
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Network Security (NetSec)

IN2101 – WS 17/18

Prof. Dr.-Ing. Georg Carle

Dr. Heiko Niedermayer
Quirin Scheitle

Acknowledgements: Dr. Cornelius Diekmann

Chair of Network Architectures and Services
Department of Informatics

Technical University of Munich

Chapter 11: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 11: Secure Channel 11-1

Chapter 11: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 11: Secure Channel 11-2

Secure Channel

Alice
knows k

Bob
knows k

m1, m2, m3, ...

What do we want?

• Confidentiality, Integrity, Authenticity

• Messages received in correct order

• No duplicates and we know which messages are missing

Chapter 11: Secure Channel — Secure Channel 11-3

Chapter 11: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 11: Secure Channel 11-4

MAC-then-Enc vs. Enc-then-MAC

Enck -enc (m, MACk -int (m))

vs.

Enck -enc (m), MACk -int (m)

vs.

Enck -enc (m), MACk -int (Enck -enc (m))

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-5

MAC-then-Enc vs. Enc-then-MAC

Enck -enc (m, MACk -int (m))

vs.

Enck -enc (m), MACk -int (m)

vs.

Enck -enc (m), MACk -int (Enck -enc (m))

vs. Enck -enc (MACk -int (m))

• Cannot recover m

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-5

MAC-then-Enc vs. Enc-then-MAC

Enck -enc (m, MACk -int (m))

vs.

Enck -enc (m), MACk -int (m)

vs.

Enck -enc (m), MACk -int (Enck -enc (m))

vs. Enck -enc (MACk -int (m))

Enck -enc (MACk -int (m))

• Cannot recover m

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-5

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• “The encryption protects the MAC”

• Encryption does not provide any message authenticity/integrity!

• Example: A weak MAC cannot be “protected” by encrypting it

• CRC is not a MAC, OTP is perfect encryption

• OTPk (m, CRC(m)) does not provide any integrity

• Attacker can⊕x to encrypted message and⊕CRC(x) to the encrypted CRC to fix it

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-6

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• “The encryption protects the MAC”

“The encryption protects the MAC”

• Encryption does not provide any message authenticity/integrity!

• Example: A weak MAC cannot be “protected” by encrypting it

• CRC is not a MAC, OTP is perfect encryption

• OTPk (m, CRC(m)) does not provide any integrity

• Attacker can⊕x to encrypted message and⊕CRC(x) to the encrypted CRC to fix it

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-6

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• “The encryption protects the MAC”

“The encryption protects the MAC”

• Encryption does not provide any message authenticity/integrity!

• Example: A weak MAC cannot be “protected” by encrypting it

• CRC is not a MAC, OTP is perfect encryption

• OTPk (m, CRC(m)) does not provide any integrity

• Attacker can⊕x to encrypted message and⊕CRC(x) to the encrypted CRC to fix it

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-6

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• “The encryption protects the MAC”

“The encryption protects the MAC”

• Encryption does not provide any message authenticity/integrity!

• Example: A weak MAC cannot be “protected” by encrypting it

• CRC is not a MAC, OTP is perfect encryption

• OTPk (m, CRC(m)) does not provide any integrity

• Attacker can⊕x to encrypted message and⊕CRC(x) to the encrypted CRC to fix it

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-6

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• Horton principle:“Authenticate what you mean, not what you say ”
• “Authenticate the plaintext!”

• Do you really mean char *?

• Horton principle applies to application layer

• E.g., Signing a contract

• The secure channel transports chunks of bytes

• m1 = "<!--",
m2 = "I owe you $1000",
m3 = "-->"

http://www.personalausweisportal.de/DE/Buergerinnen- und- Buerger/

Online- Ausweisen/Das- brauche- ich/Kartenlesegeraete/Kartenlesegeraete_node.

html

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-7

http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• Horton principle:“Authenticate what you mean, not what you say ”
• “Authenticate the plaintext!”

“Authenticate the plaintext!”

• Do you really mean char *?

• Horton principle applies to application layer

• E.g., Signing a contract

• The secure channel transports chunks of bytes

• m1 = "<!--",
m2 = "I owe you $1000",
m3 = "-->"

http://www.personalausweisportal.de/DE/Buergerinnen- und- Buerger/

Online- Ausweisen/Das- brauche- ich/Kartenlesegeraete/Kartenlesegeraete_node.

html

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-7

http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• Horton principle:“Authenticate what you mean, not what you say ”
• “Authenticate the plaintext!”

“Authenticate the plaintext!”

• Do you really mean char *?

• Horton principle applies to application layer

• E.g., Signing a contract

• The secure channel transports chunks of bytes

• m1 = "<!--",
m2 = "I owe you $1000",
m3 = "-->"

http://www.personalausweisportal.de/DE/Buergerinnen- und- Buerger/

Online- Ausweisen/Das- brauche- ich/Kartenlesegeraete/Kartenlesegeraete_node.

html

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-7

http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• Horton principle:“Authenticate what you mean, not what you say ”
• “Authenticate the plaintext!”

“Authenticate the plaintext!”

• Do you really mean char *?

• Horton principle applies to application layer

• E.g., Signing a contract

• The secure channel transports chunks of bytes

• m1 = "<!--",
m2 = "I owe you $1000",
m3 = "-->"

http://www.personalausweisportal.de/DE/Buergerinnen- und- Buerger/

Online- Ausweisen/Das- brauche- ich/Kartenlesegeraete/Kartenlesegeraete_node.

html

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-7

http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• Horton principle:“Authenticate what you mean, not what you say ”
• “Authenticate the plaintext!”

“Authenticate the plaintext!”

• Do you really mean char *?

• Horton principle applies to application layer

• E.g., Signing a contract

• The secure channel transports chunks of bytes

• m1 = "<!--",
m2 = "I owe you $1000",
m3 = "-->"

http://www.personalausweisportal.de/DE/Buergerinnen- und- Buerger/

Online- Ausweisen/Das- brauche- ich/Kartenlesegeraete/Kartenlesegeraete_node.

html

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-7

http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• Horton principle:“Authenticate what you mean, not what you say ”
• “Authenticate the plaintext!”

“Authenticate the plaintext!”

• Do you really mean char *?

