1 (SHA-1): Considered broken.
• Old NIST standard.
• Invented by the National Security Agency (NSA). Inspired by MD4.

• Secure Hash Algorithm 2(SHA-2)
• Also a NIST standard and invented by the National Security Agency (NSA).
• The SHA-2 family consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 bits
• SHA-1 attacks have not been successfully extended to SHA-2

• Secure Hash Algorithm 3 (SHA-3):
• Current NIST standard (since October 2012).
• Keccak algorithm by G. Bertoni, J. Daemen, M. Peeters und G. Van Assche.

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-13

Common Cryptographic Hash Functions

• Cryptographic Hash Functions:
• Message Digest 5 (MD5): Considered broken.

• Invented by R. Rivest, Successor to MD4. Considered broken.

• Secure Hash Algorithm 1 (SHA-1): Considered broken.
• Old NIST standard.
• Invented by the National Security Agency (NSA). Inspired by MD4.

• Secure Hash Algorithm 2(SHA-2)
• Also a NIST standard and invented by the National Security Agency (NSA).
• The SHA-2 family consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 bits
• SHA-1 attacks have not been successfully extended to SHA-2

• Secure Hash Algorithm 3 (SHA-3):
• Current NIST standard (since October 2012).
• Keccak algorithm by G. Bertoni, J. Daemen, M. Peeters und G. Van Assche.

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-13

Common Cryptographic Hash Functions

• Cryptographic Hash Functions:
• Message Digest 5 (MD5): Considered broken.

• Invented by R. Rivest, Successor to MD4. Considered broken.

• Secure Hash Algorithm 1 (SHA-1): Considered broken.
• Old NIST standard.
• Invented by the National Security Agency (NSA). Inspired by MD4.

• Secure Hash Algorithm 2(SHA-2)
• Also a NIST standard and invented by the National Security Agency (NSA).
• The SHA-2 family consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 bits
• SHA-1 attacks have not been successfully extended to SHA-2

• Secure Hash Algorithm 3 (SHA-3):
• Current NIST standard (since October 2012).
• Keccak algorithm by G. Bertoni, J. Daemen, M. Peeters und G. Van Assche.

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-13

Common Cryptographic Hash Functions

• Cryptographic Hash Functions:
• Message Digest 5 (MD5): Considered broken.

• Invented by R. Rivest, Successor to MD4. Considered broken.

• Secure Hash Algorithm 1 (SHA-1): Considered broken.
• Old NIST standard.
• Invented by the National Security Agency (NSA). Inspired by MD4.

• Secure Hash Algorithm 2(SHA-2)
• Also a NIST standard and invented by the National Security Agency (NSA).
• The SHA-2 family consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 bits
• SHA-1 attacks have not been successfully extended to SHA-2

• Secure Hash Algorithm 3 (SHA-3):
• Current NIST standard (since October 2012).
• Keccak algorithm by G. Bertoni, J. Daemen, M. Peeters und G. Van Assche.

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-13

Common Cryptographic Hash Functions

• Cryptographic Hash Functions:
• Message Digest 5 (MD5): Considered broken.

• Invented by R. Rivest, Successor to MD4. Considered broken.

• Secure Hash Algorithm 1 (SHA-1): Considered broken.
• Old NIST standard.
• Invented by the National Security Agency (NSA). Inspired by MD4.

• Secure Hash Algorithm 2(SHA-2)
• Also a NIST standard and invented by the National Security Agency (NSA).
• The SHA-2 family consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 bits
• SHA-1 attacks have not been successfully extended to SHA-2

• Secure Hash Algorithm 3 (SHA-3):
• Current NIST standard (since October 2012).
• Keccak algorithm by G. Bertoni, J. Daemen, M. Peeters und G. Van Assche.

Chapter 8: Cryptographic Hash Functions and MACs — Cryptographic Hash Functions 8-13

Chapter 8: Cryptographic Hash Functions and MACs

Motivation

Cryptographic Hash Functions

Message Authentication Codes (MAC)

Definition

Application

Attack Against an Insecure MAC

Common MAC Functions

Literature

Chapter 8: Cryptographic Hash Functions and MACs 8-14

Definition

• (Cryptographic) hashes alone do not protect against tampering!

• MACs include a secret key K in addition to the message m they aim to protect.
• Only the persons with knowledge of K can (re-)compute the MAC.

• Procedure:
• Sender s computes MACK (m).
• <m,MACK (m)> is sent to the receiver r.
• r receives <m′,MACK (m)>.

