
Department of Informatics
Technical University of Munich

TECHNICAL UNIVERSITY OF MUNICH

DEPARTMENT OF INFORMATICS

MASTER’S THESIS IN INFORMATICS

A Trustworthy Process-Tracing System for B2B-Applications
based on Blockchain Technology

Stefanos Georgiou

Technical University of Munich
Department of Informatics

Master’s Thesis in Informatics

A Trustworthy Process-Tracing System for
B2B-Applications based on Blockchain

Technology

Ein auf Blockchain-Technologie basierendes
vertrauenswürdiges Prozessüberwachungssystem

für B2B-Anwendungen

Author: Stefanos Georgiou
Supervisor: Prof. Dr.-Ing. Georg Carle
Advisor: Dr. Holger Kinkelin

Dr. Heiko Niedermayer
Sree Harsha Totakura, M. Sc.

Date: May 14, 2018

I confirm that this Master’s Thesis is my own work and I have documented all sources
and material used.

Garching, May 14, 2018
Location, Date Signature

Abstract

Supply chain management is the active process of managing all supply chain activities, from
point of origin to point of consumption. It is an essential part of businesses and is crucial
not only for the benefit of the companies involved, but for their customers too. Nowadays,
organizations participating in the supply chain transact with each other but maintain separate
records of these transactions. These private data silos are costly to maintain and inefficient due
to data redundancies as well as the lack of information sharing. Databases which store these
records are additionally vulnerable to attacks due to the centralized methods of storing data.
Through such attacks data can be altered or lost. Furthermore, performing an audit on the
supply chain can often be a highly demanding process as it can take takes days to establish
provenance of items. These auditing procedures are also often carried out with a lack of trust
towards the auditee.

We investigate the area of 3D printing and its digital supply chain. In this industry, spare parts
and customized tools can be remotely printed on demand. Licensing of 3D printed parts before
they can be legally installed on aircraft requires access to an accurate and transparent history of
these parts. These provenance records may include references to material used for the printing
or the conditions under which they were printed.

This thesis introduces TPTS, a Trustworthy Process-Tracing System which leverages the poten-
tial of the Blockchain technology. It enables organizations to track and trace items throughout
the supply chain in a reliable manner. A unique approach employing Attribute-Based Encryp-
tion is used to keep the transactional data confidential from unauthorized stakeholders. This
privacy mechanism offers anonymity to the entities and supports a key escrow scheme enabling
auditing authorities to have access to these data.

TPTS is based on the recently released Hyperledger Fabric platform which implements the
Blockchain technology. The platform itself acts as a distributed database where records of all
transactions are added through a consensus of nodes and kept in an append-only fashion. In
this way TPTS offers tamper-resistance guarantees and ensures that stored data have not been
altered since their initial addition to the ledger.

Acknowledgements

I would like to thank my advisors Dr. Holger Kinkelin, Dr. Heiko Niedermayer and
Sree Harsha Totakura. Their exceedingly valuable input truly supported my work.

I would also like to thank Prof. D.-Ing. Georg Carle for his supervision and his insightful
feedback.

Lastly, I would like to express my gratitude towards the Greek Foundation for Education
and European Culture for their support throughout my studies.

Contents

1 Introduction 1
1.1 Topic . 1
1.2 Goals . 2
1.3 Outline . 3

2 Background 5
2.1 Introduction to the Blockchain Technology 5

2.1.1 Basic Concepts . 5
2.1.2 Consensus Mechanisms . 6

2.2 Hyperledger Fabric . 7
2.2.1 Architecture . 8
2.2.2 Ordering Service . 9
2.2.3 Endorsement Policies . 10
2.2.4 Transaction Flow . 10
2.2.5 Fabric Certificate Authority . 12

2.3 Cryptography . 12
2.3.1 Basic Principles of modern Cryptography 12
2.3.2 Symmetric and Asymmetric Encryption 13
2.3.3 Attribute-Based Encryption: Ciphertext-Policy and Key-Policy . 14

3 Analysis 15
3.1 Problem Statement . 15
3.2 Reliable Asset Tracking in the Supply Chain 18

3.2.1 Use Cases . 18
3.2.2 Leveraging the Blockchain Technology for Asset Traceability . . 19
3.2.3 Evaluation of available Blockchain Platforms 20

3.3 Data Management . 23
3.3.1 Privacy and Anonymity . 23
3.3.2 Verifiability and Data Validation 26

3.3.3 Accessing Data . 26
3.3.4 System Longevity Analysis . 27

3.4 Summary of Requirements . 28

4 Design 29
4.1 Overview . 29
4.2 Reflecting the Supply Chain on the Blockchain 29
4.3 Privacy Principles . 32
4.4 Data Model . 34

4.4.1 User Asset . 34
4.4.2 Part Asset . 35
4.4.3 Model Asset . 39

4.5 User Management and Distribution of Cryptographic Material 40
4.5.1 User Registration with the Blockchain Network 40
4.5.2 Private ABE Key Retrieval . 41

4.6 Conclusion . 42

5 Implementation 43
5.1 Overview . 43
5.2 Platform Selection . 44
5.3 Development Environment . 45
5.4 Infrastructure Setup and Deployment . 46
5.5 Chaincode Implementation . 49

5.5.1 Users Chaincode . 49
5.5.2 Parts Chaincode . 49
5.5.3 Models Chaincode . 51

5.6 Client-Side Implementation . 51
5.6.1 Authenticating with the HLF Network 51
5.6.2 CP-ABE Implementation . 53
5.6.3 Creating and updating a Part Asset 54
5.6.4 Retrieving Data from the Blockchain Network 58

6 Evaluation 61
6.1 Performance Evaluation . 61

6.1.1 Evaluation Environment . 61
6.1.2 Throughput . 62
6.1.3 Resilience Testing . 63

6.2 Requirement Satisfaction . 63
6.2.1 Evaluation of Main Goals . 64

II

6.2.2 Privacy . 65
6.2.3 Anonymity . 66
6.2.4 Platform Evaluation . 68
6.2.5 Storage Requirements and Longevity of System 69

6.3 Risks and Limitations . 70

7 Related Work 73

8 Conclusions 77

A Appendix 79
A.1 Deployment Configuration . 79
A.2 Client-Side Configuration . 82

B List of acronyms 85

Bibliography 87

III

List of Figures

2.1 Hyperledger Fabric block structure . 8
2.2 A simple Hyperledger Fabric network layout 9
2.3 Transaction flow in Hyperledger Fabric 11

3.1 Collaboration between organizations and stakeholders in the industrial
supply chain . 16

3.2 Item lifecycle and supply chain traceability on the Blockchain 21

4.1 Supply chain steps and interaction with the Blockchain 30
4.2 Event sequence for a 3D printed part . 31
4.3 Data verification scheme . 37

5.1 Inter-component interaction . 44
5.2 Hyperledger Fabric network layout . 47
5.3 A sample 2-of-N-Orgs endorsement policy 48

6.1 Asset data sample . 69

List of Tables

4.1 Assets and available transaction types 34

5.1 Functions and parameters of available Client-Side scripts 52

Chapter 1

Introduction

1.1 Topic

Supply chain management deals with the governance of all supply chain activities in
order to increase profits as well as customer value and obtain an advantage over compet-
ing organizations. However, each organization stores information regarding transactions
of the supply chain in their own private data silos. Shippers and other actors in the
supply chain cannot access such valuable information in a timely manner. due to hin-
dered visibility of such data. Additionally, the phenomenon of "mirroring" – the same
documents being in the possession of multiple stakeholders in the supply chain – leads
to unnecessary redundancies and further detracts from efficiency in the supply chain
operations.

In parallel, 3D printing is an upcoming industry which is currently disrupting the classic
supply chains. New products are digitally designed and can be produced on demand
and just in time independently from the geographical location. The customer receives a
digital file containing all the required printing data from the manufacturer and can print
the part on the spot. In this process, today, people are using emails and USB sticks
to transfer the intellectual property from one end to the other. This data distribution
method is unreliable as well as error prone and often happens to print the wrong file
on the wrong printer. It is also not traceable and has many risks for the manufacturer
since she cannot control who and how many times has printed the part.

This digital supply chain with Additive Manufacturing – also known as 3D printing
– enables optimized processes and reduction of logistics costs. For example. spare
parts and customized tools can be remotely printed on demand. Licensing of 3D parts

Chapter 1: Introduction

before they can be legally installed on aircraft has a high need for reliably retrievable
and transparent history. Furthermore, auditing can often be an unnecessarily long
and opaque process, often carried out with a lack of trust towards the auditee. It is
therefore evidently imperative to conceive a method that enables complete, trustable
and persistent traceability of the orders and all the according manufacturing steps in
3D printing.

A new emerging technology called Blockchain has attracted attention in research and
industry areas. The Blockchain can be regarded as a decentralized database that keeps
public records in an append-only fashion. Absolutely no changes may be done on stored
records. The main component of Blockchain is a distributed ledger that records all
the transactions that take place in the network. This ledger is replicated across many
network participants, each of whom contributes on its maintenance through a secure
consensus mechanism.

Industrial efforts surrounding the supply chain provenance and its traceability while
leveraging the Blockchain technology have gained traction recently [12, 1, 19] in areas
such as the food and the shipping industry, with major companies driving these ad-
vances. However, a public ledger is inherently prohibitive for data which stakeholders
wish to keep private from certain entities. The majority of current approaches in the
area of Blockchain lack a privacy mechanism to satisfy requirements for confidentiality
and anonymity.

1.2 Goals

The focus of this work is examining the feasibility and implementation of a novel sys-
tem which supports secure reflection of the 3d Printing supply chain process into the
Blockchain. This system should enable the following use cases:

• Track each part throughout the chain of the 3D Printing process from the point
of creation of the part’s model by the Original Equipment manufacturer, to the
purchase of a number of prints by a client, to its final delivery to the client

• Trace the above chain back after its completion

The Blockchain technology is used to create a tamper resistant accounting ledger for
all the transactions – file creation, printing request, quality information etc – generated
during the manufacturing process, from the moment the file has been registered to the
actual printing process. However, certain transactions and their details should be kept
confidential and only accessible to stakeholders involved – directly or indirectly – in the

2

1.3 Outline

transaction as well as auditing authorities. For instance, a printshop should not be able
to see what another printshop has printed and a customer should not be allowed to see
the price another customer paid for a part.

The goals of this thesis are twofold:

1. The study of the state-of-the-art in the area of Blockchain technologies for the
industrial application. Exploring a new approach for reflecting the supply chain
transactions on a Blockchain.

2. The analysis, design and implementation of this approach, adapted specifically for
the field of 3D Printing and enhanced with privacy features

1.3 Outline

The rest of this thesis is structured as follows:

Chapter 2 elaborates on necessary background knowledge that will facilitate the com-
prehension of topics analyzed further on in this thesis.

Chapter 3 analyzes the current state of supply chain management in combination with
Additive Manufacturing and examines methods through which to incorporate the de-
sired requirements into a Blockchain-based system.

Chapter 4 presents the design and the components of our Trustworthy Process-Tracing
System (TPTS). The findings of Chapter 3 are applied to describe design principles
satisfying the listed requirements.

An overview of the implementation of the derived system is presented in Chapter 5.
This chapter analyzes the methods through which Hyperledger Fabric is leveraged, and
describes the cryptographic implementation of the privacy mechanism of TPTS.

Chapter 6 presents the evaluation results based on the implementation from chapter 5.
We include quantitative methods including performance and longevity measurements as
well as qualitative comparisons of the core features of our system against other similar
systems.

Chapter 7 compares the work of this thesis to related research efforts and indicates the
novel contribution of TPTS.

Finally, Chapter 8 concludes this work and discusses the findings of this thesis.

3

Chapter 2

Background

This Chapter gives valuable background information on concepts that will be utilized
further on in this thesis. An introduction is given to the Blockchain technology, Cryptog-
raphy fundamentals – including Attribute-based Encryption – as well as the Hyperledger
Fabric platform and its architecture.

2.1 Introduction to the Blockchain Technology

2.1.1 Basic Concepts

The first mention of a chain of blocks cryptographically linked and secured occured in
1991 [10]. A Blockchain is a continuously growing list of records called blocks, which
are linked together and cryptographically secured. Each block includes:

• a link to the previous block in the form of a hash pointer,

• a timestamp,

• transaction data

The Blockchain is a distributed ledger able to store records of transactions executed
between parties in a verifiable and permanent way. Typically managed by a peer-to-
peer network, the blockchain adheres to a protocol for the validation of new blocks.
Once stored on the Blockchain, these blocks and their transactions cannot be edited
without also altering all subsequent blocks, which would lead to conflict with the other
network peers and the overall consensus.

Chapter 2: Background

The Blockchain is therefore a novel approach to aggregating data between parties who
don’t trust each other but are able to trust the underlying technology behind the
Blockchain, while also preserving the qualities of a regular distributed and decentralized
database. Concerning the architecture of a Blockchain as well as the protocols followed
to append transactions to the ledger, each platform implements its own consensus mech-
anism.

2.1.2 Consensus Mechanisms

It is appropriate at this point to describe the concept of consensus in the context of
the Blockchain. A core issue of distributed computing is how to reach overall system
reliability. The process of getting participants of a Blockchain network to agree on a
single data value, often in the presence of faults, is termed consensus. Whenever a
new transaction is broadcast to the network, every node has the option to include that
transaction to their copy of their ledger or to ignore it. When the majority of nodes
which comprise the network decide on a single state, consensus is achieved.

In 1982, a generalized version of the "Two Generals Problem" was published [15],
called “The Byzantine Generals Problem”. The characteristic which defines a system
that tolerates the class of failures that belong to the Byzantine Generals Problem is
termed Byzantine Fault Tolerance (BFT). Byzantine Faults are the most severe and
difficult to deal with. This is of high importance, since Blockchains are decentralized and
not controlled by a central authority. Malicious users have high incentives to attempt
to trigger faults and without the presence of a consensus mechanism such as BFT a
peer would be able to execute false and invalid transactions, effectively negating the
Blockchain’s purpose and reliability. Therefore the consensus mechanism chosen by
each platform must achieve Byzantine Fault Tolerance through its design.

There are a number of methods which are used for reaching consensus in a Blockchain. A
multitude of new Blockchain technologies have come up with novel consensus techniques
depending on the intent and sought for benefits. Two of the most common ones are
examined below.

Proof-of-Work

In Proof-of-Work (PoW), in order for an actor to be elected as a leader and choose the
next block to be added to the Blockchain they have to find a solution to a particular
mathematical problem. Probabilistically speaking, the actor who is first to solve this
problem is normally the one who has access to the most computing power. These actors

6

2.2 Hyperledger Fabric

are also called miners. The miner of a block gets rewarded with some currency as a
motive to keep mining. Other nodes verify the validity of the block before adding it to
their copy of the Blockchain.

(Delegate) Proof-of-Stake

Proof of Stake (PoS) is the most common alternative to PoW. In PoS the weight of
each validator’s vote depends on the size of their deposit (i.e. stake). Of course, if
the next block’s selection was done purely by account balance then a user holding
the majority of the total deposits would essentially have permanent control, something
which understandably would be undesirable. For this purpose, a variety of different
combinations of methods have been devised, such as selection based on coin age, as well
as a Delegated Proof of Stake variant (DPoS). In DPoS, coin holders select their so-
called “delegates”, who are then responsible for validating transactions and maintaining
the Blockchain.