• Horton principle applies to application layer

• E.g., Signing a contract

• The secure channel transports chunks of bytes out of context

• m1 = "<!--",
m2 = "I owe you $1000",
m3 = "-->"

http://www.personalausweisportal.de/DE/Buergerinnen- und- Buerger/

Online- Ausweisen/Das- brauche- ich/Kartenlesegeraete/Kartenlesegeraete_node.

html

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-7

http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m), MACk -int (m):
• Not better than Enck -enc (m, MACk -int (m))

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-8

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m), MACk -int (Enck -enc (m)):
• c ← Enck -enc (m), MACk -int (c)

• Considered secure

• Discard bogus messages before decryption

• Don’t waste CPU power

• Don’t generate error messages that might help an attacker

• Don’t touch non-authentic data!

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-9

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m), MACk -int (Enck -enc (m)):
• c ← Enck -enc (m), MACk -int (c)

• Considered secure

• Discard bogus messages before decryption

• Don’t waste CPU power

• Don’t generate error messages that might help an attacker

• Don’t touch non-authentic data!

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-9

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m), MACk -int (Enck -enc (m)):
• c ← Enck -enc (m), MACk -int (c)

• Considered secure

• Discard bogus messages before decryption

• Don’t waste CPU power

• Don’t generate error messages that might help an attacker

• Don’t touch non-authentic data!

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-9

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m), MACk -int (Enck -enc (m)):
• c ← Enck -enc (m), MACk -int (c)

• Considered secure

• Discard bogus messages before decryption
• Don’t waste CPU power

• Don’t generate error messages that might help an attacker

• Don’t touch non-authentic data!

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-9

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m), MACk -int (Enck -enc (m)):
• c ← Enck -enc (m), MACk -int (c)

• Considered secure

• Discard bogus messages before decryption
• Don’t waste CPU power

• Don’t generate error messages that might help an attacker

• Don’t touch non-authentic data!

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-9

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m), MACk -int (Enck -enc (m)):
• c ← Enck -enc (m), MACk -int (c)

• Considered secure

• Discard bogus messages before decryption
• Don’t waste CPU power

• Don’t generate error messages that might help an attacker

• Don’t touch non-authentic data!

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-9

MAC-then-Enc vs. Enc-then-MAC
Examples

• Enck -enc (m, MACk -int (m))

• MAC then encrypt

• SSL← many SSL attacks are a result of this scheme

• Horton Principle

• Enck -enc (m), MACk -int (m)

• MAC & encrypt

• SSH

• Horton Principle

• Considered the weakest

• Enck -enc (m), MACk -int (Enck -enc (m))

• Encrypt then MAC

• IPSec (ESP), Signal (TextSecure ProtovolV2),
probably TLS 1.3 [RCF7366]

• Considered the most secure

Chapter 11: Secure Channel — MAC-then-Enc vs. Enc-then-MAC 11-10

Chapter 11: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 11: Secure Channel 11-11

Secure Channel Implementation

• Our Secure Channel Implementation:
• We need

• Message numbering

• Authentication

• Encryption

• Our Toy Implementation
• Message numbering: n (next slide)

• Authentication: HMAC-SHA-256

MACk -int (n ‖ IV ‖ c)

• Encryption: AES-128-CTR

c ← ENCk -enc (IV , m)

• keys for each purpose

Chapter 11: Secure Channel — Secure Channel Implementation 11-12

Secure Channel Implementation

• Message Numbering:
• n ∈ N

• Increased monotonically for each valid message

• n must be unique for every message

• Remember last message nlast and only accept n > nlast

• Detect replays

• Correct order

• Detect lost messages

• Number overflow→ rekeying

Chapter 11: Secure Channel — Secure Channel Implementation 11-13

Secure Channel Implementation

• Message Numbering:
• n ∈ N

• Increased monotonically for each valid message

• n must be unique for every message

• Remember last message nlast and only accept n > nlast

• Detect replays

• Correct order

• Detect lost messages

• Number overflow→ rekeying

Chapter 11: Secure Channel — Secure Channel Implementation 11-13

Secure Channel Implementation

• Message Numbering:
• n ∈ N

• Increased monotonically for each valid message

• n must be unique for every message

• Remember last message nlast and only accept n > nlast

• Detect replays

• Correct order

• Detect lost messages

• Number overflow→ rekeying

Chapter 11: Secure Channel — Secure Channel Implementation 11-13

Secure Channel Implementation

• Initialize (at Alice):

Output: 128bit key

def KDF(k):

TODO: There are better key derivation functions

Assumes: random oracle property of SHA1

return SHA1(k)

Initialize global variables (keys and message number)

def init_globals(k):

global K_send_enc , K_recv_enc , K_send_int , K_recv_int , n_send , n_recv , used_nonces

K_send_enc = KDF(k || "Enc Alice to Bob")

K_recv_enc = KDF(k || "Enc Bob to Alice")

K_send_int = KDF(k || "MAC Alice to Bob")

K_recv_int = KDF(k || "MAC Bob to Alice")

n_send = 1

n_recv = 0

used_nonces = {}

• Generate one key for each purpose

• Where · ‖ · means string/byte concatenation

Chapter 11: Secure Channel — Secure Channel Implementation 11-14

Secure Channel Implementation

• AES-128-CTR Mode needs IV:
• ctr i = IV ‖ i

• ctri is of length 128 bit: We chose 120 bit IV and 8 bit i

m0 c0

Enck

IV ‖ 0

m1 c1

Enck

IV ‖ 1

...