• r can compute MACK (m
′

) based on his knowledge of K and m
′

.

• If MACK (m
′

)=MACK (m), he knows that m=m
′

, since nobody else had knowledge of K .

• MACs:
• Prove message authenticity↔ integrity.
• Do detect tampering.
• Cannot be forged.
• Can be replayed.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-15

Definition

• (Cryptographic) hashes alone do not protect against tampering!

• MACs include a secret key K in addition to the message m they aim to protect.
• Only the persons with knowledge of K can (re-)compute the MAC.

• Procedure:
• Sender s computes MACK (m).
• <m,MACK (m)> is sent to the receiver r.
• r receives <m′,MACK (m)>.

• r can compute MACK (m
′

) based on his knowledge of K and m
′

.

• If MACK (m
′

)=MACK (m), he knows that m=m
′

, since nobody else had knowledge of K .

• MACs:
• Prove message authenticity↔ integrity.
• Do detect tampering.
• Cannot be forged.
• Can be replayed.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-15

Definition

• (Cryptographic) hashes alone do not protect against tampering!

• MACs include a secret key K in addition to the message m they aim to protect.
• Only the persons with knowledge of K can (re-)compute the MAC.

• Procedure:
• Sender s computes MACK (m).
• <m,MACK (m)> is sent to the receiver r.
• r receives <m′,MACK (m)>.

• r can compute MACK (m
′

) based on his knowledge of K and m
′

.

• If MACK (m
′

)=MACK (m), he knows that m=m
′

, since nobody else had knowledge of K .

• MACs:
• Prove message authenticity↔ integrity.
• Do detect tampering.
• Cannot be forged.
• Can be replayed.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-15

Application

Alice (A) Bob (B)

share symmetric key K

m, MACK (m)

• Alice protects/authenticates her message m with a MAC function

• Alice has to send m and the MAC value to Bob.

• Examples for potential MAC constructions:
• HMAC
• CBC-MAC / CMAC
• EncK (h(m))→ NO!!

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-16

Application

Alice (A) Bob (B)

share symmetric key K

m, MACK (m)

• Alice protects/authenticates her message m with a MAC function

• Alice has to send m and the MAC value to Bob.

• Examples for potential MAC constructions:
• HMAC
• CBC-MAC / CMAC
• EncK (h(m))→ NO!!

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-16

Application

Alice (A) Bob (B)

share symmetric key K

m, MACK (m)

• Bob can verify the MAC code by using the shared key:
• He reads Alice’s MACK (m)
• He can check if his MACK (m

′
) matches the one sent by Alice.

• Only Alice and Bob who know K can do this.

• Take home message: for authenticity checks the receiver needs to know m and a secure modification
check value that it can compare.
• Think about it: Why is EncK (m) usually not sufficient?

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-17

Application

Alice (A) Bob (B)

share symmetric key K

m, MACK (m)

• Bob can verify the MAC code by using the shared key:
• He reads Alice’s MACK (m)
• He can check if his MACK (m

′
) matches the one sent by Alice.

• Only Alice and Bob who know K can do this.

• Take home message: for authenticity checks the receiver needs to know m and a secure modification
check value that it can compare.
• Think about it: Why is EncK (m) usually not sufficient?

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-17

Application

• Reasons for constructing MACs from cryptographic hash functions:
• Cryptographic hash functions generally execute faster than symmetric block ciphers (Note: with AES this is not

much of a problem today)
• There are no export restrictions to cryptographic hash functions

• Basic idea: “mix” a secret key K with the input and compute a hash value.

• The assumption that an attacker needs to know K to produce a valid MAC nevertheless raises some
cryptographic concern:
• The construction H(K ‖ m) is not secure
• The construction H(m ‖ K) is not secure
• The construction H(K ‖ p ‖ m ‖ K) with p denoting an additional padding field does not offer sufficient

security

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-18

Application

• Reasons for constructing MACs from cryptographic hash functions:
• Cryptographic hash functions generally execute faster than symmetric block ciphers (Note: with AES this is not

much of a problem today)
• There are no export restrictions to cryptographic hash functions

• Basic idea: “mix” a secret key K with the input and compute a hash value.