2.2 Hyperledger Fabric

Hyperledger Fabric (HLF) [3] is a permissioned blockchain platform and it is one of
the projects supported by the Hyperledger Framework. Contrary to open Blockchains,
in permissioned Blockchains there is an additional access permission layer that controls
which entity is allowed to interact with the blockchain. Permissioned Blockchains have
proven to be a viable alternative to open Blockchains, particularly in the world of
business where higher requirements of security and privacy are observed. Additionally,
permissioned ledgers offer better overall scalability in terms of throughput, as BFT
consensus mechanisms are better applicable in networks with a limited number of nodes
([20], Table 1).

Within the HLF network, actors can create and manage digitized assets by invoking
transactions. These transactions are processed by chaincodes (or smart contracts),
which is the piece of code that is installed and instantiated onto the HLF Peers. These
chaincodes serve as a business logic layer between the user and the shared ledger. The
block structure of HLF can be seen in Fig. 2.1 in shortened form to include the most
important fields. HLF supports pluggable implementations of different components,
including different consensus mechanisms. Chaincodes can be developed in multiple
languages, peers can be deployed in different layouts, and different storage mechanisms
can be leveraged.

7

Chapter 2: Background

One such component offered by HLF is a Membership Service Provider (MSP) that
offers an abstraction of a membership operation architecture. An MSP takes care of all
necessary background mechanisms for issuing and validating certificates as well as user
authentication. Each MSP has to be associated with one or more CA’s and each actor
interacting with an HLF network can be represented by a distinct MSP.

In the rest of this section further underlying technical details of HLF are examined.

Name PreviousHash DataHash
} Block
Header

Tx-1 Type Version Timestamp Channel Id TxID ...
...

Creator Identity (certificate, public key) Signature

Endorser-1 Identity (certificate, public key) Endorser-1 Signature
...

Endorser-N Identity (certificate, public key) Endorser-N Signature
Proposal Hash Chaincode Events Response Status Namespace

Read Set: List of <Key, Version>
Write Set: List of <Key, Value, isDelete>

Tx-m Type Version Timestamp Channel Id TxID ...
...



Block Data
(contains ’m’
number of
transactions)

Creator Identity (certificate, public key) - Orderer Signature
Last configuration block# Creator Identity Signature

...


Block
Metadata

Figure 2.1: Hyperledger Fabric block structure

2.2.1 Architecture

There exist three main components in a HLF network:

1. Peers

2. Orderers

3. Clients

8

2.2 Hyperledger Fabric

Organization 1

Peer

Orderer 1 Orderer 2

Orderer 3 Orderer 4

Organization 3

Peer

Organization 2

Peer

Organization 4

Peer

Client

Client

Fabric Network

Figure 2.2: A simple Hyperledger Fabric network layout

In more detail, peers are nodes which commit transactions and maintain the state of
the ledger, as well as a copy of it. Peers can additionally have a special role termed as
endorser. Orderers on the other hand are nodes operating the communication service
which implements a delivery guarantee. The role of the endorsing peers and orderers is
explained below in subsection 2.2.4. Lastly, clients submit a transaction or invocation to
the endorsers, and broadcast the received transaction proposals to the ordering service.
A sample HLF layout of nodes can be seen in Fig. 2.2.

2.2.2 Ordering Service

In HLF, consensus algorithms defining how the ordering service operates can be plugged
at will. As of May 2018, HLF provides two distinct options for setting up an ordering
service, although of course users of the platform are free to implement and plug their
own consensus mechanisms.

1. Solo

2. Kafka-based

9

Chapter 2: Background

The first approach utilizing a solo orderer is not intended to be used for production and
is included strictly to facilitate testing. With this method there exists a single process
which serves all clients which means that technically there is no consensus required.
Naturally there are no features of high availability or even scalability present, as this
approach is not fault tolerant in any form.

The Kafka-based ordering service on the other hand provides ordering procedures in
a crash fault tolerant manner. This service consists of a Kafka cluster with its cor-
responding ZooKeeper ensemble as well as a set of ordering service nodes that stand
between the clients of the ordering service and the Kafka cluster. The ordering nodes
only communicate through the Kafka cluster and not directly with each other. While
this ordering service is crash tolerant, it does not provide Byzantine Fault Tolerance.

A Byzantine Fault Tolerant ordering service was previously in development but was
dropped before the 1.0 release of HLF. However an implementation of a new BFT
service is on the roadmap of the HLF project with an unknown release date.

2.2.3 Endorsement Policies

Each chaincode is instantiated with a specific endorsement policy on endorsing peers.
Before a peer adds a block to its ledger, it validates the block’s transactions. One part
of this validation process is to verify that the so called endorsement policy is fulfilled.
These endorsement policies essentially dictate which peers need to agree on the results
of a transaction before it can be added to the ledger.

Two components form these endorsement policies: a principal and a threshold gate.
Principal refers to the entity which is doing the endorsement. A threshold gate on the
other hand is comprised of an integer t and a list of n principals or other threshold
gates. The gate itself dictates that the policy is fulfilled if and only if out of the n
principals or gates t must be satisfied. For instance, an endorsement policy can have
the form: AND(’Org1.member’, ’Org2.member’, ’Org3.member’). This would require
one endorsement from a member peer of each organization among Org1, Org2 and
Org3.

2.2.4 Transaction Flow

HLF uses a novel approach for handling transactions and their subsequent storage onto
the Blockchain Network. This sequence can be viewed in Fig. 2.3. Events are executed
as follows:

10

2.2 Hyperledger Fabric

SDK Endorsing
Peers

Ordering
ServiceClient

4b. broadcast message

1a. prepare 1b. send proposals

3a. return
signed response

5a. inspect
 message

5b. create
 block

7a. deliver blocks
7b. validate
 blocks

7c. update
 ledger

3b. inspect responses

4a. prepare message

6a. notify: transaction committed6b. notify:
success

Peers

2. simulate
 transaction

7b. validate
 blocks

7c. update
 ledger

Figure 2.3: Transaction flow in Hyperledger Fabric

1. A client initiates a transaction by contacting one or more peers

2. Endorsing peers verify the signature of the client and execute the appropriate
chaincode against the current state of the ledger. No updates are made to the
ledger yet

3. The signed proposal responses are sent to the client for inspection in order to
verify that the endorsement policy is fulfilled

11

Chapter 2: Background

4. The client assembles endorsements into a transaction and transmits it to the
ordering service

5. The transaction is validated and added to one of the next blocks to be committed

6. The client is notified that the transaction has been commited by the orderers.

7. Peers receive the new blocks, validate the data and update the ledger.

The reason behind this novel design according to the developers of HLF is to promote
scalability since transactions can be executed before they are put in order. This enables
parallel execution of transactions, which can improve throughput. Therefore since the
two processes of endorsement and ordering are each carried out by a different set of
peers, the system may scale better than if each node had both responsibilities.

2.2.5 Fabric Certificate Authority

The Fabric Certificate Authority (FCA) plays a role for both authentication and MSP
certificate generation. Through the enroll API Fabric CA issues enrollment certificates
and populates the appropriate MSP directories. HLF can operate either with an external
CA or with FCA as a root or intermediate CA. The FCA server can act as its own
registry or it can communicate with an LDAP server as the user registry. Interaction
with a FCA server can be done either through the FCA client or one of the Fabric
SDKs.

2.3 Cryptography

Due to privacy and anonymity requirements explained in the following chapters, crypto-
graphic techniques must be leveraged in this work. This section provides some necessary
background in the area of cryptography as well as Attribute-Based Encryption.

2.3.1 Basic Principles of modern Cryptography

Encryption

Encryption is the process of converting data into an unreadable form. This protects
the privacy of our data, while transmitting data from one end to another. The inverse
process is termed decryption. On the receiver’s end, the data is decrypted and the
original form is restored. These two processes require an additional piece of information
to function. This information is known as a cryptographic key. The following sections

12

2.3 Cryptography

explain how some types of encryption and decryption utilize a single key, while others
may require different keys for each process.

Message Authentication

The second major principle in cryptography is Message Authentication. In short, au-
thentication ensures that the message originated from the entity claimed in the message.
For instance, suppose that Alice sends a message to Bob and Bob wants to verify that
the message has been indeed sent by Alice. This can be made possible if Alice performs
some action on message that Bob knows only Alice can do.

Integrity

One of the problems that a communication system can face is the loss of integrity of
messages being sent from sender to receiver. Cryptography can ensure that a received
message has not been altered anywhere on the communication path. This is normally
achieved by using the concept of cryptographic hash [18].

2.3.2 Symmetric and Asymmetric Encryption

In symmetric encryption a single key is used for encrypting and decrypting the data.
This key is shared between the parties communicating with each other. In asymmetric
encryption, also known as public key cryptography, each user holds two related keys to
deal with encryption and decryption. In symmetric Encryption, anyone with knowledge
of the shared can decrypt the messages. For this reason, asymmetric encryption uses
two related keys for leveraging security in the following way: a public key is made freely
available to anyone who might want to send a message to user A. The second key, termed
as private key, is kept secret and accessible only to user A.

A message directed to user A is encrypted using his public key and can only be de-
crypted using his private key. Similarly, a message encrypted using a private key can
be decrypted using a public key (a technique used in digital signatures). Asymmetric
encryption offers higher security for the information transmitted during communication,
however it is orders of magnitude slower than symmetric encryption.

A hybrid approach is often used, where a random symmetric key is created to encrypt
the message and subsequently this symmetric key is encrypted using the public key of
the user who will receive the encrypted data. This allows us to leverage the security
offered by asymmetric cryptography, while still keeping the encryption and decryption
time of the message to the low levels that symmetric cryptography allows.

13

Chapter 2: Background

2.3.3 Attribute-Based Encryption: Ciphertext-Policy and Key-Policy

Attribute-Based Encryption (ABE) is a unique encryption scheme in which the private
keys of users as well as the ciphertexts are dependent upon attributes. Messages can
be encrypted with respect to subsets of attributes (Key-Policy ABE) or access policies
defined over a set of attributes (Ciphertext-Policy ABE).

In Ciphertext-Policy ABE (CP-ABE)[6], each user has a private key which contains a
set of attributes. Each ciphertext specifies an access policy that has to be satisfied for
decryption to be possible. A user decrypts the ciphertext if and only if his attributes
satisfy the policy of the respective ciphertext. Policies may contain conjunctions, dis-
junctions as well as threshold gates (e.g. k out of n attributes have to be present in
a key). For instance, let us assume the scenario where the set of the globally allowed
attributes is {A,B,C,D,E}, user 1 receives a key to attributes {A,B} and user 2 to at-
tributes {C,E}. Let the access policy be (A ∩ B) ∪ D. Then user 1 will be able to
successfully decrypt the ciphertext, while user 2 will not be able decrypt the data.

In the above manner, CP-ABE enables us to introduce implicit authorization, as the
encrypted data are effectively infused with authorization policies. Only entities with a
combination of attributes which satisfy the associated policy can decrypt these data.
Another benefit of CP-ABE is that keys created after the encryption is done are still able
to decrypt these data, assuming of course the respective keys hold the right attributes.
Therefore, data can be encrypted without explicit knowledge of the actual set of users
that will be able to decrypt, but solely specifying the policy which allows decryption to
occur. Users who are given a key in the future with respect to attributes such that the
policy can be satisfied will then be able to decrypt the data.

Key-Policy (KP-ABE)[9] on the other hand is essentially the dual problem to CP-ABE.
An access policy is encoded into a user’s secret key (e.g. (A∩B)∪D) and each ciphertext
is computed with respect to a set of attributes (e.g., {A,C}). In this example the user
would not be able to decrypt this ciphertext but would for instance be able to decrypt
a ciphertext with respect to {A,D}.

One important property which has to be achieved by both CP-ABE and KP-ABE is
termed collusion resistance. Essentially this means that it should not be possible for
distinct users to combine their secret keys in such a way that they could together "collect"
the necessary attributes to decrypt a ciphertext that neither of them could decrypt on
their own.

14

Chapter 3

Analysis

This Chapter examines the core problem which we are looking to tackle through this
work. We analyze the requirements the system should fulfill and discuss different ap-
proaches for accomplishing these goals.

3.1 Problem Statement

Supply chain management is an essential part of businesses and is crucial not only for
the benefit of the companies involved, but for customers too. Supply chain entities can
be categorized based on their ownership stake in the product. Entities which own the
goods at one or more specific stages of the supply chain are considered stakeholders.
These stakeholders of the supply chain can be roughly enumerated into the following
groups: the retailers, distributors, manufacturers, suppliers, shippers and finally the
end users or consumers. Besides the customers, all other groups of stakeholders each
represent their own distinct organizations in the majority of cases.

Each of these organizations stores data regarding their transactions with the other
actors of the supply chain. However, these data are often spread throughout multiple
databases belonging to each organization, with a noticeable overlap of information and
without effective collaboration present between different actors of the supply chain.
Geting access to another stakeholder’s data involves long and arduous procedures and a
lot of paperwork. The process of sharing data can highly contribute to the effectiveness
and performance of organizations participating in a supply chain, depending on the level
and quality of this shared information [14].

Chapter 3: Analysis

Organization 3

Organization 2

Organization 4

Organization 1

3

(a) Current methods

Organization 3

Organization 2

Organization 4

Organization 1

Blockchain Network

(b) The envisioned system

Figure 3.1: Collaboration between organizations and stakeholders in the industrial supply chain

Fig. 3.1a presents the current situation. Actors within the supply chain collaborate in
the absence of effective data sharing, since most information is kept in private data
silos. Fig. 3.1b presents the envisioned methods regarding how data should be shared
and accessed. More specifically, all data which concerns more than one parties of the
supply chain are stored in a system which can be accessed by all interested entities. This
chapter examines a number of additional features which we aim to infuse this system
with.

It should be emphasized, that this lack of collaborative processes for data is a common
issue among many industrial areas. However, in the following sections and for the
remainder of this work, the concrete case study of Additive Manufacturing (AM) in
combination with the need for supply chain traceability is analyzed.

3D printing, or AM, is an industry that has been gaining a lot of traction the past few
years, with billions of investments in the aerospace and medical industries from orga-
nizations such as Airbus, Rolls Royce and NASA. These 3D printed parts are designed
to be placed for instance on aircraft and satellites or to create low-cost medical pros-
thetics, implants and organs. Such parts offer better strength-to-weight ratio as well as
lower manufacturing costs while still able to follow strict production specifications and
standards.

16

3.1 Problem Statement

Additionally, parts can be printed remotely and on demand on a global scale. This
means that someone can order a part which was designed in one country, sent digitally
to a printshop in another country where it is printed and then shipped to a third country.
It is evident then that it is not trivial to keep track of this supply chain. Furthermore,
the processes which are followed with regards to aggregating and reporting the printing
data are often:

1. Inefficient and insecure, since files of 3D models are often carried by hand to the
printer machine through USB sticks.

2. Unverifiable, as operators of printer machines often have to manually write down
reports of observed parameters during the printing operation in pen and paper.

3. Lacking authenticity and accountability, since there are often no secure ways of
knowing who carried out a process.

4. Error-prone, due to laborious and manual record keeping

Since such 3D printed parts end up in aircraft or medical devices, tracing a part’s ori-
gins and tracking history is essential for the purposes of audits, recalling faulty parts or
licensing. In order for a part to be installed on aircraft it has to go through a tedious
procedure of licensing that covers verifying the material’s properties and manufacturing
process, especially since there are human lives at stake. However, based on the lack-
ing nature of the followed approaches as explained above, we believe that the digital
processes for the purpose of asset traceability are currently inadequate, particularly from
a reliability and tamper-resistance perspective. The claim which this works investigates
is that the Blockchain Technology can solve the above problems.