...

m255 c255

Enck

IV ‖ 255

• Max message size per IV: 28 · 128 = 32768 bit = 4096 Bytes

• For i ∈ {0 ... 254}: ctr i+1 = ctr i + 1

Chapter 11: Secure Channel — Secure Channel Implementation 11-15

Secure Channel Implementation

• Nonces as IV for AES-CTR:

used_nonces = {}

Output: A fresh 120bit nonce

def nonce():

global used_nonces

n = random_bits (120)

if n not in used_nonces:

used_nonces.add(n)

return n

else:

TODO: may not terminate if no unused nonces are left

return nonce()

• We want a fresh IV→ remember used nonces

• We are super paranoid:
• Random nonces

• A counter would suffice

Chapter 11: Secure Channel — Secure Channel Implementation 11-16

Secure Channel Implementation

• Sending a Message:

def send(m):

global n_send , K_send_enc , K_send_int

if n_send >= MAX_INT:

return ERROR("MSG Number overflow , needs rekeying")

if len(m) > 4096:

return ERROR("MSG too large , needs fragmentation")

IV = nonce()

c = ENC -AES -128-CTR(K_send_enc , IV, m)

t = HMAC -SHA -256(K_send_int , n_send || IV || c)

socket_send(n_send || IV || c || t)

n_send = n_send + 1

Chapter 11: Secure Channel — Secure Channel Implementation 11-17

Secure Channel Implementation

• Verifying a MAC:

def verify(k, msg , t):

return HMAC -SHA -256(k, msg) == t

Chapter 11: Secure Channel — Secure Channel Implementation 11-18

Secure Channel Implementation

• Verifying a MAC correctly:

def verify(k, msg , t):

return timingsafe_bcmp(HMAC -SHA -256(k, msg), t, 32)

OpenBSD/sys/lib/libkern/timingsafe_bcmp.c

int timingsafe_bcmp(const void *b1, const void *b2, size_t n)

{

const unsigned char *p1 = b1, *p2 = b2;

int ret = 0;

for (; n > 0; n--)

ret |= *p1++ ^ *p2++;

return (ret != 0);

}

The timingsafe_bcmp() and timingsafe_memcmp() functions lexicographically compare the first len bytes (each interpreted as an unsigned

char) pointed to by b1 and b2. Additionally, their running times are independent of the byte sequences compared, making them safe to

use for comparing secret values such as cryptographic MACs. In contrast, bcmp(3) and memcmp(3) may short-circuit after finding the first

differing byte.

Chapter 11: Secure Channel — Secure Channel Implementation 11-19

Secure Channel Implementation

• Receiving a Message:

def receive(msg):

global n_recv , K_recv_int , K_recv_enc

if n_recv + 1 >= MAX_INT:

return ERROR("MSG Number overflow , need rekeying")

n, IV, c, t = parse(msg)

if not verify(K_recv_int , n || IV || c, t):

return ERROR("MAC verification failed")

if n <= n_recv:

return ERROR("Received old message")

if n != n_recv + 1:

print "lost %d messages" % (n - (n_recv + 1))

n_recv = n

m = DEC -AES -128-CTR(K_recv_enc , IV, c)

return m

Chapter 11: Secure Channel — Secure Channel Implementation 11-20

Chapter 11: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 11: Secure Channel 11-21

Secure Channel (ESP) in the OpenBSD Kernel

IPSec ESP in the
OpenBSD Kernel

Chapter 11: Secure Channel — Secure Channel (ESP) in the OpenBSD Kernel 11-22

Secure Channel (ESP) in the OpenBSD Kernel

• ESP Input Processing:
sys/netinet/ip_esp.c OpenBSD 5.8

/*

* ESP input processing , called (eventually) through the protocol switch.

*/

int

esp_input(struct mbuf *m, struct tdb *tdb , int skip , int protoff)

{

struct auth_hash *esph = (struct auth_hash *) tdb ->tdb_authalgxform;

struct enc_xform *espx = (struct enc_xform *) tdb ->tdb_encalgxform;

struct cryptodesc *crde = NULL , *crda = NULL;

struct cryptop *crp;

struct tdb_crypto *tc;

int plen , alen , hlen;

u_int32_t btsx , esn;

/* Determine the ESP header length */

hlen = 2 * sizeof(u_int32_t) + tdb ->tdb_ivlen; /* "new" ESP */

alen = esph ? esph ->authsize : 0;

plen = m->m_pkthdr.len - (skip + hlen + alen);

if (plen <= 0) {

DPRINTF (("esp_input: invalid payload length\n"));

espstat.esps_badilen ++;

m_freem(m);

return EINVAL;

}

• Both encryption and authentication are optional in ESP

Chapter 11: Secure Channel — Secure Channel (ESP) in the OpenBSD Kernel 11-23

Secure Channel (ESP) in the OpenBSD Kernel

if (espx) {

/*

* Verify payload length is multiple of encryption algorithm

* block size.

*/

if (plen & (espx ->blocksize - 1)) {

DPRINTF (("esp_input (): payload of %d octets "

"not a multiple of %d octets , SA %s/%08x\n",

plen , espx ->blocksize , ipsp_address (&tdb ->tdb_dst ,

buf , sizeof(buf)), ntohl(tdb ->tdb_spi)));

espstat.esps_badilen ++;

m_freem(m);

return EINVAL;

}

}

• if encryption is to be applied

Chapter 11: Secure Channel — Secure Channel (ESP) in the OpenBSD Kernel 11-24

Secure Channel (ESP) in the OpenBSD Kernel/* Replay window checking , if appropriate -- no value commitment. */

if (tdb ->tdb_wnd > 0) {

m_copydata(m, skip + sizeof(u_int32_t), sizeof(u_int32_t), (unsigned char *) &btsx);

btsx = ntohl(btsx);

switch (checkreplaywindow(tdb , btsx , &esn , 0)) {

case 0: /* All's well */

break;

case 1:

m_freem(m);

DPRINTF (("esp_input (): replay counter wrapped for SA %s/%08x\n",

ipsp_address (&tdb ->tdb_dst , buf , sizeof(buf)), ntohl(tdb ->tdb_spi)));

espstat.esps_wrap ++;

return EACCES;

case 2:

m_freem(m);

DPRINTF (("esp_input (): old packet received in SA %s/%08x\n",

ipsp_address (&tdb ->tdb_dst , buf , sizeof(buf)), ntohl(tdb ->tdb_spi)));

espstat.esps_replay ++;

return EACCES;

case 3:

m_freem(m);

DPRINTF (("esp_input (): duplicate packet received in SA %s/%08x\n",

ipsp_address (&tdb ->tdb_dst , buf , sizeof(buf)), ntohl(tdb ->tdb_spi)));

espstat.esps_replay ++;

return EACCES;

default:

m_freem(m);

DPRINTF (("esp_input (): bogus value from checkreplaywindow () in SA %s/%08x\n",

ipsp_address (&tdb ->tdb_dst , buf , sizeof(buf)), ntohl(tdb ->tdb_spi)));

espstat.esps_replay ++;

return EACCES;

}

}

int checkreplaywindow(struct tdb *tdb, u_int32_t seq, u_int32_t *seqh, int commit) i.e. do not update replay window

