# Network Security (NetSec) 

## IN2101 - WS 17/18

Prof. Dr.-Ing. Georg Carle

Dr. Heiko Niedermayer<br>Quirin Scheitle<br>Acknowledgements: Dr. Cornelius Diekmann<br>Chair of Network Architectures and Services<br>Department of Informatics<br>Technical University of Munich

## Chapter 9: Random Numbers

What does 'Random' mean?

## Entropy

## Entropy: Example

Collecting Entropy

Cryptographically Secure Pseudo Random Number Generator - CSPRNG

Quiz

## Chapter 9: Random Numbers

What does 'Random' mean?

## Entropy

Cryptographically Secure Pseudo Random Number Generator - CSPRNG

## What does 'Random’ mean?



Random noise in your browser: Safari (top); V8 (bottom).

## Chapter 9: Random Numbers

## What does 'Random' mean?

Entropy
Entropy: Example
Collecting Entropy

Cryptographically Secure Pseudo Random Number Generator - CSPRNG

- "randomness" can be described by unpredictability
- A measure for "unpredictability" is "entropy"
- Let $X$ be a random variable which outputs a sequence of $n$ bits
- The Shannon information entropy is defined by:

$$
H(X)=-\sum_{x} P(X=x) \ln _{2}(P(X=x))
$$

- Entropy is maximized for a uniform distribution
- I.e. every Bit is equally likely
- Def.: truly random
- In this case: $H(X)=n$
- A key of 128 Bit should have an entropy of 128
- What about the password TTTTTTTTTTTTTTTT?
- A key of 128 Bit should have an entropy of 128
- What about the password TTTTTTTTTTTTTTTT?
- 168 -bit characters, 128 Bit. Entropy?
- If all bits chosen uniformly at random, entropy is 128
- A key of 128 Bit should have an entropy of 128
- What about the password TTTTTTTTTTTTTTTT?
- 168 -bit characters, 128 Bit. Entropy?
- If all bits chosen uniformly at random, entropy is 128
- Assume the attacker knows it's ASCII
- Ascii: every 8th Bit is zero: entropy at most 112
- A key of 128 Bit should have an entropy of 128
- What about the password TTTTTTTTTTTTTTTT?
- 168 -bit characters, 128 Bit. Entropy?
- If all bits chosen uniformly at random, entropy is 128
- Assume the attacker knows it's ASCII
- Ascii: every 8th Bit is zero: entropy at most 112
- Assume attacker knows that it consists of 16 equal characters
- All 16 Characters are equal: entropy at most 7
- A key of 128 Bit should have an entropy of 128
- What about the password TTTTTTTTTTTTTTTT?
- 168 -bit characters, 128 Bit. Entropy?
- If all bits chosen uniformly at random, entropy is 128
- Assume the attacker knows it's ASCII
- Ascii: every 8th Bit is zero: entropy at most 112
- Assume attacker knows that it consists of 16 equal characters
- All 16 Characters are equal: entropy at most 7
- Assume the attackers knows the password is printable
- Entropy is about 6.66


## Collecting Entropy

- Hardware-based; physical phenomena
- time between emission of particles during radioactive decay
- thermal noise from a semiconductor diode or resistor
- frequency instability of a free running oscillator
- the amount a metal insulator semiconductor capacitor is charged during a fixed period of time
- noise of microphone or camera
- Software-based
- the system clock
- elapsed time between keystrokes or mouse movement
- buffers
- user input
- OS stats, e.g. network load
- Attacker must not be able to guess/influence the collected values
- Getting entropy is expensive
- Pseudo-Random Number Generator (PRNG):
- Deterministic algorithm
- Input: truly random binary sequence of length, seed
- Output: sequence of random-looking numbers
- seed: small amount of initial entropy
- 'cheap' randomness
- linear congruential generator

$$
y_{i}=a \cdot y_{i-1}+b M O D q
$$

- predictable $\rightarrow$ not cryptographic!


## Chapter 9: Random Numbers

## What does 'Random' mean?

Entropy

Cryptographically Secure Pseudo Random Number Generator - CSPRNG

## Cryptographically Secure Pseudo Random Number Generator - CSPRNG

- The length of the seed should be large enough to make brute-force search over all seeds infeasible
- The output should be indistinguishable from truly random sequences
- no polynomial-time algorithm can correctly distinguish between an output sequence of the generator and a truly random sequence
- The output should be unpredictable for an attacker with limited resources, without knowledge of the seed


## Chapter 9: Random Numbers

## What does 'Random' mean?

Entropy

Cryptographically Secure Pseudo Random Number Generator - CSPRNG

Quiz

- A CSPRNG produces a bitstring of 2048 bit
- What is the max. possible entropy of this string?
- A CSPRNG produces a bitstring of 2048 bit
- What is the max. possible entropy of this string?
- min(Length of the seed, 2048)
- usually: Length of the seed