In AM, material is joined or solidified under computer control in order to create a three-
dimensional object, with material being added together (for instance, liquid molecules
or powder grains fused together). The three-dimensional item is built from a digital
design, usually by successively adding material, layer by layer. These 3D objects can
be of almost any shape or geometry, normally produced based on data from a digital
3D model or another data source such as an Additive Manufacturing File. One of the
most common file types that is used for 3D Printing is Stereolithography (STL).

There exist three general principles in the area of AM. These are:

1. Modeling: 3D Printable models can be created with a computer–aided design
(CAD) package, via a 3D scanner, or by a plain digital camera and photogram-
metry software. When a CAD is used, a reduced rate of errors can be expected
and verification of the design is possible before printing.

17

Chapter 3: Analysis

2. Printing: Before a 3D model is printed from an STL file, it must be examined for
errors and possibly enter a repair procedure. 3D Printing of a model with modern
methods can take anywhere from a few hours to a few days, depending on the
type of machine used and the size and number of models produced in parallel.

3. Finishing: After the printing is complete, certain post-processing techniques are
possible. For instance, in certain occasions printing a desired object in standard
resolution and subsequently removing material using a higher-resolution subtrac-
tive process can achieve greater precision. Painting the object is also a possibility.

The following sections and chapters exhibit how the above distinct phases map to steps
in the supply chain and how these phases are logged in the Trustworthy Process-Tracing
System (TPTS).

3.2 Reliable Asset Tracking in the Supply Chain

As explained above, the main goal in our work is to reflect the individual steps of the
supply chain on the Blockchain. This enables a multitude of scenarios to take place in
the area of AM.

3.2.1 Use Cases

Any entity interested in retrieving the data concerning a 3D printed part can be con-
sidered as a regular use case for our system. Nevertheless, the two major use cases
where we identify the additional value of tamper-resistance features are explained be-
low. Each of the two scenarios contain smaller individual use cases that TPTS should
support, such as registering a model or storing the printing parameters of a 3D printed
part.

Use Case 1: Model Lookup

Let us assume a defect has been identified in a number of 3D printed parts and the
source of the issue has been found to be the printing process. An operator working for
an Original Equipment manufacturer (OEM) which designs 3D models wants to know

18

3.2 Reliable Asset Tracking in the Supply Chain

which printers have executed prints of a model 1. The OEM operator should be able
to retrieve all the 3D printed asset data, including the information about the printshop
and individual printer the parts were printed on. These data could include information
such as laser intensity and oxygen degrees or any other parameter. If any of these
parameters deviated at all from certain standard values, the quality of the end-result
could be compromised. By examining these values and identifying potential anomalies
the OEM could then cooperate with the responsible printshops to amend the situation,
or in extreme cases possibly even follow legal action in case of intentional and deliberate
manipulation of the printer configuration. Additionally, data should be readily available
at all times so that an OEM could retrieve this information immediately. This means
that data replication is a major requirement and that a centralized database is not an
acceptable system.

Use Case 2: Serial Number Lookup

Let us assume an in-flight malfunction has occured on an aircraft which forced an
emergency landing. An official authority is carrying out an investigation to determine
the factors that led to it. Experts have reached the conclusion that one of the 3D parts
which were installed on the aircraft was the culprit which caused the eventual failure.
They would therefore like to know if the fault lies with the OEM (in the case of a faulty
model), or with the printshop (in case the standards that were supposed to be followed
during the printing process were not followed). The auditors should be able to query for
the serial number of the part and verify both the model file which was used to produce
the part, as well as the conditions under which the part was printed. That information
should be acquired in a manner that provides some data-integrity guarantees. In this
way, the auditors could be convinced that the data which were retrieved are accurately
reflecting the real model file which was used as well as the real printing conditions.
Therefore, the possibility of malicious data alteration should be prevented once more.

3.2.2 Leveraging the Blockchain Technology for Asset Trace-
ability

Having analyzed the features and architecture of the Blockchain Technology in section
2.1, its advantages compared to a traditional database system might not be immediately

1 In order to clarify the terminology, when using the term model we refer to the model file (e.g. .cad
file). On the other hand with the term part we refer to the actual physical object that was created
through the 3D printing process that used the model file as a source.

19

Chapter 3: Analysis

evident to the reader. In use cases where trust and robustness are not an issue, there
is nothing a Blockchain can do that a regular database cannot. Particularly in our
case however, a number of parties that do not necessarily trust each other (OEM’s,
customers, printshops, Suppliers) must cooperate in order to create and maintain a
reliable transaction history. Blockchain transactions contain their own proof of validity
and their own proof of authorization, instead of requiring some centralized application
logic to enforce those constraints. A Byzantine Fault Tolerant Blockchain platform is
required for this purpose, as it guarantees the correct operation of the system even if a
number of competing entities are acting maliciously. The actors of a Blockchain system
can therefore trust the underlying technology instead of the other actors interacting
with the system. An auditor or any other interested party can be assured that the
transactions happened as they appear on the Blockchain and that the transactional
data could not have possibly been modified since they were added. Additionally, the
cost and time necessary to conduct an audit itself would decline considerably. This
would occur because the transaction layout would be standardized between the different
manufacturers of 3D parts as well as the 3D printshops. For these reasons a system
based on the Blockchain technology provides the necessary architecture for reliable and
tamper-resistant data storage that are required for this use case.

A simple abstracted view of how Blockchain is involved for tracing assets throughout
the supply chain can be seen in Fig. 3.2. This flow chart depicts the timeline between
the creation of the item and the consumption of this item by the customer. The main
benefits which can be gained by utilizing the Blockchain technology for the purpose of
tracking assets throughout the supply chain are its reliable and tamper-resistant storage,
combined with the fact that the involved parties can collaborate even through a lack of
trust.

Based on the two main use cases which were included in section 3.2, we identify a
number of requirements that our application has to meet:

R1 The system must offer reliable and tamper-resistant traceability of an item through-
out the supply chain

R2 The chosen platform on which the system will be based should provide Byzantine
Fault Tolerance as well as highly available access to the data

3.2.3 Evaluation of available Blockchain Platforms

One of the first decisions to make is deciding which Blockchain platform this work will
be based on. The different Blockchain technologies are assessed in an attempt to choose

20

3.2 Reliable Asset Tracking in the Supply Chain

Item Creation

Transaction added
on the Blockchain

Next step in supply
 chain exists

Item forwarded to
next step in the

supply chain
Yes

Item ConsumptionNo

Figure 3.2: Item lifecycle and supply chain traceability on the Blockchain

one that is expected to best fit the use case. These are evaluated based on the following
criteria:

• An open-source platform should be selected

• Maturity and support must be sufficient to fulfill the stated requirements

• The platform should operate under an efficient and secure Byzantine Fault Toler-
ant consensus protocol

• Decentralization should be a strong focus

• The platform should be able to maintain cryptographically secure and tamper-
proof history of transactions

• The architecture should allow us to plug in our own privacy mechanism

• The platform should be flexible, modular and fit to the use case

• Presence of cryptocurrency is unimportant, but invoking transactions should not
impose a charge

21

Chapter 3: Analysis

In section 2.1 the idea behind consensus mechanisms was explained. In our specific
use case however, Blockchain platforms that utilize a Proof-of-Work or Proof-of-Stake
consensus can already be filtered out. Proof-of-Work requires participating users to
solve difficult mathematical problems to validate and authenticate transactions. This
means that it is a highly energy demanding approach, while also enabling an adversary
to attack our network as long as he controls more than 50% of the total computing
power of the network. When utilizing Proof-of-Stake on the other hand (as well as
Delegated Proof-of-Stake), the creator of the next block is chosen in a deterministic
(pseudo-random) way, and the chance that an account is chosen depends on its wealth.
Since cryptocurrencies or any other type of token will not be incorporated in this work,
the PoS consensus is deemed inappropriate. Other consensus techniques are clearly a
better design decision, all other factors considered.

Based on preliminary findings, two main platforms that meet the above criteria have
been identified:

• Hyperledger Fabric (HLF): a modular approach directed to enterprises supporting
confidential channels within the Blockchain. This is a platform which was only
recently released in August 2017, therefore its maturity is not the highest between
the two candidates. However, its features for asset and user management are
promising and very fitting to our use case.

• Ethereum quorum: a permissioned implementation of the public Ethereum plat-
form supporting data privacy. It is a more mature platform compared to HLF,
however the permission management for the network is not as configurable as in
HLF. More importantly, quorum nodes who are not authorized to access the trans-
actions don’t keep these records at all in their storage. This of course is in not in
favor of requirements for data consistency and reliability. It also means that every
stakeholder must own an active node which participates in the network. This does
not align with goals for designing a system which is easy to join and use without
the necessity to contribute one’s hardware to the network.

We have opted to work with Hyperledger Fabric going forward. More details about its
benefits are explained further in Chapter 5.

22

3.3 Data Management

3.3 Data Management

3.3.1 Privacy and Anonymity

One of the features of a traditional Blockchain system is that everyone with access to
the network can read everything. While in many cases this is a sought-after feature, in
TPTS some of the data that we are planning to store on the Blockchain should only be
visible to certain entities: the parties directly involved in the transaction and potential
auditors. Particularly, we wish for auditing authorities that join the system at a specific
point in time to be able to view private data of past as well as future transactions.

An organization will naturally not want their competitors to know the details regarding
which part they have sold, their total income or the observed trends concerning which
types of parts seem to be in high demand. It would also be unacceptable for a company
to be allowed to view what purchases their customer has done from another competitor.
Lastly, a customer should be prohibited from viewing the printing configuration another
customer used for a specific part. Conceiving such configuration is often a very fine
tuned and demanding process, therefore replicating it or copying it for free would be
unwelcome.

Similar efforts [21, 8, 13] have proposed a number of solutions examined from various
perspectives and we have to devise the approach that best suits this work.

Five distinct categories of actors can be identified in the system:

• Customers

• OEMs

• Printshops

• Shipping agencies

• Auditors

As a general rule, the only entities that should be able to read the data of a transaction
should be those directly involved in the real world transaction, as well as assigned
auditing authorities. This means that besides auditors, only the specific OEM, customer,
printshop and shipping agency involved should be able to view the data that concerns
a specific printed part. In parallel with privacy, anonymity is also required in the
system, or at the very least pseudonymity; that is, entities should not be able to tell
who specifically is involved in a transaction they did not participate in.

23

Chapter 3: Analysis

Approaches

For the purposes of privacy a number of different approaches are examined:

1. PGP-based: The intended data is encrypted with a random symmetric key and
then this symmetric key is iteratively encrypted with the public key of each recip-
ient.

2. HLF Channels: HLF also contains its own confidentiality mechanism in the form
of the so-called SideDB feature which is currently in experimental phase 1. When
using this technique, evidence of each transaction – in the form of a hash – is
exposed to the entire channel, while the actual data of the transaction itself is
kept private in specific peers, according to a defined policy.

3. Attribute Based Encryption: An access policy can be specified for each transaction
regarding which entities in our system should be able to decrypt the data. This
approach can even enable users that haven’t joined the system yet – and thus do
not have any cryptographic keys yet – to decrypt the data in the future.

The PGP-based approach would likely require the least additional complexity in terms
of the encryption process, however we lose the ability to encrypt data for users that
have not joined the system at the time of encryption. This is an essential feature for the
system, particularly in order to allow auditors joining the system in the future to be able
to view past transactions. Therefore this approach is unable to meet key requirements.

Additionally, the size of transactions would scale with the number of recipients which is
a particularly major disadvantage, especially if at a future point we would like to extend
our system to include more categories of actors involved. As explained in subsection 3.3.4
the goal is to reduce as much as possible the data inserted in each transaction.

Regarding the SideDB feature of HLF, its goal is to expose solely the evidence of each
transaction to the chain, ordering service, and channel peers while the data itself is
distributed to peers based on a desired privacy policy. Utilizing this approach would
essentially mean working with a privacy mechanism very similar to what Ethereum
Quorum provides, a platform which we already decided not to use. In TPTS the goal is
for the policy to authorize data access from specific users, not specific network nodes.
Additionally, this feature is still in experimental status at the time of writing, therefore
it is not fit for usage.

1https://jira.hyperledger.org/browse/FAB-8718

24

3.3 Data Management

The case of Attribute Based Encryption (ABE) fits well into TPTS. There exists a
plethora of available schemes in the area of ABE, each with a different approach and
benefits. Additionally, attributes supporting date of key creation are desired so that
policies can also be adjusted to include date comparisons. For instance, a policy such as
(USER32 and CREATION_DATE > 201612) would prevent the entity owning
a key with attributes [USER32, 201601] from decrypting the ciphertext protected by
this policy.

Regarding the selection between Key-Policy ABE (KP-ABE) and Ciphertext-Policy
ABE (CP-ABE), we remark that in KP-ABE the encryptor does not have direct con-
trol over who will be able to decrypt the data and must trust the authority distributing
the keys to issue the appropriate keys to grant or deny access to the appropriate users.
In TPTS the aim is to allow the entities themselves to possess the authority to grant
permissions according to their discretion. Therefore, the primary approach for crypto-
graphic needs in TPTS employs CP-ABE.

In this section the following requirements have been defined:

R3 The stored data must be confidential. Only users authorized through a specified
access policy should be given access to specific data.

R4 The system should support a key escrow scheme for auditing authorities to be
able to view private data. New auditors joining the system should additionally be
able to view private transactions executed in the past

R5 The stored data must preserve anonymity for the users. Users should not be able
to have knowledge of which entities were involved in a transaction they are not
authorized to access

Distribution of Cryptographic Keys

When including privacy features in TPTS it is reasonable to expect cryptographic keys
to be required for encryption and decryption operations. The system should incorporate
a secure mechanism through which users who join the system are able to receive any
necessary cryptographic material that allows them to interact with the network and
properly decrypt or encrypt the transactional data. This process can occur both when
the user joins the system for the first time as well as in cases where new keys need to
be provided to them to replace old ones.

Transmitting these keys over unencrypted e-mail to the appropriate recipients is ex-
pectably deemed as a very insecure approach and is not considered acceptable. One

25

Chapter 3: Analysis

valid method of distributing keys could be setting up a system for each key author-
ity which will carry out this task of distributing keys, however that evidently implies
additional user management costs for each such authority. Another way would be to
physically distribute the keys in secure devices, although that would incur large over-
head in key delivery times and costs. Additionally this approach might be not feasible
when dealing with large distances between the user and the distributor due to risks of
key compromise. A third method would be to utilize a central authority which, solely
for user identification purposes, can be trusted by all parties. This CA will hold iden-
tification details mapping users to their personal public keys. The authorities wishing
to distribute the private keys can use these personal public keys to securely encrypt
and transfer the privacy-related keys directly to the users in a secure manner. Using
this method however, it would still be unwise to use the Blockchain network to store
these encrypted private keys for users to retrieve. Ultimately one should not forget that
records cannot be removed or altered on the Blockchain, therefore it would be unfit to
store private keys on the ledger, even when these keys are encrypted prior to storage.

Thus the following requirement is defined:

R6 The system should offer a mechanism which allows secure distribution of crypto-
graphic material to all users

3.3.2 Verifiability and Data Validation

There is additionally a necessity for a mechanism that validates data stored on the
system. For example, an OEM should not be able to add a confirmed transaction that
claims they sold a part to a customer, if that customer did not actually purchase such
a part from that OEM. This mechanism should require verification from multiple, if
not all the parties involved in a transaction and should additionally respect the privacy
requirements expressed in subsection 3.3.1.