Chapter 11: Secure Channel — Secure Channel (ESP) in the OpenBSD Kernel 11-25

Secure Channel (ESP) in the OpenBSD Kernel/* Update the counters */

tdb ->tdb_cur_bytes += m->m_pkthdr.len - skip - hlen - alen;

espstat.esps_ibytes += m->m_pkthdr.len - skip - hlen - alen;

/* Hard expiration */

if ((tdb ->tdb_flags & TDBF_BYTES) &&

(tdb ->tdb_cur_bytes >= tdb ->tdb_exp_bytes)) {

pfkeyv2_expire(tdb , SADB_EXT_LIFETIME_HARD);

tdb_delete(tdb);

m_freem(m);

return ENXIO;

}

/* Notify on soft expiration */

if ((tdb ->tdb_flags & TDBF_SOFT_BYTES) &&

(tdb ->tdb_cur_bytes >= tdb ->tdb_soft_bytes)) {

pfkeyv2_expire(tdb , SADB_EXT_LIFETIME_SOFT);

tdb ->tdb_flags &= ~TDBF_SOFT_BYTES; /* Turn off checking */

}

/* Get crypto descriptors */

crp = crypto_getreq(esph && espx ? 2 : 1);

if (crp == NULL) {

m_freem(m);

DPRINTF (("esp_input (): failed to acquire crypto descriptors\n"));

espstat.esps_crypto ++;

return ENOBUFS;

}

...

• Keys may expire after certain number of bytes

• Note: packet might still be bogus, replay window not updated

Chapter 11: Secure Channel — Secure Channel (ESP) in the OpenBSD Kernel 11-26

Secure Channel (ESP) in the OpenBSD Kernelif (esph) {

crda = crp ->crp_desc;

crde = crda ->crd_next;

/* Authentication descriptor */

crda ->crd_skip = skip;

crda ->crd_inject = m->m_pkthdr.len - alen;

crda ->crd_alg = esph ->type;

crda ->crd_key = tdb ->tdb_amxkey;

crda ->crd_klen = tdb ->tdb_amxkeylen * 8;

if ((tdb ->tdb_wnd > 0) && (tdb ->tdb_flags & TDBF_ESN)) {

esn = htonl(esn);

bcopy (&esn , crda ->crd_esn , 4);

crda ->crd_flags |= CRD_F_ESN;

}

if (espx && espx ->type == CRYPTO_AES_GCM_16)

crda ->crd_len = hlen - tdb ->tdb_ivlen;

else

crda ->crd_len = m->m_pkthdr.len - (skip + alen);

/* Copy the authenticator */

m_copydata(m, m->m_pkthdr.len - alen , alen , (caddr_t)(tc + 1));

} else

crde = crp ->crp_desc;

/* Crypto operation descriptor */

...

• if authentication is to be applied

Chapter 11: Secure Channel — Secure Channel (ESP) in the OpenBSD Kernel 11-27

Secure Channel (ESP) in the OpenBSD Kernel

/* Decryption descriptor */

if (espx) {

crde ->crd_skip = skip + hlen;

crde ->crd_inject = skip + hlen - tdb ->tdb_ivlen;

crde ->crd_alg = espx ->type;

crde ->crd_key = tdb ->tdb_emxkey;

crde ->crd_klen = tdb ->tdb_emxkeylen * 8;

/* XXX Rounds ? */

if (crde ->crd_alg == CRYPTO_AES_GMAC)

crde ->crd_len = 0;

else

crde ->crd_len = m->m_pkthdr.len - (skip + hlen + alen);

}

• if encryption is to be applied

Chapter 11: Secure Channel — Secure Channel (ESP) in the OpenBSD Kernel 11-28

Secure Channel (ESP) in the OpenBSD Kernel

return crypto_dispatch(crp);

}

• Dispatch to crypto driver (similar to Linux)

• A callback will be called once the crypto was done

Chapter 11: Secure Channel — Secure Channel (ESP) in the OpenBSD Kernel 11-29

Secure Channel (ESP) in the OpenBSD Kernel/*

* ESP input callback , called directly by the crypto driver.

*/

int

esp_input_cb(struct cryptop *crp)

{

...

/* If authentication was performed , check now. */

if (esph != NULL) {

...

/* Verify authenticator */

if (timingsafe_bcmp(ptr , aalg , esph ->authsize)) {

free(tc, M_XDATA , 0);

DPRINTF (("esp_input_cb (): authentication failed for packet in SA %s/%08x\n",

ipsp_address (&tdb ->tdb_dst , buf , sizeof(buf)), ntohl(tdb ->tdb_spi)));

espstat.esps_badauth ++;

error = EACCES;

goto baddone;

}

/* Remove trailing authenticator */

m_adj(m, -(esph ->authsize));

}

free(tc, M_XDATA , 0);

/* Replay window checking , if appropriate */

...

/* Verify pad length */

...

/* Verify correct decryption by checking the last padding bytes */

...

}

• Check if everything was correct (in the right order)

• update replay window

Chapter 11: Secure Channel — Secure Channel (ESP) in the OpenBSD Kernel 11-30

Chapter 11: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 11: Secure Channel 11-31

Authenticated Encryption With Associated Data

• Authenticated Encryption With Associated Data (AEAD):
• Authenticated encryption: Encrypt then MAC

• Associated Data: Additional non-encrypted data but authenticated

• Example AD: IV, information necessary for message routing, . . .

• Special AEAD Algorithms: only need one pass over the data
• Encrypt and MAC usually requires two passes

• Examples
• Offset Codebook Mode (OCB)
• Galois/Counter Mode (GCM)

Chapter 11: Secure Channel — Authenticated Encryption With Associated Data 11-32

Offset Codebook Mode (OCB)

• Offset Codebook Mode
• Authenticated Encryption Mode
• Proposed 2001 [OCB1]
• Standardized May 2014 [RFC 7253]
• Encryption

• Inspired by ECB with block-dependent offsets (avoids ECB problems!)

• Associated Data A
• A is not encrypted but authenticated
• For example: Unencrypted header data

• MAC
• Checksum = XOR over plaintext, length- and key-dependent variables
• MAC = (Encryption of checksum with shared key k) XOR (hash(k,A))

• Requires only one key K for encryption and authentication
• Requires a fresh nonce every time

Chapter 11: Secure Channel — Authenticated Encryption With Associated Data 11-33

Offset Codebook Mode (OCB)

• Let double be multiplication by the variable in the OCB Galois Filed

• Variables depending on the key: L?, L$, L0, L1, L2, ...