• The assumption that an attacker needs to know K to produce a valid MAC nevertheless raises some
cryptographic concern:
• The construction H(K ‖ m) is not secure
• The construction H(m ‖ K) is not secure
• The construction H(K ‖ p ‖ m ‖ K) with p denoting an additional padding field does not offer sufficient

security

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-18

Attack Against an Insecure MAC

• For illustrative purposes, consider the following MAC definition:
• Input: message m = (x1 , x2 , ..., xn) with xi being 128-bit values, and key K
• Compute4(m) := x1 ⊕ x2 ⊕ ...⊕ xn with⊕ denoting XOR
• Output: MACK (m) := EncK (4(m)) with EncK (x) denoting AES encryption

• The key and the MAC length are both 128 bit, so we would expect an effort of about 2127 operations to
break the MAC (being able to forge messages).

• Unfortunately the MAC definition is insecure:
• Attacker Eve wants to forge messages. Eve does not know K.
• Alice and Bob exchange a message (m, MACK (m)), Eve eavesdrops it.
• Eve can construct a message m’ that yields the same MAC:

• Let y1, y2, ..., yn−1 be arbitrary 128-bit values
• Define yn := y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕4(m)
• This yn allows to construct the new message m’ := (y1, y2, ..., yn)
• Therefore, MACK (m’) = Enc(4(m’))

= EncK (y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕ yn))
= EncK (y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕ y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕4(m)))
= EncK (4(m))) = MACK (m)

• Therefore, MACk (m) is a valid MAC for m’, since4m = 4m’
• When Bob receives (m’, MACK (m)) from Eve, he will accept it as being originated from Alice.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-19

Attack Against an Insecure MAC

• For illustrative purposes, consider the following MAC definition:
• Input: message m = (x1 , x2 , ..., xn) with xi being 128-bit values, and key K
• Compute4(m) := x1 ⊕ x2 ⊕ ...⊕ xn with⊕ denoting XOR
• Output: MACK (m) := EncK (4(m)) with EncK (x) denoting AES encryption

• The key and the MAC length are both 128 bit, so we would expect an effort of about 2127 operations to
break the MAC (being able to forge messages).

• Unfortunately the MAC definition is insecure:
• Attacker Eve wants to forge messages. Eve does not know K.
• Alice and Bob exchange a message (m, MACK (m)), Eve eavesdrops it.
• Eve can construct a message m’ that yields the same MAC:

• Let y1, y2, ..., yn−1 be arbitrary 128-bit values
• Define yn := y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕4(m)
• This yn allows to construct the new message m’ := (y1, y2, ..., yn)
• Therefore, MACK (m’) = Enc(4(m’))

= EncK (y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕ yn))
= EncK (y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕ y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕4(m)))
= EncK (4(m))) = MACK (m)

• Therefore, MACk (m) is a valid MAC for m’, since4m = 4m’
• When Bob receives (m’, MACK (m)) from Eve, he will accept it as being originated from Alice.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-19

Attack Against an Insecure MAC

• For illustrative purposes, consider the following MAC definition:
• Input: message m = (x1 , x2 , ..., xn) with xi being 128-bit values, and key K
• Compute4(m) := x1 ⊕ x2 ⊕ ...⊕ xn with⊕ denoting XOR
• Output: MACK (m) := EncK (4(m)) with EncK (x) denoting AES encryption

• The key and the MAC length are both 128 bit, so we would expect an effort of about 2127 operations to
break the MAC (being able to forge messages).

• Unfortunately the MAC definition is insecure:
• Attacker Eve wants to forge messages. Eve does not know K.
• Alice and Bob exchange a message (m, MACK (m)), Eve eavesdrops it.
• Eve can construct a message m’ that yields the same MAC:

• Let y1, y2, ..., yn−1 be arbitrary 128-bit values
• Define yn := y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕4(m)
• This yn allows to construct the new message m’ := (y1, y2, ..., yn)
• Therefore, MACK (m’) = Enc(4(m’))

= EncK (y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕ yn))
= EncK (y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕ y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕4(m)))
= EncK (4(m))) = MACK (m)

• Therefore, MACk (m) is a valid MAC for m’, since4m = 4m’
• When Bob receives (m’, MACK (m)) from Eve, he will accept it as being originated from Alice.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-19

Attack Against an Insecure MAC

• For illustrative purposes, consider the following MAC definition:
• Input: message m = (x1 , x2 , ..., xn) with xi being 128-bit values, and key K
• Compute4(m) := x1 ⊕ x2 ⊕ ...⊕ xn with⊕ denoting XOR
• Output: MACK (m) := EncK (4(m)) with EncK (x) denoting AES encryption

• The key and the MAC length are both 128 bit, so we would expect an effort of about 2127 operations to
break the MAC (being able to forge messages).