The next requirement is therefore:

R7 The transactional payload must be verified by a certain mechanism before being
considered valid

3.3.3 Accessing Data

Users belonging to organizations which are part of the system should have one or more
means of viewing the transactions which have been stored on the Blockchain network.
For this purpose there should be a user-friendly interface for retrieving the transactions

26

3.3 Data Management

a user is interested in, based on a selected identifier such as a serial number. This
retrieval mechanism should naturally respect the privacy requirements established in
subsection 3.3.1.

The next requirement then is:

R8 Users and organizations must be able to query for an item based on a selected
identifier and retrieve all data related to this item

3.3.4 System Longevity Analysis

All the data stored in the Blockchain has to be available at all times and on all – or
almost all – the network nodes. This means that data accumulated over many years can
account for a considerable amount of total data volume. The system should therefore be
feasibly maintainable throughout a large period of time. We set this period to fifty years
minimum for the purposes of the evaluation process. The number of fields within the
transactions as well as the amount of data stored in each of these fields has to be closely
examined and optimized in order to achieve the envisioned longevity for our Blockchain
network’s operations. The selected system should also be able to handle that amount of
transactional data without noticeable effects in its performance concerning responding
to invocations and queries.

Another detail to consider regarding this topic is whether it would be preferential to
keep the actual bulk of data on a traditional database system and only store references
as well as a checksum of these data for the purposes of data integrity verification. The
goal in this scenario would be to incur considerably lower storage requirements on the
Blockchain network peers, which might provide better performance and longevity. Evi-
dently this would have potential consequences in terms of data availability and integrity
concerns, since TPTS would depend on an external system to access the data. It should
be investigated if this could possibly be deemed more appropriate than storing every-
thing on the Blockchain, by thoroughly evaluating the benefits and disadvantages of
either approach.

R9 The system should be tuned in a way which allows it to operate over a number of
decades without overwhelming its resources or exhibiting performance loss, while
in parallel maximizing the amount of valuable data it can hold.

27

Chapter 3: Analysis

3.4 Summary of Requirements

To summarize, we reiterate the identified requirements:

R1 The system must offer reliable and tamper-resistant traceability of an item through-
out the supply chain

R2 The chosen platform on which the system will be based should provide Byzantine
Fault Tolerance as well as highly available access to the data

R3 The stored data must be confidential. Only users authorized through a specified
access policy should be given access to specific data.

R4 The system should support a key escrow scheme for auditing authorities to be
able to view private data. New auditors joining the system should additionally be
able to view private transactions executed in the past

R5 The stored data must preserve anonymity for the users. Users should not be able
to have knowledge of which entities were involved in a transaction they are not
authorized to access

R6 The system should offer a mechanism which allows secure distribution of crypto-
graphic material to all users

R7 The transactional data must be processed by an adequate verification mechanism
before being considered valid

R8 Users and organizations must be able to query for an item based on a selected
identifier and retrieve all data related to this item

R9 The system should be tuned in a way which allows it to operate over a number of
decades without overwhelming its resources or exhibiting performance loss, while
in parallel maximizing the amount of valuable data it can hold.

28

Chapter 4

Design

4.1 Overview

Having declared a series of requirements that the Trustworthy Process-Tracing System
(TPTS) should fulfill, this chapter presents the design of this system. The Blockchain
network itself is a major component in this regard, therefore its iternal design is also
largely affecting the other components in TPTS. We direct the reader to view the design
of Hyperledger Fabric and its underlying technology in Chapter 2.2.

The main focus of this chapter is illustrating the processes which are followed with
respect to interacting with the Blockchain network as well as the methods for data
exchange through these processes. We begin by analyzing decisions taken for integrat-
ing the required privacy features and continue with the conceptual description of the
protocol for the transactions as well as exhibit how the data model is formed. We sub-
sequently discuss how users are managed in TPTS and how the cryptographic material
which they will need is transmitted to them.

4.2 Reflecting the Supply Chain on the Blockchain

The system design reflects five basic steps of the supply chain that a 3D part goes
through. These are namely:

1. Registration of the model by the OEM.

2. Part ordering by a customer

Chapter 4: Design

3. Printing by a service provider (printshop)

4. Post-processing by a service provider (optional)

5. Shipping of the part to the customer by a shipping agency

Figure 4.1: Supply chain steps and interaction with the Blockchain

This sequence is also visualised in Fig. 4.1. The main concept is that the status and data
linked to the printed 3D part will be stored on the Blockchain network in an aggregated
fashion as soon as it has gone through the corresponding step of the supply chain. For
instance, as soon as a part has been printed, its representation on the Blockchain will
be updated through the appropriate transaction.

We now elaborate on the above scheme and present the sequence of events during a
3D part’s lifecycle and progress throughout the supply chain in combination with those
events being reflected on the Blockchain. In this scenario we assume that an OEM has
previously registered this model on the Blockchain, therefore the use case begins from
the second step as shown in section 4.2. This flow is visualized in Fig. 4.2, where the
type of interaction per step in this event sequence can be interpreted as follows:

• The solid lines represent processes which are external to our system and out of
scope from this work.

• The dashed lines indicate an interaction with the Blockchain in order to invoke a
specific transaction.

• The dotted lines express on-demand queries which any of the system’s actors can
execute at any point during or after the 3D part’s production.

30

4.2 Reflecting the Supply Chain on the Blockchain

6

Printshop

OEM1 3

Blockchain Network

2

4

5

Auditor

Customer

External Process

Transaction Invokation on the Blockchain

8
7

Shipping Agency

On-demand query

Figure 4.2: Event sequence for a 3D printed part

For better clarity, further explanation for each step follows:

1. The customer purchases a print of a 3D model.

2. The OEM invokes a transaction on the Blockchain network with the details of this
purchase in encrypted form.

3. The model file is streamed to the designated printshop for printing

4. The part is printed. When the printing process has been completed, a second
transaction containing the encrypted printing details is invoked on the Blockchain
network

5. The part optionally goes through a post-processing process (e.g. painting of the
part) and afterwards a third transaction including the post-processing details in
encrypted form is invoked.

31

Chapter 4: Design

6. The part is transferred to the shipping agency

7. The part is shipped to the customer

8. A fourth transaction including the encrypted shipping details is invoked by the
shipping agency.

More information about the contents of the above transactions follow below in section
4.4.2. At any time in the future or in between any of the above steps an auditor or any
other interested party can query the network with the part’s serial number and retrieve
all the above information. Naturally, only entities among the ones involved with this
particular 3D part will be able to decrypt the private data.

4.3 Privacy Principles

In terms of privacy the system primarily supports data confidentiality as well as pseudo-
nymity. In order to satisfy our confidentiality requirement TPTS leverages the offerings
of CP-ABE. Every OEM, printshop, customer, shipping agency and auditor using our
system has an attribute accredited to them. This attribute enables them to decrypt
data according to specified data policies. In more detail, the data is first encrypted
with a random symmetric key and subsequently this symmetric key is encrypted with
a CP-ABE scheme. The transaction which is sent to the Blockchain contains the ci-
phertext and the encrypted symmetric key as well as any other necessary cryptographic
material. Any user of our system who holds an ABE-specific key which contains the
appropriate attributes can then decrypt the symmetric key and with that key decrypt
the ciphertext.

Since an ABE authority is in possession of a master key from which all private keys
will be created, all entities would have to fully trust this authority. In our system, each
OEM will hold the role of an ABE authority that provides private keys to customers,
printshops, shipping agencies and auditors. We have made this design decision in order
to limit the amount of trust these OEMs would have to place to a more central author-
ity. In parallel, we expect that the other user types would accept this arrangement and
trust the OEM they are purchasing parts from. This means that each customer, each
printshop, each shipping agency and each auditing authority would have in their pos-
session one private ABE key per OEM which they are interacting with in any manner
(for instance buying a part from that OEM, printing a part or auditing the trail of a
part throughout the supply chain). We also emphasize that an entity may not have two
private keys from one OEM authority.

32

4.3 Privacy Principles

Having multiple OEMs in our system means that there exist multiple coexisting ABE
authorities. It can thus be expected that the attribute mapped to each entity will be dif-
ferent among OEM’s. For instance, a printshop collaborating with OEMY and OEMX
could receive a private key with attribute Printshop54 from OEMY and a private key
with attribute Printshop32 from OEMX. This is a desired discrepancy which will lever-
age anonymity among the entities and does not negatively effect the functionality of the
system.

It would also be possible for each OEM to choose their own naming conventions for the
attribute names, however in our work we maintain a uniform format of attribute names
for the sake of simplicity.

Each entity is able to encrypt and decrypt data to be stored or retrieved from the
Blockchain by themselves, by utilizing the software client of TPTS. Upon joining the
system for the first time, each entity receives his private keys which reflect their attrib-
utes. This process for key retrieval is clarified further in subsection 4.5.2. It should be
noted that the creation of an entity’s private key is the only process where the private
master key of each OEM will be utilized. We also point out that anonymity is further
increased, since the fields declaring which entities are involved in a transaction (e.g. the
customer’s name) are encrypted and only decryptable by particular users.

Since there is no direct way to revoke ABE keys, if a user left an organization while
having a private key with a certain attribute, she would still be able to read newly sub-
mitted data decryptable by that attribute, assuming she did not destroy the key herself.
This is an undesired situation since it would allow for data leak to entities that should
not have access to this new data. For that reason we also include within the policies a
separate attribute stating the date when the private key was issued. For instance such
an access policy might look like ((OEM234 or PRINTSHOP28 or CUSTOMER312
or AUDITOR) and (KEY_DATE > November 2017)) . We believe it is reasonable to
allow for at least six months of grace period between the date of transactional invoca-
tions and the KEY_DATE specified. This means that if the transaction is executed on
December 2017 it would be deemed acceptable to include a KEY_DATE of June 2017
within the access policy. Smaller acceptable time windows might also be appropriate if
a tighter control is required on who is allowed to view new transactions, however that
evidently means that keys would have to be renewed more often. It is therefore up
to each individual OEM to decide how often keys should be renewed, while keeping in
mind the trade-offs that would incur between security and additional key management.

Unlike private keys of all entity types which are expected to be renewed after a period
of time, under normal circumstances an OEM would have to create their master key

33

Chapter 4: Design

only once. In case this master key is compromised then of course a master key renewal
is mandatory. Private keys created through a new master key however will naturally be
unable to decrypt old data even if they contain the same attribute.

4.4 Data Model

On the Blockchain, data are managed and stored in the form of assets. Three individual
types of assets have been designed:

1. User Asset

2. Model Asset

3. Part Asset

Each asset is comprised of a Key and its Value, where Key is a string and Value can
be any arbitrary data type. Queries for an asset are mainly done based on their Key.
In Table 4.1 we present the functions which are available for creating and subsequently
managing each type of asset. Each of these functions is a distinct transaction type
which can be invoked on the Blockchain. The following subsections further explain the
purpose of each asset type and the protocol that should be followed for proper usage.

Asset Type Transaction Types
User addUser

queryUser
Model registerModel

updateModel
queryModel

Part createPart
updateAfterPrinting
updateAfterPostProcessing
updateAfterShipping
returnHistory
queryPart

Table 4.1: Assets and available transaction types

4.4.1 User Asset

This asset is utilized for the goal of maintaining an index mapping user names with a
user’s public key. The purpose for this asset is solely to aid the distribution of ABE

34

4.4 Data Model

keys by the OEMs and should not be confused with the registration of the user to the
Blockchain Network itself. User assets are structured as follows:

• User name (Key): the identification used to interact with the Blockchain

• User’s public key

We assume users own a pair of personal public and private key. Each user has the
responsibility to create an asset for themselves by simply invoking the addUser function.
For this transaction the user only has to provide the personal public key which they
have created, since their username is automatically retrieved by the Blockchain system.

In turn, OEMs can query for a user name via the queryUser function to retrieve their
public key and use it to encrypt the private ABE keys. These private keys will then be
sent to the user over an external channel of choice. Finally, the user uses their personal
private key to decrypt the data containing the private ABE key provided by the OEM.

4.4.2 Part Asset

This is the main asset in TPTS. Each 3D part’s designated serial number is utilized
as a Key and all other data are stored as parameters contained as Value. We focus
on the main anticipated sequence of transactions, which refers to the scenario where a
customer purchases a print of a model from an OEM and wishes to have it printed at
a specific printshop. Essentially steps two to five of the supply chain are mapped on
the Blockchain, as explained in section 4.2. The details for each of the four transaction
types are analyzed below:

First Transaction: part ordering

The first transaction creates the asset and each subsequent transaction appends data to
it. This transaction type is executed by the OEM as soon as a client purchases a print
of a part. The fields of this transaction are as follows:

• Serial Number (Key): The serial number which will be assigned to the 3D printed
part. Defined by the OEM itself. To be used by the system in order to link all
the transactions that refer to this asset

• Purchasing details, which are stored in encrypted form and which include:

– OEM data: the ID and organizational name of the OEM

– Model ID: a unique ID assigned to the particular model. One model ID can
be used to print multiple parts, each with a different serial number.

35

Chapter 4: Design

– File hash: the checksum hash of the 3D model file. Used for data integrity
verification purposes

– Printshop data: the ID and name of the printshop the file will be sent to for
printing

– Customer data: the ID, name and address of the customer who ordered the
part

– Shippping agency data: the ID and name of the agency selected for shipping
the part

– Price quoted: the price agreed upon between customer and OEM for pur-
chasing one print of this file

– Password: an encrypted password, used to validate the transaction by the
printshop, as explained below.

• PwdHash: a hash of the plaintext password, also used to validate the transaction

• Privacy parameters: data which enable encryption/decryption capabilities. In
this transaction this is a symmetric key encrypted with an ABE scheme, as well
as any other necessary cryptographic data.

Note that each instance of a part asset refers to a single print of a model file. In other
words, when a customer purchases 10 prints of the same model, 10 assets will be created
by the OEM (each with a distinct serial number as Key).

The ABE access policy which is used to encrypt this transaction has the following form:
(OEMA or CustomerB or PrintshopC or Auditor) and (KEY_DATE > YEAR.MONTH).
The shipping agency is excluded from this policy since they should not have access to
the above data. The asset status is initialized to "Ordered".

At this point it is valuable to describe the protocol for data verification of a part asset,
which can be seen in Fig. 4.3. In more detail:

1. The OEM encrypts the data with a policy that reflects the entities allowed to
decrypt the data. The OEM includes within the transaction a random string
termed password which will be stored encrypted, as well as a hash that is the result
of hashing this password, termed PwdHash. This hash, which will be included in
the asset data in plaintext, will act as a “password quiz” that the printshop will
have to solve on the second transaction as a method of verifying the data. The
idea is that only the printshop and the customer are able to read this password
and confirm the validity of the data of the transaction.

36

4.4 Data Model

Asset

­ Terms : Encrypted data (Purchase
parameters + password encrypted
with CP­ABE scheme)
­ PwdHash: Hash of the password
in plaintext

OEM
Prepares

Printshop

Retrieves
Asset Data

Checks terms
and decrypts password

A A A

Calls function
with printing parameters
and password as additional

validation parameter

A´

If hash(password) = PwdHash,
Asset is validated and updated

Executes transaction
on the chain

Asset status over time on the Blockchain

Figure 4.3: Data verification scheme

2. The part is then printed. Subsequently the printshop retrieves the asset data
from the network, decrypts the secret password and executes a second transaction
which adds the printing parameters to the created asset, while also providing the
secret password in plaintext. During this step, the Blockchain nodes verify that the
hash of the secret password provided by the printshop matches the PwdHash value
from the first transaction and then update the asset data and status accordingly.
Regarding requirement R7 of section 3.4, an updated status at this point signifies
the validation of the asset and confirmation of correctness of the first transaction
invoked by the OEM.