• L? = EncK (0)
• L$ = double(L?)
• L0 = double(L$)
• Li = double(Li−1)

• Let ntz be number of trailing zeros (zero bits at the end)

• Usage of the L’s
• L$ → MAC
• L? → last block
• Lntz(i) → intermediate blocks

• Note: Lntz(i) is used
• Only few Li are needed (for a fixed K)
• They can be pre-computed and stored in a Lookup table

Chapter 11: Secure Channel — Authenticated Encryption With Associated Data 11-34

Offset Codebook Mode (OCB)

Pi

Ci

Enc

Offseti-1

Lntz(i)

Offseti+

+

+

k

Checksumi-1 + Checksumi

…

Pi+1

Ci+1

Enc

Lntz(i+1)

Offseti+1+

+

+

k

+ Checksumi+1

Chapter 11: Secure Channel — Authenticated Encryption With Associated Data 11-35

OCB Initialization

• Offset0 depends on the key and the nonce

• “It is crucial that, as one encrypts, one does not repeat a nonce.” [RFC 7253, §5.1]

• Nonce may not be random, e.g. a counter works fine

• A new nonce for every authenticated encryption API call is needed!

• Details about the initialization: http://www.cs.ucdavis.edu/ rogaway/ocb/ocb-faq.htm

Chapter 11: Secure Channel — Authenticated Encryption With Associated Data 11-36

OCB Last Block and MAC

Offsetn-1

Checksumn-1

P★

C★

Enc

L★

Offset★+

+ +

k

+ Checksum★

Pad
ding

Enck

+

L$

MAC

hashA

Chapter 11: Secure Channel — Authenticated Encryption With Associated Data 11-37

Offset Codebook Mode (OCB)

• Question: XOR plaintext and then encrypt, that sounds like the weak MAC example from Chapter 2.2.
Why is OCB more secure than the easy-to-break example?

• “OCB enjoys provable security: the mode of operation is secure assuming that the underlying blockcipher
is secure. As with most modes of operation, security degrades as the number of blocks processed gets
large” [RFC 7253]

Chapter 11: Secure Channel — Authenticated Encryption With Associated Data 11-38

Offset Codebook Mode (OCB)

• Question: XOR plaintext and then encrypt, that sounds like the weak MAC example from Chapter 2.2.
Why is OCB more secure than the easy-to-break example?

• “OCB enjoys provable security: the mode of operation is secure assuming that the underlying blockcipher
is secure. As with most modes of operation, security degrades as the number of blocks processed gets
large” [RFC 7253]

Chapter 11: Secure Channel — Authenticated Encryption With Associated Data 11-38

Galois/Counter mode (GCM)

• Galois/Counter Mode (GCM)
• Developed by John Viega and David A. McGrew
• Standardized by NIST in 2007, IETF standards for cipher suites with AES-GCM for TLS (SSL) and IPSec exist.
• Follows the Encrypt-then-MAC concept
• Combines concept of Counter Mode for encryption with Galois Field Multiplication to compute MAC on the cipher-

text
• GF(2128) based on polynomial x128 + x7 + x2 + x + 1

• Definitions
• H is Enc(k,0)
• Auth Data is data not to be encrypted. GCM generates check value by XOR and GF multiplication with H for each

block.
• For the MAC, this process continues on the ciphertext and a length field in the end.

Chapter 11: Secure Channel — Authenticated Encryption With Associated Data 11-39

Galois/Counter mode (GCM)

• Galois/Counter Mode (GCM)
• Developed by John Viega and David A. McGrew
• Standardized by NIST in 2007, IETF standards for cipher suites with AES-GCM for TLS (SSL) and IPSec exist.
• Follows the Encrypt-then-MAC concept
• Combines concept of Counter Mode for encryption with Galois Field Multiplication to compute MAC on the cipher-

text
• GF(2128) based on polynomial x128 + x7 + x2 + x + 1

• Definitions
• H is Enc(k,0)
• Auth Data is data not to be encrypted. GCM generates check value by XOR and GF multiplication with H for each

block.
• For the MAC, this process continues on the ciphertext and a length field in the end.

Chapter 11: Secure Channel — Authenticated Encryption With Associated Data 11-39

Galois/Counter mode (GCM)

1

• Counter 0 = IV, Auth Tag = MAC
1 Image Source = https://en.wikipedia.org/wiki/Galois/Counter_Mode

Chapter 11: Secure Channel — Authenticated Encryption With Associated Data 11-40

https://en.wikipedia.org/wiki/Galois/Counter_Mode

Galois Field Multiplication

• In a Galois Field we consider the bitstring to represent a polynomial.
• E.g. 1011 = x3 + x + 1

• As a consequence Galois Field Multiplication is based on polynomial multiplication modulus the polyno-
mial of the field.

• Example: In GF(2128) based on polynomial g(x) = x128 + x7 + x2 + x + 1

• P(x) = x127 + x7

• Q(x) = x5 + 1
• P(x) · Q

′
(x) = x132 + x127 + x12 + x7

• To compute the modulus, we have to compute a polynomial division P(x) ∗ Q(x)/g(x).
• We can see that x4 ∗ g(x) removes the x132 , so P(x) ∗ Q(x)− x4 ∗ g(x) = x127 + x12 + x11 + x7 + x6 + x5 + x4

• Since this polynomial fits into the 128 bit, this is the remainder of the division, thus the result, in bits: 1000. . . 01100011110000.

Chapter 11: Secure Channel — Authenticated Encryption With Associated Data 11-41

Galois Field Multiplication

• In a Galois Field we consider the bitstring to represent a polynomial.
• E.g. 1011 = x3 + x + 1

• As a consequence Galois Field Multiplication is based on polynomial multiplication modulus the polyno-
mial of the field.