• Unfortunately the MAC definition is insecure:
• Attacker Eve wants to forge messages. Eve does not know K.
• Alice and Bob exchange a message (m, MACK (m)), Eve eavesdrops it.
• Eve can construct a message m’ that yields the same MAC:

• Let y1, y2, ..., yn−1 be arbitrary 128-bit values
• Define yn := y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕4(m)
• This yn allows to construct the new message m’ := (y1, y2, ..., yn)

• Therefore, MACK (m’) = Enc(4(m’))
= EncK (y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕ yn))
= EncK (y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕ y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕4(m)))
= EncK (4(m))) = MACK (m)

• Therefore, MACk (m) is a valid MAC for m’, since4m = 4m’
• When Bob receives (m’, MACK (m)) from Eve, he will accept it as being originated from Alice.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-19

Attack Against an Insecure MAC

• For illustrative purposes, consider the following MAC definition:
• Input: message m = (x1 , x2 , ..., xn) with xi being 128-bit values, and key K
• Compute4(m) := x1 ⊕ x2 ⊕ ...⊕ xn with⊕ denoting XOR
• Output: MACK (m) := EncK (4(m)) with EncK (x) denoting AES encryption

• The key and the MAC length are both 128 bit, so we would expect an effort of about 2127 operations to
break the MAC (being able to forge messages).

• Unfortunately the MAC definition is insecure:
• Attacker Eve wants to forge messages. Eve does not know K.
• Alice and Bob exchange a message (m, MACK (m)), Eve eavesdrops it.
• Eve can construct a message m’ that yields the same MAC:

• Let y1, y2, ..., yn−1 be arbitrary 128-bit values
• Define yn := y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕4(m)
• This yn allows to construct the new message m’ := (y1, y2, ..., yn)
• Therefore, MACK (m’) = Enc(4(m’))

= EncK (y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕ yn))
= EncK (y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕ y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕4(m)))
= EncK (4(m))) = MACK (m)

• Therefore, MACk (m) is a valid MAC for m’, since4m = 4m’
• When Bob receives (m’, MACK (m)) from Eve, he will accept it as being originated from Alice.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-19

Attack Against an Insecure MAC

• For illustrative purposes, consider the following MAC definition:
• Input: message m = (x1 , x2 , ..., xn) with xi being 128-bit values, and key K
• Compute4(m) := x1 ⊕ x2 ⊕ ...⊕ xn with⊕ denoting XOR
• Output: MACK (m) := EncK (4(m)) with EncK (x) denoting AES encryption

• The key and the MAC length are both 128 bit, so we would expect an effort of about 2127 operations to
break the MAC (being able to forge messages).

• Unfortunately the MAC definition is insecure:
• Attacker Eve wants to forge messages. Eve does not know K.
• Alice and Bob exchange a message (m, MACK (m)), Eve eavesdrops it.
• Eve can construct a message m’ that yields the same MAC:

• Let y1, y2, ..., yn−1 be arbitrary 128-bit values
• Define yn := y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕4(m)
• This yn allows to construct the new message m’ := (y1, y2, ..., yn)
• Therefore, MACK (m’) = Enc(4(m’))

= EncK (y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕ yn))
= EncK (y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕ y1 ⊕ y2 ⊕ ... ⊕ yn−1 ⊕4(m)))
= EncK (4(m))) = MACK (m)

• Therefore, MACk (m) is a valid MAC for m’, since4m = 4m’
• When Bob receives (m’, MACK (m)) from Eve, he will accept it as being originated from Alice.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-19

Common MAC Functions

• MAC Functions:
• Hash MAC (HMAC):

• Standardized in RFC 2104.
• Used in conjunction with cryptographic hash functions (e.g. SHA-3)
• See following slides.

• Cipher Block Chaining MAC (CBC-MAC):
• Recommended by NIST.
• Based on CBC mode encryption (e.g. with AES).
• See following slides.

• Cipher based MAC (CMAC):
• AES-CMAC is standardized by IETF as RFC 4493 and its truncated form in RFC 4494.
• See following slides.

• Poly1305:
• Standardized in RFC 7539.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-20

Common MAC Functions

• MAC Functions:
• Hash MAC (HMAC):

• Standardized in RFC 2104.
• Used in conjunction with cryptographic hash functions (e.g. SHA-3)
• See following slides.

• Cipher Block Chaining MAC (CBC-MAC):
• Recommended by NIST.
• Based on CBC mode encryption (e.g. with AES).
• See following slides.

• Cipher based MAC (CMAC):
• AES-CMAC is standardized by IETF as RFC 4493 and its truncated form in RFC 4494.
• See following slides.