Second Transaction: part printing

The second transaction type is executed by the printshop, as soon as the printing
process is completed. Ideally this would be triggered automatically upon completion

37

Chapter 4: Design

of the printing, but in practice this depends on the API that is available from the 3D
printer in use. The fields of this transaction are as follows:

• Serial number

• Printing details, which are stored in encrypted form and which include:

– Printer serial: the serial number of the particular printer that completed the
printing process

– Print price: the price the customer will be charged for printing this file

– Printing parameters: duration of print, oxygen level etc.

• Privacy parameters: any necessary cryptographic data

The asset status is updated to "Printed". It is noted that the application which executes
this transaction also outputs a QR code image with a serialized string which specifies
the printshop ID, the customer ID, the OEM ID which produced the model as well as
the serial number of the part. This image will be used in the last transaction type by
the shipping agency as explained below.

Third Transaction: post-processing

The third transaction type is executed again by the printshop, as soon as the optional
post-processing process is complete. The fields of this transaction are as follows:

• Serial number

• Post-processing details which are stored in encrypted form

• Privacy parameters

The asset status is updated to "Post-processed".

Fourth Transaction: shipping to customer

The fourth and final transaction is executed by the shipping agency, as soon as they
receive the packaged part from the printshop, together with the QR code the printshop
produced after the printing. Using a GUI, this QR code is then scanned to decode the
necessary parameters: the customer ID, OEM ID and printshop ID which will enable
the agency to produce the required access policy for the ABE encryption of the shipping
data, as well as the serial number of the part to invoke the transaction for. Through
this GUI the agency manually inputs the tracking number of the package and the data

38

4.4 Data Model

is automatically encrypted with the above policy. The application behind the GUI then
executes the transaction with the following fields:

• Serial number

• Shipping details which are stored encrypted and which include the tracking num-
ber for the package

• Privacy parameters: a new symmetric key encrypted with ABE which was used
to encrypt the shipping details as well as any other necessary cryptographic data.
This key is appended to the asset data without overwriting the original key from
the first transaction

As an exception, the policy for the ABE encryption for this transaction includes the
shipping agency. Therefore it has the form (OEMA or CustomerB or PrintshopC or
ShippingAgencyD or Auditor) and (KEY_DATE > YEAR.MONTH). Since the ship-
ping agency does not have access to the original encryption key, a new symmetric key
must be created and encrypted with this extended policy. Finally, the asset status is
updated to "Shipped".

To summarize, after being shipped a part asset will be structured with the following
data:

• Serial number

• Purchasing details

• Printing details

• Post-processing details

• Shipping details

• Privacy parameters

• Password hash

• Status: Shipped

4.4.3 Model Asset

Whenever an OEM creates a new 3D model that will be available to be purchased by
customers and printed, they are able to register this model on the Blockchain. The
main purpose for this asset type is to have a reference for the proper checksum hash

39

Chapter 4: Design

of a model file. If during an auditing process a 3D part – tracked on the Blockchain
through an instance of a part asset – is found to have been printed using a 3D model
file with a different checksum than the model asset registered by the OEM, then this
means that the file transferred to the printshop was corrupted or altered.

In order to create a model asset one transaction with the following fields is necessary:

• Model ID (Key)

• Model name

• Owner: the name of the OEM who designed this model

• File hash: the checksum of the model file

• Model version

Any OEM can register their own 3D Model (with a unique ID) by invoking a register-
Model transaction. A model can be updated with a new version only from the same
OEM by invoking an updateModel transaction, in which case the file hash and version
will be updated. Model assets can be retrieved through a queryModel transaction.

4.5 User Management and Distribution of Cryptographic
Material

Each user in our system is identified by their cryptographic certificate – which would
be generated the first time they join our system – and is able to decrypt transactional
data according to the attribute injected in his private ABE key.

Before moving forward we note that introducing a new type of user to the system
besides the five types already described – including attaching an attribute to the new
user type entity – can be easily done when necessary. For instance, support for suppliers
of printing powder could be added to the system for a more transparent traceability of
the substance origins.

4.5.1 User Registration with the Blockchain Network

When a user wishes to join our system, they first need to get registered on a Certification
Authority (CA) of the network before they are able to interact with it. The actions
required for that purpose are as follows:

40

4.5 User Management and Distribution of Cryptographic Material

1. An admin user belonging to a CA of an organization operating within our system
registers the user

2. The user receives from the admin his one-time credentials – a simple username
and password pair – through an external channel that can be decided on a per-
organization basis

3. These credentials are then used by the user to contact the CA in order to enroll
herself to our network and retrieve her certificate

After the three above steps have been completed, the user can interact with the network
by using his certificate. His original one-time credentials are considered invalid at that
point. If the user loses his certificate or if these private files are compromised, a com-
pletely new registration process will have to take place and the old certificates will have
to be added to a Certificate Revocation List. On the other hand, if the user’s password
is somehow leaked after she has already completed the enrollment there is no concern
since it cannot be used more than once. This means that the security of the method of
choice for transferring this password to the user is not crucial, as long as this method
is direct and quick. A simple phone call could suffice in this scenario.

4.5.2 Private ABE Key Retrieval

After the user has completed their registration and is able to use the Blockchain network,
they will need to receive a private ABE key from every OEM she wants to collaborate
with. This key retrieval process is executed in the following manner:

1. The user creates a user asset for themselves on the Blockchain, as explained in
subsection 4.4.1

2. An OEM is informed through an external channel about the interest of an entity –
customer, printshop, shipping agency or auditing authority – to collaborate with
them

3. The OEM then queries the network for the user asset linked to the user who
requested the collaboration and retrieves the user’s public key

4. The OEM creates a private key with the appropriate attribute this user should
have and encrypts this private key with the public key of the user.

5. Through an external channel which is up to the OEM to decide, the encrypted
private ABE key is then sent to the user

41

Chapter 4: Design

When these five steps have been completed, the user has full access to the network
and is additionally able to decrypt future and past transactions involving her. Since
our ABE approach supports attributes indicating the date of key issuance through the
KEY_DATE attribute, it is expected that private ABE key renewals might occur. In
that scenario, the entire above process would have to be carried out again.

4.6 Conclusion

In this Chapter the design decisions that have been taken in order to form TPTS have
been examined. Through this design the Blockchain Network is thus shaped into a
component with distinct sub-units, termed chaincodes in Hyperledger Fabric. These
sub-units will provide the business process between the 5 types of entities in our system
and the process of data storage. The following Chapter concerning the implementational
details shows how such a system is built and analyzes its internals.

42

Chapter 5

Implementation

5.1 Overview

This chapter examines the implementation of the Blockchain network in combination
with the client-side package which includes the library for CP-ABE support. The meth-
ods through which the Trustworthy Process-Tracing System (TPTS) can be built upon
the Hyperledger Fabric (HLF) platform are analyzed. Additionally, the functionality
and purpose of the three chaincodes which have been implemented is explained. All
three chaincodes will be installed on every node of the Blockchain network and all
stakeholders will be able to use the client-side application to interact with the network.
A visualization of the interaction between the components of the implementation can be
seen in Fig. 5.1. The Node.js bundle using the Node SDK1 is responsible for interacting
directly with the chaincodes. In parallel, the Python code provides all encryption ca-
pabilities through the cpabe script as well as all parsing processes for the data returned
by the Node.js scripts. Data can be retrieved in three manners. Firstly through the
query_chaincode script if decryption in a processed format is desired. Secondly as raw
encrypted transactions through the interact script and thirdly through a browser GUI
provided by the Blockchain Explorer component which also presents decrypted asset
data.

1https://github.com/hyperledger/fabric-sdk-node

Chapter 5: Implementation

Client
Python NodeJS

add_transactions

interact

queryquery_chaincode

Blockchain
Explorer

cpabe

HLF Network

Users
Chaincode

Models
Chaincode

Parts
Chaincode

ShippingGUI
invoke

Figure 5.1: Inter-component interaction

5.2 Platform Selection

As stated already, out of the three platforms included in the Analysis chapter, the
candidate we chose to proceed with is Hyperledger Fabric. The main reasons for this
decision are:

• Its flexibility and modularity

• HLF is structured as a permissioned Network and fit for enterprise usage, this
architecture allows us to know who has access to the network

• Identity verification and blacklisting is provided based on asymmetric key cryp-
tography:

– HLF offers a standalone Certificate Authority module (Fabric CA)

– Future support is expected for distinct certificates per transaction. This
would further elevate entity anonymity

44

5.3 Development Environment

• Entities can be stored as assets and updated on demand. Each 3D printed part
can be regarded as an asset and tracked very conveniently throughout the supply
chain

• Consensus protocol is pluggable and is decidable

• All data are replicated among all nodes which have joined a channel. This is
important to us for the purpose of data accessibility and reliability

5.3 Development Environment

Due to the nature of the Hyperledger Fabric in combination with the libraries required
to provide ABE support, numerous programming languages and platforms are employed
in TPTS:

• Go (v1.8.7) is utilized to implement the chaincodes.

• Node.js (v8.10) is used to implement the application component which is utilized
to directly access the peers of the Blockchain network.

• For Attribute Based Encryption, the pyPEBEL1 wrapper for the CHARM li-
brary2[2] is used , both of which are implemented in Python. The code for en-
cryption and decryption processes can be found in the trust/crypto folder, also
implemented in Python (v2.7).

• All HLF components are launched as Docker containers.3 For this purpose, docker
version 17.12-ce is utilized. Docker’s "Swarm Mode" is used to deploy the HLF
network in a distributed manner over different physical machines 4.

• Installation of a MySQL server is only required if the Blockchain Explorer is used,
as it is necessary for locally indexing blocks and transactions

Regarding the HLF Docker images, the system was implemented and tested with the
following image versions:

1https://github.com/jfdm/pyPEBEL
2https://github.com/JHUISI/charm/commits/dev
3For the deployment process we updated and adapted the framework provided by David Khala
(https://github.com/davidkhala/delphi-fabric)

4 In case Docker version prior to 1.12.0 must be utilized, you can use standalone swarm

45

Chapter 5: Implementation

• hyperledger/fabric-ca x86_64-1.1.0

• hyperledger/fabric-tools x86_64-1.1.0

• hyperledger/fabric-orderer x86_64-1.1.0

• hyperledger/fabric-peer x86_64-1.1.0

• hyperledger/fabric-javaenv x86_64-1.1.0

• hyperledger/fabric-ccenv x86_64-1.1.0

• hyperledger/fabric-zookeeper x86_64-0.4.6

• hyperledger/fabric-kafka x86_64-0.4.6

• hyperledger/fabric-baseos x86_64-0.4.6

In terms of libraries provided by HLF, the following are used:

• fabric-client@1.1.0

• fabric-ca-client@1.1.0

5.4 Infrastructure Setup and Deployment

This section describes how the Blockchain network is configured and deployed. The
network itself can be deployed simply based on a number of parameters included in a
single configuration file. This file includes parameters such as:

• Consensus mechanism

• Organizations operating in the network

• Peers and CA’s belonging to each organization

• Ordering nodes

Additionally, the Blockchain network is extensible in a number of different ways:

• The three chaincodes responsible for processing the transactions for users, models
and parts can be updated at will.

• A completely new chaincode can also be added if desired

• New nodes and organizations can be added to the network dynamically

46

5.4 Infrastructure Setup and Deployment

All the above operations can be carried out on the fly without having to take down the
network for upgrades.

A bootstrapper which takes care of all steps required to launch a HLF network has
been created. All deployed nodes have TLS enabled and can be launched either locally
on the host’s docker or as services over docker swarm, enabling them to be deployed
over multiple physical machines. The bootstrapper will proceed to connect all nodes
to a channel, install and instantiate the chaincodes on them. After this automated
process, the network is ready to properly receive invocations and send responses. Fabric
CA1 (FCA) is utilized for creating and managing users interacting with the Blockchain
network through ECDSA Certificates [11]. Each user receives these certificates upon
enrollment with a FCA.

 Organization 1

Peer

Orderer 1

Orderer 2

Client

 Organization 2

PeerClient

Organization 3

Client

Fabric CA

Fabric CA

Fabric CA

Peer

Figure 5.2: Hyperledger Fabric network layout

1https://github.com/hyperledger/fabric-ca

47

Chapter 5: Implementation

A default configuration layout for the network has been included and can be seen in
Fig. 5.2. The HLF network is set up with a number of different organizations, each with
their own peers and one FCA node per organization. A few important details can be
noted through this network layout:

• An organization can have zero or multiple network peers

• A user belongs to exactly one organization in order to use the application client

• To successfully invoke a transaction a client will have to contact one or more peers,
depending on the endorsement policy the chaincode has been instantiated with.
For instance, one can specify a "2-of-N Orgs" endorsement policy and demand that
one peer from at least two different organizations has to endorse the transaction.
An example can be seen in Fig. 5.3.

'endorsement-policy': {
identities: [

{ role: { name: 'member', mspId: ORGS[0].id }},
{ role: { name: 'member', mspId: ORGS[1].id }},
{ role: { name: 'member', mspId: ORGS[2].id }}

],
policy: {

'2-of': [
{ 'signed-by': 0 },
{ 'signed-by': 1 },
{ 'signed-by': 2 }

]
}

}

Figure 5.3: A sample 2-of-N-Orgs endorsement policy

The orderers are set up with a Kafka-based ordering service 1. All operations are carried
out on a single HLF channel which all peers and orderers join, therefore all data in this
channel will be replicated on all peers of every organization.

For testing purposes the certificates and keys for the peers and orderers are currently
created all together locally through the cryptogen tool that is provided by the HLF
binaries. This tool is not designed to be used in production. Instead, for security

1At the time of writing there was no implementation for Practical Byzantine Fault Tolerance on HLF,
although it is planned for the near future. PBFT ordering consensus should most definitely be selected
instead of Kafka when it is available

48

5.5 Chaincode Implementation

purposes this material should be created through the FCA on each individual node that
requires it.

5.5 Chaincode Implementation

Three distinct chaincodes have been implemented. The first serves the purpose of an
index for user assets and their public keys. The second is used for registering model
assets and the third one is used for tracing 3D printed part assets. These chaincodes
follow Table 4.1 as depicted in the design Chapter. Additional chaincodes can be easily
created and effortlessly installed on the network peers, since HLF is designed to be
efficiently extensible. Each of the functions available from the chaincodes can be invoked
via the interact script with the appropriate parameters and arguments.

5.5.1 Users Chaincode

This chaincode implements the user asset described in subsection 4.4.1 and serves the
purpose of the first step towards the retrieval of the private ABE key by a user, as
explained in subsection 4.5.2. The user is responsible for invoking the addUser function
of this chaincode in order to create a user asset with the Common Name (CN) field of
her certificate as well as her RSA public key.

5.5.2 Parts Chaincode

This can be considered as the main chaincode of TPTS, since it is managing the 3D
printed parts and tracking their progress throughout the supply chain. This chaincode
implements the part asset described in subsection 4.4.2.