• Example: In GF(2128) based on polynomial g(x) = x128 + x7 + x2 + x + 1

• P(x) = x127 + x7

• Q(x) = x5 + 1
• P(x) · Q

′
(x) = x132 + x127 + x12 + x7

• To compute the modulus, we have to compute a polynomial division P(x) ∗ Q(x)/g(x).
• We can see that x4 ∗ g(x) removes the x132 , so P(x) ∗ Q(x)− x4 ∗ g(x) = x127 + x12 + x11 + x7 + x6 + x5 + x4

• Since this polynomial fits into the 128 bit, this is the remainder of the division, thus the result, in bits: 1000. . . 01100011110000.

Chapter 11: Secure Channel — Authenticated Encryption With Associated Data 11-41

Chapter 11: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 11: Secure Channel 11-42

Attacks against a Secure Channel (Stream Cipher)

• Re-Use of Initialization Vector (IV):

IV

k
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1

xor

P1 = 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0
C1 = 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1

• Then some time later the same IV is used again:

IV

k
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1

xor

P2 = 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1
C2 = 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0

Chapter 11: Secure Channel — Attacks against a Secure Channel (Stream Cipher) 11-43

Attacks against a Secure Channel (Stream Cipher)

• Re-Use of Initialization Vector (IV):

IV

k
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1

xor

P1 = 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0
C1 = 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1

• Then some time later the same IV is used again:

IV

k
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1

xor

P2 = 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1
C2 = 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0

Chapter 11: Secure Channel — Attacks against a Secure Channel (Stream Cipher) 11-43

Attacks against a Secure Channel (Stream Cipher)

• Re-Use of Initialization Vector (IV) continued:

C1 = 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1

C2 = 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0

C1 + C2 = 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1
== (→P1+P2=C1+C2)

P1 + P2 = 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1

P1 = 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0

P2 = 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1

• As we see from the example, the attacker can computer C1+C2 because he observes C1 and C2, but
that means he knows also P1+P2.

• Known Plaintext (e.g. P1)→ attacker can compute other plaintext

• Statistical properties of plaintext can be used if plaintext is not random-looking. That means if entropy of
P1+P2 is low.

Chapter 11: Secure Channel — Attacks against a Secure Channel (Stream Cipher) 11-44

Chapter 11: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 11: Secure Channel 11-45

Guessing a secret (revisited)

• Passwords
• N: size of alphabet (number of different characters)
• L: length of password in characters

• Complexity of guessing a randomly-generated password / secret
• The assumption is, we generate a password and then we test it.
→ O(NL)

• Complexity of guessing a randomly-generated password character by character
• The assumption is that we can check each character individually for correctness.
• For each character it is N/2 (avg) and N (worst case)
• So, overall L ∗ N/2 (avg)

• In the subsequent slides we will show an attack that reduces the decryption of a blockcipher in CBC
mode to byte-wise decryption (under special assumptions).

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-46

MAC-then-Encrypt-Issues

P MAC
Ciphertext

• Operation
• P and MAC are encrypted and hidden in the ciphertext.
• Receiver

• Decrypts P
• Decrypts MAC
• Computes and checks MAC→MAC error or success

• Consequence
• MAC does not protect the ciphertext.
• Integrity check can only be done once everything is decrypted.
• As a consequence, receiver will detect malicious messages at the end of the secure channel processing and not

earlier.
• But is that more than a performance issue? Well, yes.

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-47

MAC-then-Encrypt-Issues

P MAC
Ciphertext

• Operation
• P and MAC are encrypted and hidden in the ciphertext.
• Receiver

• Decrypts P
• Decrypts MAC
• Computes and checks MAC→MAC error or success

• Consequence
• MAC does not protect the ciphertext.
• Integrity check can only be done once everything is decrypted.
• As a consequence, receiver will detect malicious messages at the end of the secure channel processing and not

earlier.
• But is that more than a performance issue? Well, yes.

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-47

MAC-then-Encode-then-Encrypt

• If we use a block cipher, we have to ensure that the message encoding fits to the blocksize of the cipher.

• Encode-then-MAC-then-Encrypt:
P Pad MAC

Ciphertext

• Format P so that with the MAC added the encryption sees the right size.
• Needs that we know the size of the MAC and blocksize of cipher when

generating P | Padding.

• MAC-then-Encode-then-Encrypt:
P MAC Pad

Ciphertext

• Used in TLS/SSL
• Here, we add the MAC first and then üad the P | MAC to the correct size.
• How do we know what is padding and what not? Padding in TLS/SSL:

• If size of padding is 1 byte, the padding is 1.
• If size of padding is 2 bytes, the padding is 2 2.
• If size of padding is 3 bytes, the padding is 3 3 3.
• . . .

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-48

MAC-then-Encode-then-Encrypt

• If we use a block cipher, we have to ensure that the message encoding fits to the blocksize of the cipher.

• Encode-then-MAC-then-Encrypt:
P Pad MAC

Ciphertext

• Format P so that with the MAC added the encryption sees the right size.
• Needs that we know the size of the MAC and blocksize of cipher when

generating P | Padding.

• MAC-then-Encode-then-Encrypt:
P MAC Pad

Ciphertext

• Used in TLS/SSL
• Here, we add the MAC first and then üad the P | MAC to the correct size.
• How do we know what is padding and what not? Padding in TLS/SSL:

• If size of padding is 1 byte, the padding is 1.
• If size of padding is 2 bytes, the padding is 2 2.
• If size of padding is 3 bytes, the padding is 3 3 3.
• . . .

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-48

Oracles and Side Channels

• In ancient times, people asked oracles for guidance.

• In computer science, oracles are functions that give as cheaply access to information that would other-
wise be hard to compute.
• E.g. O(1) cost to ask specific NP-complete question→ polynomial hierarchy

• In cryptography, an attacker can trigger some participant O in a protocol or communication to leak infor-
mation that might or might not be useful.
• Participant O may re-encrypt some message fragment
• Participant O responds with an error message explaining what went wrong
• Response time of participant O may indicate where error happened
• Response time may leak information about key if processing time depends (enough) on which bits are set to 1.

• More obvious for the computationally expensive public key algorithms, but implementations of symmetric ciphers have also
been attacked.

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-49

Oracles and Side Channels

• In ancient times, people asked oracles for guidance.

• In computer science, oracles are functions that give as cheaply access to information that would other-
wise be hard to compute.
• E.g. O(1) cost to ask specific NP-complete question→ polynomial hierarchy

• In cryptography, an attacker can trigger some participant O in a protocol or communication to leak infor-
mation that might or might not be useful.
• Participant O may re-encrypt some message fragment
• Participant O responds with an error message explaining what went wrong
• Response time of participant O may indicate where error happened
• Response time may leak information about key if processing time depends (enough) on which bits are set to 1.