• Poly1305:
• Standardized in RFC 7539.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-20

Common MAC Functions

• MAC Functions:
• Hash MAC (HMAC):

• Standardized in RFC 2104.
• Used in conjunction with cryptographic hash functions (e.g. SHA-3)
• See following slides.

• Cipher Block Chaining MAC (CBC-MAC):
• Recommended by NIST.
• Based on CBC mode encryption (e.g. with AES).
• See following slides.

• Cipher based MAC (CMAC):
• AES-CMAC is standardized by IETF as RFC 4493 and its truncated form in RFC 4494.
• See following slides.

• Poly1305:
• Standardized in RFC 7539.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-20

Common MAC Functions

• MAC Functions:
• Hash MAC (HMAC):

• Standardized in RFC 2104.
• Used in conjunction with cryptographic hash functions (e.g. SHA-3)
• See following slides.

• Cipher Block Chaining MAC (CBC-MAC):
• Recommended by NIST.
• Based on CBC mode encryption (e.g. with AES).
• See following slides.

• Cipher based MAC (CMAC):
• AES-CMAC is standardized by IETF as RFC 4493 and its truncated form in RFC 4494.
• See following slides.

• Poly1305:
• Standardized in RFC 7539.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-20

Common MAC Functions: Hash MACs (HMAC)

• The construction H(K | m | K), called prefix-suffix mode, has been used for a while.
• See for example RFC 1828
• It has been also used in earlier implementations of the Secure Socket Layer (SSL) protocol (until SSL 3.0)
• However, it is now considered vulnerable to attack by the cryptographic community.

• The most used construction is HMAC: H (K ⊕ opad | H (K ⊕ ipad | m))
• The length of the key K is first extended to the block length required for the input of the hash function H by

appending zero bytes.
• Then it is xor’ed respectively with two constants opad and ipad
• The hash function is applied twice in a nested way.
• Currently no attacks have been discovered on this MAC function.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-21

Common MAC Functions: Hash MACs (HMAC)

• The construction H(K | m | K), called prefix-suffix mode, has been used for a while.
• See for example RFC 1828
• It has been also used in earlier implementations of the Secure Socket Layer (SSL) protocol (until SSL 3.0)
• However, it is now considered vulnerable to attack by the cryptographic community.

• The most used construction is HMAC: H (K ⊕ opad | H (K ⊕ ipad | m))
• The length of the key K is first extended to the block length required for the input of the hash function H by

appending zero bytes.
• Then it is xor’ed respectively with two constants opad and ipad
• The hash function is applied twice in a nested way.
• Currently no attacks have been discovered on this MAC function.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-21

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

• A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last ciphertext block or
a part of it as the MAC:

m1

c1

Enck

m2

c2

Enck

...

...

...

mn

cn

Enck

IV cn−1

• MACk (m) = cn for some publicly known, fixed, IV .

• This MAC needs not to be mixed with a secret any further, as it has already been produced using a
shared secret K.

• This scheme works with any block cipher (AES, Twofish, 3DES, ...)

• It is used, e.g., for IEEE 802.11 (WLAN) WPA2, many modes in SSL / IPSec use some CBC-MAC
construction.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-22

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

• A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last ciphertext block or
a part of it as the MAC:

m1

c1

Enck

m2

c2

Enck

...

...

...

mn

cn

Enck

IV cn−1

• MACk (m) = cn for some publicly known, fixed, IV .

• This MAC needs not to be mixed with a secret any further, as it has already been produced using a
shared secret K.

• This scheme works with any block cipher (AES, Twofish, 3DES, ...)

• It is used, e.g., for IEEE 802.11 (WLAN) WPA2, many modes in SSL / IPSec use some CBC-MAC
construction.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-22

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

• A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last ciphertext block or
a part of it as the MAC:

m1

c1

Enck

m2

c2

Enck

...

...

...

mn

cn

Enck

IV cn−1

• MACk (m) = cn for some publicly known, fixed, IV .

• This MAC needs not to be mixed with a secret any further, as it has already been produced using a
shared secret K.

• This scheme works with any block cipher (AES, Twofish, 3DES, ...)

• It is used, e.g., for IEEE 802.11 (WLAN) WPA2, many modes in SSL / IPSec use some CBC-MAC
construction.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-22

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

• CBC-MAC security
• CBC-MAC must NOT be used with the same key as for the encryption
• In particular, if CBC mode is used for encryption, and CBC-MAC for authenticity with the same key, the MAC will

be equal to the last cipher text block
• If the length of a message is unknown or no other protection exists, CBC-MAC can be prone to length extension

attacks. CMAC resolves the issue.