While the fields of this chaincode asset follow the design indicated in subsection 4.4.2,
we ought to elaborate on the fields which contain cryptographic data. The part asset is
therefore structured as follows:

• Serial number: used as key of the asset

• Purchasing details: an encrypted json object which contains all the information
of the first transaction type as explained in subsection 4.4.2

• Encryption key: a symmetric key, encrypted with an ABE scheme with the ap-
propriate policy

49

Chapter 5: Implementation

• IV1: the random IV that was used in conjunction with the encryption key to
encrypt the purchasing details field

• Password hash: the hash of the secret password created for data validation pur-
poses, as explained in subsection 4.4.2

• Printing details: an encrypted json object which contains the information of the
second transaction type

• IV2: the random IV that was used in conjunction with the encryption key to
encrypt the printing details field

• Post-processing details: an encrypted json object which contains the information
of the third transaction type

• IV3: the random IV that was used in conjunction with the encryption key to
encrypt the post-processing details field

• Shipping details: an encrypted json object which contains the information of the
fourth transaction type

• Encryption key 2: a second symmetric key, encrypted with an ABE scheme with
the appropriate policy.

• IV4: the random IV that was used in conjunction with the second encryption key
to encrypt the shipping details field

• Status: an enumeration field with choices among:

1. Ordered

2. Printed

3. Post-processed

4. Shipped

Status is internally controlled by the chaincode and changed as the part goes
through the supply chain.

When a 3D printed part has finally reached the customer, one can expect all asset fields
to contain data of the according supply chain step. The only field that might not be
filled is the post-processing details, since post-processing is an optional step.

50

5.6 Client-Side Implementation

5.5.3 Models Chaincode

This chaincode is designed to be used strictly by OEM’s wishing to register their newly
created 3D models on the Blockchain network. The structure of this asset and the possi-
ble functions that an OEM can invoke upon the models chaincode follow the principles
described in subsection 4.4.3. Each model file designed by an OEM is mapped to a
model asset and each of these model assets contain the following information:

• Model ID: used as key of the asset

• Model name

• Owner: the ID of the OEM that registered this model

• File hash: the sha-256 checksum of the model file

• Model version

5.6 Client-Side Implementation

This section describes the implementational details of the scripts (written in Python &
Node.js) that a user can utilize to interact with an existing operational HLF network.
The interaction between these scripts can be seen in Fig. 5.1, while their functions,
parameters and parameter types can be reviewed in Table 5.1.

These scripts utilize a config.json file which the user has to adapt. Within this config-
uration file, the following parameters can be specified:

• Username

• User password for certificate retrieval

• Addresses of peers that can be contacted (of the same or different organizations)

• Addresses of orderers

• Address of the FCA

An exact example of how this json file should look like can be found in Appendix A.

5.6.1 Authenticating with the HLF Network

There are two distinct processes which have to be executed before a user is able to
interact with the HLF Network. These are the registration and the enrollment process,

51

Chapter 5: Implementation

Script Parameters
add_transactions.py tx_type {1,2,3,4}

serial string
json_data json
access_policy string
oemid integer
extra_args string array

cpabe.py function {setup,create,
encrypt,decrypt}

message string
symmetrickey string
policy string
oemid integer
attributes string
iv integer

query_chaincode.py function string
chaincodeid string
args string
oemid integer

interact.js function string
chaincodeid string
channel string
transient string
args string
type {query, invoke}

Table 5.1: Functions and parameters of available Client-Side scripts

executed in this order. Registration has to be done once per user and is executed by an
admin of the organization the user belongs to. This registration process returns a pair
of credentials the user can utilize to enroll. The enrollment process itself on the other
hand is carried out by the user herself, by providing the credentials acquired during
registration. After enrolling herself, the user is in possession of the certificates which
will allow her to interact with the HLF network. In TPTS the FCA is configured to only
allow one enrollment per user, to enforce the design decision for one-time credentials.
This means that after the user is enrolled and has received their credentials, their
password is no longer valid for any further action.

In order to register a user, an admin of an organization has to first enroll themselves
through the enrollAdmin.js script. Subsequently they are able to register a user by using
the registerUser.js script, which on success returns a one-time password. We expect that

52

5.6 Client-Side Implementation

users would receive their credentials (username and password) via a different physical
or digital channel, however we leave that decision to each organization.

Each user would then adjust the config.json file with their credentials and execute the
enrollUser.js script, which would in turn enroll the user on the HLF network and retrieve
their appropriate certificates from the indicated FCA Server. Beyond this point, a user
is allowed to invoke transactions and execute queries towards the network.

5.6.2 CP-ABE Implementation

Encryption and decryption of data is required in the add_transactions and query_chaincode
scripts accordingly. As depicted in Fig. 5.1, these procedures are carried out by the cpabe
script. This subsection examines the four functions provided by this script: setup, cre-
ate, encrypt and decrypt.

For all ABE procedures we utilize the implementation of [6] which is included in the
CHARM library. In order to convert numerical dates into ABE attributes and subse-
quently include them in access policies, the system utilizes the approach followed by the
pyPEBEL library 1. The CP-ABE mechanism is leveraged exclusively for part assets,
since the other two asset types do not have privacy requirements and their data can be
left public.

All generated ABE keys adhere to the following naming conventions:

• An OEM with ID X (i.e. OEMX) will have these keys:

1. X: master key of OEMX, generated through the "setup" function.

2. X.pub: public key of OEMX, generated through the "setup" function

3. X.key: The OEM’s private key in their own ABE authority "realm", generated
through the "derive_personal_key" function

• An entity of any type (printshop, customer, shipping agency or auditor) will have
the following pair of keys for every OEM they are collaborating with:

1. X.pub: public key of OEMX

2. X.key: The entity’s private key in the "realm" of OEMX

1https://github.com/jfdm/pyPEBEL/blob/master/pebel/policy.py

53

Chapter 5: Implementation

To clarify further, in the scenario where a printshop collaborates with OEMX and
OEMZ then this printshop will have in their possession 4 files: X.pub, X.key, Z.pub,
Z.key.

We now focus on the two main functions of encryption and decryption. When encryption
of data is requested, the following parameters are required by the cpabe script:

• The public key of the OEM authority that the data will be encrypted with

• The plaintext data

• An access policy the data should be encrypted with

A random symmetric key is generated based on a group pairing initialized in the elliptic
curve setting with a 512-bit base field. Using this key and a random IV, the plaintext
data provided by the user is encrypted with Advanced Encryption Standard in Cipher
Feedback Mode (AES CFB). The symmetric key is subsequently encrypted with CP-
ABE and a json object with three keys is returned:

• The serialized encrypted symmetric key

• The ciphertext of the plaintext data, in base64 encoding

• The random IV in base64 encoding

For the decryption process on the other hand, the following parameters are required:

• The public key of the OEM authority that the data was encrypted with

• The user’s private key for that OEM authority

• The ciphertext

• The symmetric key encrypted with CP-ABE

• The IV used for encrypting the plaintext

Assuming the private key provided contains the required attributes, then the symmetric
key is successfully decrypted. This enables subsequent decryption of the ciphertext to
reveal the original plaintext, which is returned by the script. At this point, the end-to-
end processes for encrypting and decrypting data has been fully covered.

5.6.3 Creating and updating a Part Asset

A user can utilize the add_transactions script to invoke transactions on the Blockchain
network which create or update a part asset. The user supplies the script with the type

54

5.6 Client-Side Implementation

of transaction they want to invoke (one of the four explained in subsection 4.4.2) as well
as the parameters required for each type.

Part purchase

Let’s assume a customer just purchased a print of a specific model. The sequence of
events is as follows:

Step 1:

The purchase of a part print triggers execution of the add_transactions script, supplying
the following parameters:

• Type: the type of the transaction. In this case "1"

• Serial_number

• Purchasing_details: provided in a json object

• File_hash

• Access_policy: the CP-ABE policy to encrypt with

• OEM_ID: the OEM authority for which to encrypt the data

Step 2:

The add_transactions script will then pass the purchasing details to the cpabe script
for encryption by triggering the encrypt function, together with a desired CP-ABE
encryption policy and the public key of the OEM authority we should encrypt for.
The encrypt function then returns the encrypted symmetric key, the IV as well as the
ciphertext of the json object with the purchasing details.

Step 3:

The script then executes a chaincode invocation by triggering the interact script. The
parameters supplied to this script are:

1. the chaincode name to invoke: parts

2. the chaincode function: createPart

3. the type of transaction: invoke

4. the additional arguments:

55

Chapter 5: Implementation

• the serial number of the part

• the above ciphertext

• the encrypted symmetric key

• the IV that was used to encrypt this ciphertext

• the hash of the password field which was included in the purchasing details.
This will assist in data validation in the next steps of the supply chain

The HLF network peers – as configured in the config.json file – are then contacted and
the procedure of endorsement as described in section 2.2 is carried out. Note that
depending on the endorsement policy of the HLF Network, endorsements from multiple
peers might be required. In this case the user ought to specify the necessary peers – for
instance one from each individual organization – within the configuration file. At this
point, and assuming no errors occurred, a new part asset describing this 3D part has
been created with an internal state of Ordered and stored on the network.

Part printing

Let’s now assume the above purchased part has been printed at the designated printshop.

Step 1:

The completion of the printing process will trigger execution of the add_transactions
script just like above, but with different parameters. This time, the part’s serial number
will also be provided to the script so that the asset data created the previous step can
be acquired from the network. The exact parameters that are required are:

• Type: 2

• Serial_number

• Printing_details: provided in a json object

The script will query the HLF network with the serial number to retrieve the part
asset and decrypt the purchasing data to restore the secret password. Subsequently, the
printing_details will be encrypted by the cpabe script using the retrieved symmetric
key and a new random IV (IV2) to form a new ciphertext.

56

5.6 Client-Side Implementation

Step 2:

On this step we are leveraging a feature of HLF termed Transient Map. This is an
optional map that can be used by the chaincode but not saved in the ledger and can be
useful for passing arguments containing sensitive data such as cryptographic information
for encryption.

The add_transactions script triggers an invocation to the parts chaincode by calling
the interact script. The parameters supplied to this script are:

1. the chaincode name to invoke: parts

2. the chaincode function: updateAfterPrinting

3. the type of transaction: invoke

4. the additional arguments:

• The above ciphertext with the printing details

• The IV2 that was used to encrypt this ciphertext.

• The password, to be passed on not as a regular argument to the chaincode
but as a transient map

The asset has now been updated with the new data and an internal state of Printed.

Post-processing

This type of transaction is processed similarly to the second. The only difference is
that we no longer supply the password value to the chaincode, since this transaction
is executed by the same printshop, at least in this scenario. As stated in subsection
4.4.2, the payload data that will be added to the asset with this transaction are the
post-processing details and the asset’s internal state will be updated to Post-Processed.

Shipping

For this transaction the shipping agency uses a simple GUI which has been implemented
with the wxPython toolkit. This GUI prototype is set up to scan QR codes through a
web-cam and deserialize a formatted string. Upon submission of the shipping identifi-
cation by an operator, the application combines the tracking and QR data and submits
these parameters to the add_transactions script. This in turn triggers an updateAfter-
Shipping transaction. The asset is then updated with the last data and an internal state
of Shipped.

57

Chapter 5: Implementation

5.6.4 Retrieving Data from the Blockchain Network

Data retrieval on HLF is channel-based. This means that clients are essentially querying
a HLF channel and not the individual peers for the data they need. This enables users
to always have access to this data as long as at least one of the peers of the channel is
responsive. In order to satisfy the requirement of viewing transactional data as noted
in section 3.4 (R8), three distinct methods are supported, depending on the use case.

Viewing decrypted data

For the first method the parameterized script query_chaincode was implemented. It
allows the user to interact with the chaincode in order to query for 3D parts based on
their serial number, or alternatively query for transactions by providing the transaction
ID. We retrieve the encrypted ciphertexts from the network for the target asset or
transaction and decrypt it by using the appropriate ABE key in order to reveal the
plaintext data. We additionally apply some formatting to the retrieved information
before returning it to the user.

Viewing raw transactional data

The ability to view raw transactions exactly as they were recorded on the ledger with
their encrypted data is also provided through the interact script. Naturally the data
returned with this method include signatures, certificates and metadata besides the pay-
load, so the readability of the retrieved information is not high. However it is important
to provide access to these raw data, in cases where the exact original transactional data
are required by an auditor for instance.

Inspecting the ledger with Blockchain-Explorer

For overall inspection of the network status, TPTS also includes a front-end application
utilizing the open source tool Blockhain-Explorer 1 which belongs to the Hyperledger
ecosystem. This allows users to have a total overview of the Blockchain network in-
cluding connected peers, installed chaincodes as well as total blocks and their transac-
tions. In addition to the already offered query functionalities based on block number
and transaction ID that the Explorer’s interface already provides, the project has been
adapted to additionally include serial-number based search in order to facilitate part

1https://github.com/hyperledger/blockchain-explorer

58

5.6 Client-Side Implementation

asset lookups. We have also integrated the application with the decryption mechanism
for the encrypted information, therefore the presented data appear decrypted to the
end user.

The Blockchain-explorer has to be configured with the addresses of peers which can be
contacted for queries, the HLF channel that the chaincodes reside in, as well as the
certificate path of a user with sufficient access to that channel. The concept here is that
an organization participating in TPTS would host one of these front-ends within their
premises, should they decide they want to utilize this component.

59

Chapter 6

Evaluation

In this chapter TPTS is evaluated in terms of performance, security, usability as well
as overall requirement satisfaction based on the requirements defined in section 3.4.

6.1 Performance Evaluation

In order for TPTS to operate correctly, the Blockchain component must be reliably
responsive to queries and invocations, particularly in the presence of high load, unex-
pected issues or failures. In this section TPTS is tested through a number of quantitative
metrics to evaluate the capabilities of the Hyperledger Fabric (HLF) network and its
potential limitations.

6.1.1 Evaluation Environment

A HLF network is set up over two distinct collocated virtual machines cooperating over
docker swarm. The baseline configuration for the network layout is as follows:

• 3 Organizations with 2 peers each

• 4 Orderers

• 3 Kafka brokers

• 3 Zookeeper nodes for the Kafka brokers to use

• 3 Fabric CA’s, one for each Organization

Chapter 6: Evaluation

The above nodes are distributed between the two virtual machines operating in our test
system. All operations are executed on an Intel 6700K processor with 16GB RAM and
an SSD for storage. The add_transactions script is employed for the purpose of creating
part assets in a multi-threaded environment, inserting random data and executing all
four transaction types for each part.

6.1.2 Throughput

A valuable metric is the network’s ability to process a large amount of messages in a
short period of time. HLF accepts a Batch Timeout parameter which can be configured
within the configtx.yaml file used for deployment. This parameter dictates how often
the ordering nodes reach a consensus regarding the transactions which will go into the
next blocks. Max Message Count is another configurable threshold for controlling how
many transactions can fit into a single block. Should the orderers receive an amount of
transactions that reaches beyond this maximum threshold, many blocks can be created
and ordered at the same time in order to fit all transactions. Unfortunately we did not
have access to a large cluster from which to launch a considerable burst of invocations,
therefore transaction execution was tested with a an amount of 50 transactions executed
in parallel – keeping in mind the 8-thread count maximum of the processor used for
testing – against one or more endorsing peer, with a Batch Timeout of 2 seconds and a
Max Message count of 10 messages. Findings show that the system remained stable and
responsive, as all transactions were submitted and stored successfully without delays or
inconsistencies.

While HLF could perform adequately even with a much larger burst of invocations, it
should most definitely be noted that the limits of this system are considerably lower than
those of a traditional database system. HLF was measured with a maximum throughput
of approximately 4000 transactions per second (tps) when using 32 virtual CPUs [3].
This is noticeably lower than the capabilities of a MySQL server, but considerably higher
than public Blockchains such as Bitcoin (7tps [7]) and Ethereum (7-15tps currently).