• More obvious for the computationally expensive public key algorithms, but implementations of symmetric ciphers have also
been attacked.

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-49

Oracles and Side Channels

• In ancient times, people asked oracles for guidance.

• In computer science, oracles are functions that give as cheaply access to information that would other-
wise be hard to compute.
• E.g. O(1) cost to ask specific NP-complete question→ polynomial hierarchy

• In cryptography, an attacker can trigger some participant O in a protocol or communication to leak infor-
mation that might or might not be useful.
• Participant O may re-encrypt some message fragment
• Participant O responds with an error message explaining what went wrong
• Response time of participant O may indicate where error happened
• Response time may leak information about key if processing time depends (enough) on which bits are set to 1.

• More obvious for the computationally expensive public key algorithms, but implementations of symmetric ciphers have also
been attacked.

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-49

Side Channels and padding Oracles

• Side Channel Attacks
• A general class of attacks where the attacker gains information from aspects of the physical implementation of a

cryptosystem.
• Can be based on: Timing, Power Consumption, Radiation,. . .

P Pad
Ciphertext

ok

• Padding Oracle
• The oracle tells the attacker if the padding in the message was correct.
• This may be due to a message with the information.
• It can also be due to side channel like the response time.

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-50

Side Channels and padding Oracles

• Side Channel Attacks
• A general class of attacks where the attacker gains information from aspects of the physical implementation of a

cryptosystem.
• Can be based on: Timing, Power Consumption, Radiation,. . .

P Pad
Ciphertext

ok

• Padding Oracle
• The oracle tells the attacker if the padding in the message was correct.
• This may be due to a message with the information.
• It can also be due to side channel like the response time.

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-50

Concept of Padding Oracle Attack (against CBC)

• Attacker sees unknown ciphertext C =
P MAC Pad

Ciphertext

that was sent from Alice to Bob

• To decrypt the ciphertext, the attacker modifies C and sends it to Bob.

P4 MAC4 Pad4
Ciphertext4

• It is unlikely that the MAC and padding are correct. So, Bob will send an error back to Alice (and the
attacker).

• In earlier versions of TLS, Bob sent back different error messages for padding errors and for MAC errors.

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-51

Padding Oracle Attack - CBC mode decryption (revisited)

• Encryption and Decryption in CBC mode

K

C1

Enc

IV

P1

K

C2

Enc

P2

... K

Cn

Enc

Cn−1

Pn

K

P1

Dec

IV

C1

K

P2

Dec

C2

...

K

Pn

Dec

Cn−1

Cn

Encrypt

Decrypt

Time = 1 Time = 2 ... Time = nCBC

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-52

Padding Oracle Attack against CBC

• Assumptions:
• Attacker got hold of a ciphertext C (n blocks, N bytes per block)

• C was protected with Encryption in CBC mode used in MAC-then-Encode-then-Encrypt mode.
• For padding PKCS7 was used (padding of 1 byte: pad = 1, padding 2 bytes: pad = 2 2, ...)

• An oracle replies to sent ciphertexts with error messages:
• Padding error if padding doesn’t match (checked before MAC).
• MAC error if padding fits but MAC is wrong.

• Goal: Decrypt the complete ciphertext using the oracle.

• Approach:
• Start decrypting the last byte of the last block Pn,N by altering Cn−1,N and sending the resulting ciphertext C’ to

the oracle.
• When the oracle replies with a MAC error Pn,N can be calculated (see following slides).

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-53

Padding Oracle Attack against CBC

• Change the last byte of the original ciphertext block Cn−1 by XORing it with a chosen 4: C
′
n−1,N =

Cn−1,N ⊕4. Then send C
′

to the oracle.

• Padding error returned:
• Try again using a new4 (max of 256 tries needed).

• MAC error:
• padding was fine→ P

′
n,N = 1 (since a padding size of 1 byte means padding=P

′
n,N = 1)

• correct padding means the last byte was 1→ P
′
n,N = Pn,N ⊕4 = 1→ Pn,N = 1⊕4

Cn−1
C
′
n−1,N

= Cn−1,N⊕1

C
′
n−1,N

= Cn−1,N⊕2C
′
n−1,N

= Cn−1,N⊕4

DecryptK

...

P
′
n−1

C
′
n

DecryptK

Pn

P
′
n,N

= Pn,N ⊕ 1

P
′
n,N

= Pn,N ⊕ 2P
′
n,N

= Pn,N ⊕4 = 1

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-54

Padding Oracle Attack against CBC

• Change the last byte of the original ciphertext block Cn−1 by XORing it with a chosen 4: C
′
n−1,N =

Cn−1,N ⊕4. Then send C
′

to the oracle.

• Padding error returned:
• Try again using a new4 (max of 256 tries needed).

• MAC error:
• padding was fine→ P

′
n,N = 1 (since a padding size of 1 byte means padding=P

′
n,N = 1)

• correct padding means the last byte was 1→ P
′
n,N = Pn,N ⊕4 = 1→ Pn,N = 1⊕4

Cn−1

C
′
n−1,N

= Cn−1,N⊕1

C
′
n−1,N

= Cn−1,N⊕2

C
′
n−1,N

= Cn−1,N⊕4

DecryptK

...

P
′
n−1

C
′
n

DecryptK

Pn

P
′
n,N

= Pn,N ⊕ 1

P
′
n,N

= Pn,N ⊕ 2

P
′
n,N

= Pn,N ⊕4 = 1

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-54

Padding Oracle Attack against CBC

• Change the last byte of the original ciphertext block Cn−1 by XORing it with a chosen 4: C
′
n−1,N =

Cn−1,N ⊕4. Then send C
′

to the oracle.

• Padding error returned:
• Try again using a new4 (max of 256 tries needed).

• MAC error:
• padding was fine→ P

′
n,N = 1 (since a padding size of 1 byte means padding=P

′
n,N = 1)

• correct padding means the last byte was 1→ P
′
n,N = Pn,N ⊕4 = 1→ Pn,N = 1⊕4

Cn−1

C
′
n−1,N

= Cn−1,N⊕1C
′
n−1,N

= Cn−1,N⊕2

C
′
n−1,N

= Cn−1,N⊕4

DecryptK

...