• CBC-MAC performance
• Older symmetric block ciphers (such as DES) require more computing effort than dedicated cryptographic hash

functions, e.g. MD5, SHA-1 therefore, these schemes are considered to be slower.
• However, newer symmetric block ciphers (AES) is faster than conventional cryptographic hash functions.
• Therefore, AES-CBC-MAC is becoming popular.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-23

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

• CBC-MAC security
• CBC-MAC must NOT be used with the same key as for the encryption
• In particular, if CBC mode is used for encryption, and CBC-MAC for authenticity with the same key, the MAC will

be equal to the last cipher text block
• If the length of a message is unknown or no other protection exists, CBC-MAC can be prone to length extension

attacks. CMAC resolves the issue.

• CBC-MAC performance
• Older symmetric block ciphers (such as DES) require more computing effort than dedicated cryptographic hash

functions, e.g. MD5, SHA-1 therefore, these schemes are considered to be slower.
• However, newer symmetric block ciphers (AES) is faster than conventional cryptographic hash functions.
• Therefore, AES-CBC-MAC is becoming popular.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-23

Common MAC Functions: Cipher-based MACs (CMAC)

• CMAC is a modification of CBC-MAC
• Compute keys k1 and k2 from shared key k.
• Within the CBC processing

• XOR complete blocks before encryption with k1
• XOR incomplete blocks before encryption with k2
• k is used for the block encryption

• Output is the last encrypted block or the l most significant bits of the last block.

• XCBC-MAC (e.g. found in TLS) is a predecessor of CMAC where k1 and k2 are input to algorithm and
not derived from k.

Chapter 8: Cryptographic Hash Functions and MACs — Message Authentication Codes (MAC) 8-24

Chapter 8: Cryptographic Hash Functions and MACs

Motivation

Cryptographic Hash Functions

Message Authentication Codes (MAC)

Literature

Chapter 8: Cryptographic Hash Functions and MACs 8-25

Literature

(Beyond the scope of examination)

• B. Coskun, N. Memon, Confusion/Diffusion Capabilities of Some Robust Hash Functions, CISS 2006:
Conference on Information Sciences and Systems

• H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed-Hashing for Message Authentication, Internet RFC
2104, February 1997.

• R. Merkle, One Way Hash Functions and DES, Proceedings of Crypto ‘89, Springer, 1989.

• Niels Ferguson, Bruce Schneier, Practical Cryptography, John Wiley & Sons, 2003

• Peter Selinger, http://www.mscs.dal.ca/ selinger/md5collision/

• P. Metzger, IP Authentication using Keyed MD5, IETF RFC 1828, August 1995

• R. L. Rivest. The MD5 Message Digest Algorithm, Internet RFC 1321, April 1992.

• M. Robshaw. On Recent Results for MD2, MD4 and MD5, RSA Laboratories’ Bulletin, No. 4, November
1996.

• Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu, Collision Search Attacks on SHA1, February 2005

• G. Yuval. How to Swindle Rabin, Cryptologia, July 1979.

Chapter 8: Cryptographic Hash Functions and MACs — Literature 8-26

Literature

• Niels Ferguson, Stefan Lucks, Bruce Schneier, et. al., Skein Specification v1.1

• http://www.skein-hash.info

• NIST (National Institute for Standards and Technology (USA)),
CRYPTOGRAPHIC HASH ALGORITHM COMPETITION,
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

• G. Bertoni, J. Daemen, M. Peeters und G. Van Assche, Cryptographic Sponge Functions http://sponge.noekeon.org/CSF-
0.1.pdf

• G. Bertoni, J. Daemen, M. Peeters und G. Van Assche, Keccak Reference (version 3.0), http://keccak.noekeon.org/Keccak-
reference-3.0.pdf

• G. Bertoni, J. Daemen, M. Peeters und G. Van Assche, Keccak sponge function family main document,
http://keccak.noekeon.org/Keccak-main-2.1.pdf

Chapter 8: Cryptographic Hash Functions and MACs — Literature 8-27

	Cryptographic Hash Functions and MACs
	Motivation
	Cryptographic Hash Functions
	Definition
	Applications
	Common Cryptographic Hash Functions

	Message Authentication Codes (MAC)
	Definition
	Application
	Attack Against an Insecure MAC
	Common MAC Functions

	Literature