We remark nevertheless that throughput simply has to be kept over a reasonable thresh-
old. This metric was not a core objective for this work and in a production setting dif-
ferent industries would use different networks and peers to conduct their operations. In
this regard we deduct that the performance of HLF is adequate in terms of throughput.

62

6.2 Requirement Satisfaction

6.1.3 Resilience Testing

On occasion, we can expect that the network over which nodes are communicating is
facing unexpected issues for a number of reasons. It is critical that the HLF network is
resilient enough to operate under these sub-optimal circumstances. In order to evaluate
system behaviour under these conditions we employ Pumba 1, a testing tool which is
able to simulate poor network conditions among docker containers.

Using Pumba, latency as well as packet loss (PL) were injected into the system on all
containers for the entire duration of the resilience testing process. During these tests
the system behaved correctly even with high PL and only exhibited issues with an
extreme PL of 90%. Positive results were also observed with latency testing, where the
peers maintained mostly proper functionality and were able to process most requests.
Transactions only started occasionally timing out when a consistent latency of 2 seconds
was introduced to the network for a period of 5 minutes. However a simple re-invocation
was sufficient to successfully store the asset data.

The behaviour of the HLF system when randomly taking down and restarting network
nodes is also tested. HLF nodes that restart after being shut down will automatically
attempt to rejoin the channel they had joined before their shutdown, so the system
continues to behave correctly as long as at least one node of each type is accessible. It is
also noted that in a scenario where invocation of a transaction is attempted on multiple
endorsing peers, a number of which are not responding, then the transaction will still
go through to the ordering service as long as enough endorsing peers are accessible for
the endorsement policy requirements to be met.

6.2 Requirement Satisfaction

In this section TPTS is evaluated from a standpoint of the quality of its features and
how they satisfy thetated requirements.

1https://github.com/alexei-led/pumba

63

Chapter 6: Evaluation

6.2.1 Evaluation of Main Goals

Requirements 1 and 8 respectively state:

R1 The system must offer reliable and tamper-resistant traceability of an item through-
out the supply chain

R8 Users and organizations must be able to query for an item based on a selected
identifier and retrieve all data related to this item

Concerning R1, the design of TPTS supports the desired features for traceability: the
distributed network enables storage of data and subsequent retrieval of transactions in
a reliable manner. The sequence of events begins with the registration of a 3D model
by an OEM, after which the system tracks each individual print order of this model
through four additional supply chain steps. For each of these steps a record is created
which includes the parameters that the stakeholders would like to track.

It is noteable to remark that the 3D printing use case was investigated simply as a
proof of work and that the system can be extended to other industries. The chaincode
is mostly unaware of what payload data are included in the transaction of each supply
chain step as most information is encrypted in the appropriate fields. Therefore the im-
plementation can be easily adapted from the client-side to include different parameters
per transaction. Additionally, the chaincodes can be effortlessly extended to include
more supply chain steps and more functions.

Regarding tamper-resistance, it is possible through tools provided by HLF to inspect
the stored ledger and verify its integrity to make sure that data has not been altered.
However one weak link in the system is the consensus mechanism for the ordering service
currently used by TPTS, which is based on Kafka. This ordering service is crash tolerant
but does not provide the required Byzantine Fault Tolerance. An implementation of a
BFT ordering service has already been proposed [5] and it is of major importance that
the Kafka consensus is replaced by a BFT consensus as soon as it is released by the
HLF developers. Based on the above, we consider R1 to be only partially satisfied at
the time of writing but we note that simply plugging in a BFT ordering service in the
near future would lead to proper tamper-resistance for data.

In subsection 5.6.4 the three options for retrieving data from the Blockchain network
were examined. These approaches enable viewing data with different pre-processing
done, ranging from completely raw transactional data to decrypted and formatted data
for easy readability. Queries can be executed either by using a serial number of a
part, a name of a model, or even a specific transaction id. Additionally, these queries
respect the privacy requirements since decryption of data is done on the client side.

64

6.2 Requirement Satisfaction

Unlike centralized approaches, data in TPTS is always available for retrieval given the
distributed nature of the Blockchain network. This means that regardless of potential
node failures queries should always return the requested data. In this regard R8 is fully
satisfied.

6.2.2 Privacy

Requirements 3 and 4 state:

R3 The stored data must be private. Only users authorized through a specified access
policy should be given access to specific data.

R4 The system should support a key escrow scheme for auditing authorities to be
able to view private data. New auditors joining the system should additionally be
able to view private transactions executed in the past

Chapter 4 describes how privacy is incorporated in TPTS through ABE as well as how
attributes are mapped to each of the different type of stakeholders in the system. By
encrypting the data with a symmetric key and subsequently encrypting this symmetric
key with ABE, a mechanism is produced that provides the desired privacy features
while maintaining considerably low encryption and decryption times: approximately
90ms for encryption and 15ms for decryption, with data volumes following the sample
of Fig. 6.1. This approach alone provides the required confidentiality since, to the best
of our knowledge, there have not been any vulnerabilities documented against this ABE
scheme.

One potential issue is having a private key with certain attributes given to an entity that
should not have access to these attributes. For this situation TPTS has defenses in place.
Firstly, a system operator has full knowledge of the identity of each participating user
since all entities are enrolled in one of the system’s Certificate Authorities. Assuming
each individual organization sufficiently controls who gets registered and enrolled, it
should not be possible for an outsider to receive certificates that enable her to interact
with the network. Secondly, the only way for a user to obtain a private ABE key is by
creating a user asset for themselves. Since the username is retrieved automatically by
the chaincode from the user’s certificate, forging one’s username on a user asset is not
possible. Therefore, as long as an OEM – acting as an ABE-authority – makes sure to
always send private keys containing the right ABE attributes to the right usernames,
this scenario cannot threaten the system. In conclusion, R3 and R4 are fully satisfied
through the design of TPTS.

65

Chapter 6: Evaluation

Nevertheless, we ought to discuss the trade-offs between privacy and transparency. En-
crypting data for specific entities means that other actors – who could potentially benefit
themselves or the original entities involved in the transaction – don’t have access to this
information. For instance, let us suppose that a retailer using TPTS as a customer
is ordering 3D models of car parts and has them printed. An alternative transparent
system allowing all data to be public would permit all potential customers to be able to
see the standards under which the parts were printed. In return, this might encourage
more sales just because of the added trust it would place upon the retailer when the
customers know they are purchasing quality parts. There are of course middle ground
solutions such as the retailer offering on-premise access to the network to interested
customers, but an entirely public system would naturally be a lot more accessible by
external users.

Additionally, encrypting data means that it is not possible to provide support for com-
plex queries on assets. HLF offers the possibility to use CouchDB as a state database
instead of LevelDB which is the default. When chaincode values in assets are modeled
as JSON data, CouchDB enables rich queries against these values. There exist a number
of use cases where dealing with plaintext data and being able to execute rich queries
would be beneficial for certain actors. For example, a printer manufacturer might wish
to review how many hours a specific printer which encountered a malfunction has spent
printing parts. The current design, where all data is stored in encrypted form, does
not support this use case. On the other hand, if the printer manufacturer was added
to the access policy this would violate the privacy requirements of the other entities.
Although this is an expected and reasonable trade-off, careful consideration has to be
given to the balance between usability and privacy.

6.2.3 Anonymity

Requirement 5 states:

R5 The stored data must preserve anonymity for the users. Users should not be able
to have knowledge of which entities were involved in a transaction they are not
authorized to access

In HLF it is possible to query the HLF network for a transaction by its ID without
having to invoke a chaincode. This means that any entity with access to the network
can query for those transactions. When retrieving a transaction in this manner it is
possible to see the certificate of the entity who invoked it and thus see the username of
this user. Therefore any user who has access to the system – regardless of its organiza-

66

6.2 Requirement Satisfaction

tional affiliation and other attributes pinned to her certificate – will be able to see the
certificates of three actor types:

• The OEM who executes the type 1 transaction for the asset

• The printshop who prints the part and who executes type 2-4 transactions for this
asset

• The shipping agency which transfers the part to the customer

Naturally, it must be pointed out that the only useful information that can be retrieved
from these certificates are restricted to the commonName field, which by itself cannot
reveal any critical information. This pseudonym is not visibly linked to an actual orga-
nization and the real identities (i.e. the names) of the entities involved in a transaction
are adequately secured under the ABE scheme. Therefore, while it is possible to know
the pseudonyms of the three organizations or actors involved in a transaction involving
an asset with a given serial number, no other information can be retrieved by anyone
other than those three actors or an auditing authority.

In the absolute worst case scenario that the link between the ID of an entity and the
actual name of the organization is revealed through external channels, it is possible
to create new ID for that entity. This can be done by registering this entity with a
new username. For past transactions it would still be possible to know the identities of
the actors whose information have been revealed or leaked in some way, but the data
contained in the transaction would still be protected by the ABE scheme. However,
future transactions would be secure.

There is of course an approach that would make even the aforementioned worst case
scenario infeasibly hard to occur. To elaborate, it would be technically possible to
execute each transaction with a new user – and a new pseudonym – which would ele-
vate the anonymity even further. However, processing the constant new registrations
of users would require a considerably higher complex system with an enhanced user
management scheme. This scheme would have to be able to reliably map each of the
new pseudonyms to one single person or organization, while maintaining these mapping
data anonymous. Nonetheless, this is not a reasonable trade-off given our basic level
of anonymity requirements and we are satisfied with the current balance of anonymity
and system complexity 1.

1There exists a new feature in HLF termed Identity Mixer which has a similar concept and a purpose
of leveraging unlinkability, however at the time of writing of this thesis it was still under development
and not available for usage

67

Chapter 6: Evaluation

Our conclusion is that the system is designed and implemented in such a way that R4
is sufficiently satisfied, although not to an optimal level.

6.2.4 Platform Evaluation

We begin with our considerations regarding the choice of HLF over other potential can-
didates. During the implementation and evaluation process, we found that a number of
its aspects such as the Software Development Kits and certain deployment-related pro-
cedures are unfit for production purposes at the time of writing. This is understandable
as HLF is a new platform and this is something that has been improved a lot upon over
the past few months. It is reasonble to believe that Ethereum Quorum would potentially
present less issues concerning setting up, configuring and interacting with the system.
Nevertheless, HLF proved to be an adequate system on which to implement the design
of TPTS, with very few workarounds needed.

Requirement 2 states:

R2 The chosen platform on which the system will be based should provide Byzantine
Fault Tolerance as well as highly available access to the data

High availability to the data is provided to us by design through the distributed nature
of the network. In the event of node failure the other peers can accommodate any
queries or invocations. However, as already stated in section 5.4 the network is setup
using a Kafka ordering service. This is a superior option compared to using a solo
ordering service with a single orderer where orderer downtime would mean no data
could be added to the network. However even this Kafka-based approach does not
provide Byzantine Fault Tolerance as explained in subsection 6.2.1.

One of the reasons HLF was the platform of choice for this thesis is its pluggable ordering
consensus mechanism. When a BFT implementation is eventually released it should be
easy to replace the Kafka ordering service with it. In that case the system would thus
remain largely untouched and only the HLF deployment configuration would have to be
adapted accordingly with the BFT ordering service. Based on the above we conclude
that R2 is only partially satisfied at the time of writing.

68

6.2 Requirement Satisfaction

6.2.5 Storage Requirements and Longevity of System

Part Serial No.: sn6800b727fc53097d
Status: Shipped
Model: Model#70302
File hash: 35d91262b3c3ec88
OEM ID: OEM#1
OEM Name: Boeing
Printshop ID: Printshop#78459
Printshop Name: Printland LTD.
Customer ID: Customer#40536
Customer Name: Airbus FR
Customer Address: Northington Street 46,

88888 Somewhere
Price quoted: €2695
Printer Serial: YOJCOFSUSY
Print Parameters: Laser power: 65 °C

oxygen: 0.727%
Print duration: 941mins

Post-Processing: Paint Color: Ultramarine
Tracking No.: JJD1437064736260

Figure 6.1: Asset data sample

Requirement 9 states:

R9 The system should be tuned in a way which allows it to operate over a number of
decades without overwhelming its resources or exhibiting performance loss, while
in parallel maximizing the amount of valuable data it can hold.

The storage volume per part asset is expected to account for most of the total data
stored on the ledger. These storage requirements are measured by creating part assets
with random data, a sample of which can be seen in Fig. 6.1. After creating 50 such
assets, findings show that each part asset has a size of 41KB on average, assuming all
four transactions have been executed for this part and all fields have been filled. This
total size per asset includes all the signatures and all other metadata of the transactions.

Presuming a highly demanding scenario where 1000 part assets are added on a daily
basis, this would give us approximately 63 years of storage by using just a 1TB drive
on network peers. This is higher than the 50 years which was set as a lower threshold,
therefore with assets of this size it is perfectly feasible to store all data except the model
file on the ledger itself.

69

Chapter 6: Evaluation

Should an organization desire to store a few more KB’s of data on an asset, the total
storage capacity of each peer can be extended. If however considerably more data have
to be tracked per asset, then different approaches can be implemented where only proof
of these data are stored on the Blockchain. In that scenario, the real data would be
kept on external databases and only references to these data – such as checksum hashes
– would be stored on the ledger. Essentially this is the approach that TPTS follows for
the model files because of their prohibitive size, where only the hash of the models is
included in the transaction.

Lastly it is worth mentioning the pruning function which will be available in the future
for HLF 1. Similarly to Bitcoin’s prune functionality, through the pruning process invalid
transactions are discarded as they do not contribute in any way to the ledger state. This
should help, to a small degree, to maintain the storage requirements to a reasonable
level.

6.3 Risks and Limitations

This section documents potential risks or limitations and discusses how those can be
dealt with. To begin with, let us take the scenario where a particular user acts mali-
ciously against the Blockchain network. For example this could be a person working
for an OEM organization who has access to the certificate which a benign application
would normally use to create transactions for parts being ordered. This person abuses
this certificate to create assets for invalid orders and floods the system with inaccurate
transactions. Given the distributed nature of the network peers it would take a consid-
erable amount of resources to turn this attack into a Denial of Service, so it’s expected
that the network’s nodes would still respond to other valid requests. Nevertheless, the
issue is the accumulation of false transactions on nodes. This asset will never manage
to be updated past the "Ordered" state, therefore this fabricated order will never be val-
idated by a printshop. However the aggregation the massive forged data would burden
the storage of network peers and reduce the system’s longevity.

A system operator would therefore want to prevent the malicious user from further
harming the system. In this case, Fabric CA allows us to revoke an identity, generate
a CRL that contains all certificates of the revoked user and subsequently send a con-
figuration update to the channel so that Member Service Providers are aware of the

1http://hyperledgerdocs.readthedocs.io/en/latest/arch-deep-dive.html#post-v1-validated-ledger-and-
peerledger-checkpointing-pruning

70

6.3 Risks and Limitations

revoked certificates. Understandably that user would also not be allowed to renew his
ABE key, although revoking his certificate would anyhow prevent him from interacting
with the Blockchain network in any manner. Naturally a new certificate would have to
be created for the benign application to allow it to resume operations.

A very crucial limitation of the system is essentially the human factor. For example,
not all 3D printers offer a rich API through which to get appropriate measurements
during the printing process. This means that in some cases it would still be required for
a human operator to document the printing parameters manually, which in turn could
allow for error prone or even malicious behaviour. In turn, this hinders the claim that
TPTS accurately reflects the real world events. The primary solution to this issue is
to integrate the provided client-side code in automated systems with minimal and if
possible no human intervention whatsoever.