P
′
n−1

C
′
n

DecryptK

Pn

P
′
n,N

= Pn,N ⊕ 1P
′
n,N

= Pn,N ⊕ 2

P
′
n,N

= Pn,N ⊕4 = 1

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-54

Padding Oracle Attack against CBC

• Now we want to decrypt Pn,N−1. For that a padding of length 2 is needed.

• Since Pn,N is known, we can calculate C
′
n−1,N so that P

′
n,N = 2

• Pn,N ⊕ C
′
n−1,N = 2→ C

′
n−1,N = Pn,N ⊕ 2

• Now find C
′
n−1,N−1 that satisfies C

′
n−1,N ⊕ Pn,N−1 = 2

Cn−1
C
′
n−1,N

DecryptK

...

P
′
n−1

C
′
n

DecryptK

Pn

P
′
n,N

• As before, we need to try up to 256 values, all values except for the correct one generate a padding error. The
correct one produces a MAC error.→We know Pn,N−1

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-55

Padding Oracle Attack against CBC

• To completely decrypt Cn we have to repeat the procedure until all bytes of the block are decrypted. In
the figure with 8 bytes per block, the last padding we generate is 8 8 8 8 8 8 8 8.

• To decrypt Cn−1 we can cut off Cn and repeat the same procedure with Cn−1 as last block. For decrypting
C1 we can use the IV as ciphertext for the attack modifications.

Cn−2
C
′
n−2,N

DecryptK

...

P
′
n−2

C
′
n−1

DecryptK

Pn−1

P
′
n−1,N

IV
IVN C1

DecryptK

P1

P
′
1,N

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-56

Final remarks

• The attack was against CBC mode used in MAC-then-Encode-then-Encrypt mode.
• Padding Oracle attack known long in cryptography.
• Mode still used in SSL / TLS. Hacks have utilized that. However, defenses have been added.

• CBC with Encode-then-Encrypt-then-MAC does not have this vulnerability.
• Because MAC check would fail first, process would be aborted, and padding problems would then not be leaked.

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-57

Literature

Bell95 M. Bellare and P. Rogaway, Provably Secure Session Key Distribution - The Three Party Case, Proc.
27th STOC, 1995, pp 57–64

Boyd03 Colin Boyd, Anish Mathuria, “Protocols for Authentication and Key Establishment”, Springer, 2003

Bry88a R. Bryant. Designing an Authentication System: A Dialogue in Four Scenes. Project Athena, Massachu-
setts Institute of Technology, Cambridge, USA, 1988.

Diff92 W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and authenticated key exchanges. De-
signs, Codes, and Cryptography, 1992

Dol81a D. Dolev, A.C. Yao. On the security of public key protocols. Proceedings of IEEE 22nd Annual Sympo-
sium on Foundations of Computer Science, pp. 350-357, 1981.

Fer00 Niels Ferguson, Bruce Schneier, “A Cryptographic Evaluation of IPsec”.
http://www.counterpane.com/ipsec.pdf 2000

Fer03 Niels Ferguson, Bruce Schneier, „Practical Cryptography“, John Wiley & Sons, 2003

Gar03 Jason Garman, “Kerberos. The Definitive Guide”, O’Reilly Media, 1st Edition, 2003

Kau02a C. Kaufman, R. Perlman, M. Speciner. Network Security. Prentice Hall, 2nd edition, 2002.

Koh94a J. Kohl, C. Neuman, T. T’so, The Evolution of the Kerberos Authentication System. In Distributed Open
Systems, pages 78-94. IEEE Computer Society Press, 1994.

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-58

http://www.counterpane.com/ipsec.pdf

Literature

Mao04a W. Mao. Modern Cryptography: Theory & Practice. Hewlett-Packard Books, 2004.

Nee78 R. Needham, M. Schroeder. Using Encryption for Authentication in Large Networks of Computers. Com-
munications of the ACM, Vol. 21, No. 12, 1978.

Woo92a T.Y.C Woo, S.S. Lam. Authentication for distributed systems. Computer, 25(1):39-52, 1992.

Lowe95 G. Lowe, „An Attack on the Needham-Schroeder Public-Key Authentication Protocol”, Information Pro-
cessing Letters, volume 56, number 3, pages 131- 133, 1995.

OCB1 Rogaway, P., Bellare, M., Black, J., and T. Krovetz, "OCB: A Block-Cipher Mode of Operation for Efficient
Authenticated Encryption", ACM Conference on Computer and Communications Security 2001 - CCS

OCB T.Krovetz, P. Rogaway, „The OCB AuthenticatedEncryption Algorithm“
http://tools.ietf.org/html/draft-irtf-cfrg-ocb-03

RFC 4106 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)

RFC 5288 AES Galois Counter Mode (GCM) Cipher Suites for TLS.

RFC 7253 The OCB Authenticated-Encryption Algorithm

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-59

http://tools.ietf.org/html/draft-irtf-cfrg-ocb-03

Literature

RFC2560 M. Myers, et al., “X.509 Internet Public Key Infrastructure Online Certificate Status Protocol – OCSP”,
June 1999

RFC3961 K. Raeburn, “Encryption and Checksum Specifications for Kerberos 5”, February 2005

RFC3962 K. Raeburn, “Advanced Encryption Standard (AES) Encryption for Kerberos 5”, February 2005

RFC4757 K. Jaganathan, et al., “The RC4-HMAC Kerberos Encryption Types Used by Microsoft Windows ”, De-
cember 2006

RFC4120 C. Neuman, et al., “The Kerberos Network Authentication Service (V5)”, July 2005

RFC4537 L. Zhu, et al, “Kerberos Cryptosystem Negotiation Extension”, June 2006

RFC5055 T. Freeman, et al, “Server-Based Certificate Validation Protocol (SCVP)”, December 2007

Chapter 11: Secure Channel — Attacks against a Secure Channel (Padding oracle) 11-60

	Secure Channel
	Secure Channel
	MAC-then-Enc vs. Enc-then-MAC
	Secure Channel Implementation
	Secure Channel (ESP) in the OpenBSD Kernel
	Authenticated Encryption With Associated Data
	Attacks against a Secure Channel (Stream Cipher)
	Attacks against a Secure Channel (Padding oracle)