71

Chapter 7

Related Work

The previous chapters investigate how to design and implement a system in which data
can be shared among different stakeholders in an efficient, reliable, tamper-resistant
manner while also maintaining a high degree of privacy in order to prevent unauthorized
actors from getting access to that data. In this chapter the contribution of this thesis is
compared and contrasted with a number of different works to demonstrate the novelty
of TPTS and explain why the approach proposed in this thesis has valuable benefits.

In their work "Towards an Ontology-Driven Blockchain Design for Supply Chain Prove-
nance" [12], the authors Henry M. Kim and Marek Laskowski recognize the value of
leveraging the Blockchain technology to track products throughout the supply chain.
Their approach is based on the Ethereum platform and ontology-based modeling, where
ontology is defined as an explicit specification of a conceptualization. While the asset-
based approach is similar to our work, our Trustworthy Process-Tracing System (TPTS)
also incorporates privacy for the data that form assets.

Data accountability and provenance tracking is also investigated by Neisse et al. [17].
The authors examine the utility of publicly auditable contracts deployed on a Blockchain,
which declare the access and usage of personal data. They implement their work on
the Ethereum Platform and propose different models that dictate distinct data usage
policies that map to specific data controllers, data subjects or the data itself. They
additionally include a provenance tracking model where a list of references is updated
every time data is accessed. While in this effort the Blockchain is used solely as a means
to control access to data stored off-chain, in TPTS the bulk of data (except the 3D mod-
els themselves due to their prohibitive file size of multiple megabytes) are stored on the
Blockchain. TPTS also incorporates an alternative form of access policies. This enables

Chapter 7: Related Work

users to dictate a more fine grained control over the permutation of other entities which
are authorized to obtain a set of data.

In "Decentralizing Privacy: Using Blockchain to Protect Personal Data" [21], the authors
present a system where the Blockchain network acts as an automated access-control
manager. Users are allowed to preserve and share encrypted data while controlling the
sharing policies as well as being able to instantly completely opt-out of data sharing.
However, the system only allows all-or-nothing access policies to be defined. This means
that users are not permitted to choose what subset of their data a service is allowed to
access. Secondly, the proposed system is designed to store data off the Blockchain on a
separate distributed database in order not to overwhelm the Blockchain peers with mass
data. Lastly, the retrieval of data from the Blockchain relies on centralized services that
process queries.

On the contrary, in TPTS the data is not only stored directly on the Blockchain but the
system also provides a mechanism where one can fine tune who has access to a specific
subset of transactional data. Additionally, the design presented in this thesis provides
a scalable and decentralized method to interact directly with the Blockchain network
itself to store and retrieve data. Furtheremore, one additional key feature of the privacy
mechanism in TPTS is offering a key escrow arrangement that allows selected auditing
authorities to have full access to all transactions without the user having to explicitly
permit access to these data.

Healthcare resource sharing and management of Electronic Health Records (EHR) has
also been the focus of recent research. Two approaches which exhibit close similarities
to our work are hereby examined and compared to TPTS.

First, Barua et. al [4] propose the ESPAC (Efficient and Secure Patient-centric Access
Control) scheme for implementing patient-centric access control for Personal Health
Information. In ESPAC the data are stored encrypted with CP-ABE on cloud services.
There exists a single Trusted Authority (TA) which distributes ABE keys to entities
of the system and messages are encrypted and authenticated according to a specified
access policy. In this solution patients encrypt data which they submit to health care
providers. These providers subsequently store the data on cloud services, where entities
can access them upon request.

In the second work in the healthcare area [16] Narayan S. et al describe a similar
system where the focus lies on the secure management and storage of EHRs on a cloud
service. Similarly to [4], CP-ABE is utilized to associate users with a unique identifier
as well as specific attributes and encrypt data with desired access policies. A single
TA is responsible for distributing keys, although the authors would also like to explore

74

alternatives based on multi-authority ABE. Patients add encrypted data on the cloud
and subsequently utilize a client application to securely notify a doctor or any other
medical service provider about these records. The cloud provider is authorized to view
and copy this encrypted information but does not have access to the plain text.

Similar to the mechanism of TPTS for allowing auditors to inspect data, both works
support key escrow schemes for permitting record access to selected entities in case of
emergencies. Both solutions also provide forward secrecy through an access revocation
scheme. This is achievable by manually re-encrypting the target data record with a new
access policy which excludes the attributes of the revoked entity.

Despite noticeable similarities concerning how ABE is leveraged to provide an access
permission layer, two key differences can be identified between the two aforementioned
works and TPTS. Firstly, in TPTS data are stored on a decentralized system which
offers complete traceability of all transactions. This means that every time data is
altered or processed by the Blockchain nodes in any manner, an immutable record of
this activity is documented. One of the main incentives for employing the Blockchain
technology in this thesis is the added benefit of tamper-resistant storage, something
which is not available in either of the two other solutions described. On the other hand,
one shortcoming of TPTS is that having immutable data prevents the implementation
of a data access revocation mechanism, while such a scheme does exist in both the above
works. Nevertheless, the effects from the lack of access revocation have been mitigated
to a certain extent by integrating key issuance dates and allowing actors to define their
own requirements for how often they would like private keys to be renewed.

Secondly, TPTS supports multiple coexisting ABE authorities. This decision was taken
in order to prevent one central authority to govern all key distribution within the system,
as this would likely create unnecessary trust issues from the system’s actors towards the
central ABE authority. The reason for doing so is that distributing this trust among
a number of organizations aligns better with the defined goals for creating a system
relying on low-trust.

In conclusion and to the best of our knowledge, our novel contribution is unique in the
manner TPTS combines principles of reliable and tamper-resistant storage as well as
privacy control for the purpose of supply chain traceability. These offerings are all pro-
vided over a decentralized and near-trustless network in which entities can operate. In
particular, the ABE privacy mechanism proposed in this system enables fine-grained au-
thorization through precise access policies which additionally permit entities to decrypt
the encrypted transactions regardless of the point in time they joined our system.

75

Chapter 8

Conclusions

In this thesis we have presented the current situation in the industrial supply chains
as well as why transparent traceability of items throughout this chain has compelling
benefits for the companies, their customers and potential auditors. Additionally, or-
ganizations can obtain significant competitive advantages in the area of supply chain
management by exploiting technological advances.

For that purpose the Trustworthy Process-Tracing System (TPTS) is presented. It
provides reliable and tamper-resistant traceability of items throughout the supply chain
while maintaining certain privacy guarantees for the data referencing those items. TPTS
allows stakeholders to reflect real world transactions and steps of the supply chain on a
distributed ledger. CP-ABE is an essential part of the privacy mechanism used by the
system, providing an access layer for authorized stakeholders and auditing authorities
to be able to view transactional data. The implementation of this system is particularly
focused in the area of 3D printing, but its design could easily be adapted to other
industries while its core features would remain untouched.

Evaluation shows that TPTS supports the majority of desired functional requirements.
Regrettably the implementation of Hyperledger Fabric currently uses a Kafka-based
approach for its ordering service which is lacking BFT consensus mechanism. Never-
theless, a PBFT approach for the ordering of transactions is expected to be developed
in the near future which should effortlessly replace the current one.

It is important to note that this thesis simply provides the infrastructure on which
to reflect real world transactions. While some information can be reliably retrieved
directly from hardware, there are still human actors involved in gathering and storing

data for certain steps. This means that records stored on the ledger could possibly be
a misrepresentation of the actual data which were mishandled by such actors.

It is valuable at this point to discuss about the Blockchain technology and whether it
actually has significant contributions in practice. Through this work we demonstrate
that a Blockchain system which implements the aforementioned requirements is not
only feasible, but it indeed exhibits noteable advantages over a traditional database
system. However, the Blockchain is often presented as a panacea which can provide a
solution to any problem and any use case. This is far from the truth, since systems
of this type have their own obstacles to overcome. To elaborate, Blockchain platforms
have to balance three factors through their architecture in general:

1. Transaction throughput

2. Adequate security to prevent actors from gaining majority control over the network

3. Decentralized block creation

HLF takes care of the first through its permissioned nature and distinct private channels
to reach a throughput of thousands of transactions per second. As for the second fac-
tor, HLF prevents entities from controlling the network through the endorsing policies.
Regarding the third factor however, the relative centrality of the ordering peers can
be an issue since the ordering service controls which transactions go into blocks. One
cannot claim that a network controlled by a limited number of these ordering peers is
trustless, regardless of which stakeholders are in control of them. On the other hand,
the network cannot scale to more than a few dozens of orderers before throughput is
impacted negatively. Therefore there is a major trilemma to be considered among these
three factors without a clear answer. For now we consider this work to be an acceptable
middle ground between complete isolation of data and a full trustless system.

A valuable point of extension for TPTS is the integration of zero-knowledge proofs for
the encrypted data. A thorough investigation would have to be carried out to identify
which fields could possibly be standardized to make it possible for such methods to
perform data validation on encrypted data. Such an addition would be beneficial for the
system not only for the purposes of data verification, but it would also allow stakeholders
to perform data analytics to a certain degree on these confidential data.

78

Chapter A

Appendix

A.1 Deployment Configuration

Below we include a shortened version of a deployment configuration file (orgs.json):

{

"domain": "example.com",

"TLS": true,

"docker": {

"fabricTag": "1.1.0",

"network": "trustNetwork",

"orderer": {

"type": "kafka",

"genesis_block": {

"file": "trust.block",

"profile": "trustGenesis"

},

"kafka": {

"zookeepers": {

"zookeeper0": {

"MY_ID": 0

},

"zookeeper1": {

"MY_ID": 1

}

Chapter A: Appendix

},

"kafkas": {

"kafka0": {

"BROKER_ID": 0

},

"kafka1": {

"BROKER_ID": 1

}

},

"orderers": {

"orderer0": {

"portMap": {

"7050": 7050

}

},

"orderer1": {

"portMap": {

"7050": 8050

}

}

}

},

"MSP": {

"name": "OrdererMSPName",

"id": "OrdererMSP"

}

},

"channels": {

"trustedchannel": {

"file": "trust.tx",

"eventWaitTime": 30000,

}

},

"orgs": {

"org1": {

"peers": [

{

"container_name": "peer0.org1.example.com",

80

A.1 Deployment Configuration

"portMap": [

{

"host": 7051,

"container": 7051

},

{

"host": 7053,

"container": 7053

}

]

},

{

"container_name": "peer1.org1.example.com",

"portMap": [

{

"host": 7061,

"container": 7051

},

{

"host": 7063,

"container": 7053

}

]

}

],

"userCount": 0,

"ca": {

"enable": true,

"admin": {

"name": "admin",

"pass": "3sdafuyqghn3io34"

},

"portHost": 7054,

"tlsca": {

"portHost": 7055

}

},

"MSP": {

81

Chapter A: Appendix

"name": "org1",

"id": "Org1MSP"

}

}

}

}

}

A.2 Client-Side Configuration

An example of configuration file for the client side:

{

"user": "user2",

"password": "fw4ac335t",

"Peers":

[

{

"name": "peer0",

"org": "org1",

"address": "example.com:7051",

"event_address": "example.com:7053"

},

{

"name": "peer1",

"org": "org1",

"address": "example.com:7061",

"event_address": "example.com:7063"

},

{

"name" : "peer0",

"org" : "org3",

"address" : "example.com:9051",

"event_address": "example.com:9053"

}

],

"Orderers":

[

82

A.2 Client-Side Configuration

{

"name" : "orderer",

"address" : "example.com:7050"

}

],

"ca_org": "org1",

"mspid": "Org1MSP",

"Fabric_CA": "example.com:7054"

}

83

Chapter B

List of acronyms

ABE Attribute-Based Encryption.

AM Additive Manufacturing.

BFT Byzantine Fault Tolerance.

CP-ABE Ciphertext-Policy Attribute-Based Encryption.

FCA Fabric Certificate Authority.

HLF Hyperledger Fabric.

OEM Original Equipment Manufacturer.

PL Packet Loss.

Bibliography

[1] S.A. ABEYRATNE and R.P. MONFARED. “Blockchain ready manufacturing
supply chain using distributed ledger.” In: International Journal of Research in
Engineering and Technology (2016), pp. 1–10. issn: 2321-7308. doi: 10.15623/
ijret.2016.0509001. url: https://dspace.lboro.ac.uk/2134/
22625.

[2] Joseph A. Akinyele et al. “Charm: a framework for rapidly prototyping cryptosys-
tems”. In: Journal of Cryptographic Engineering 3.2 (2013), pp. 111–128. issn:
2190-8516. doi: 10.1007/s13389-013-0057-3. url: https://doi.org/
10.1007/s13389-013-0057-3.

[3] Elli Androulaki et al. Hyperledger Fabric: A Distributed Operating System for
Permissioned Blockchains. 2018. eprint: arXiv:1801.10228.

[4] Mrinmoy Barua et al. “ESPAC: Enabling Security and Patient-centric Access
Control for eHealth in Cloud Computing”. In: Int. J. Secur. Netw. 6.2/3 (Nov.
2011), pp. 67–76. issn: 1747-8405. doi: 10.1504/IJSN.2011.043666. url:
http://dx.doi.org/10.1504/IJSN.2011.043666.

[5] Alysson Bessani, João Sousa, and Marko Vukolić. “A Byzantine Fault-tolerant
Ordering Service for the Hyperledger Fabric Blockchain Platform”. In: Proceed-
ings of the 1st Workshop on Scalable and Resilient Infrastructures for Distributed
Ledgers. SERIAL ’17. Las Vegas, Nevada: ACM, 2017, 6:1–6:2. isbn: 978-1-4503-
5173-7. doi: 10.1145/3152824.3152830. url: http://doi.acm.org/10.
1145/3152824.3152830.

[6] J. Bethencourt, A. Sahai, and B. Waters. “Ciphertext-Policy Attribute-Based En-
cryption”. In: 2007 IEEE Symposium on Security and Privacy (SP ’07). 2007,
pp. 321–334. doi: 10.1109/SP.2007.11.

[7] Kyle Croman et al. “On Scaling Decentralized Blockchains”. In: Financial Cryp-
tography and Data Security. Ed. by Jeremy Clark et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 106–125. isbn: 978-3-662-53357-4.

https://doi.org/10.15623/ijret.2016.0509001
https://doi.org/10.15623/ijret.2016.0509001
https://dspace.lboro.ac.uk/2134/22625
https://dspace.lboro.ac.uk/2134/22625
https://doi.org/10.1007/s13389-013-0057-3
https://doi.org/10.1007/s13389-013-0057-3
https://doi.org/10.1007/s13389-013-0057-3
arXiv:1801.10228
https://doi.org/10.1504/IJSN.2011.043666
http://dx.doi.org/10.1504/IJSN.2011.043666
https://doi.org/10.1145/3152824.3152830
http://doi.acm.org/10.1145/3152824.3152830
http://doi.acm.org/10.1145/3152824.3152830
https://doi.org/10.1109/SP.2007.11

[8] Primavera De Filippi. “The Interplay between Decentralization and Privacy: The
Case of Blockchain Technologies”. In: Journal of Peer Production (7: Alterna-
tive Internets 2016), pp. 1–10. issn: 2321-7308. url: https://ssrn.com/
abstract=2852689.

[9] Vipul Goyal et al. “Attribute-based Encryption for Fine-grained Access Control
of Encrypted Data”. In: Proceedings of the 13th ACM Conference on Computer
and Communications Security. CCS ’06. Alexandria, Virginia, USA: ACM, 2006,
pp. 89–98. isbn: 1-59593-518-5. doi: 10.1145/1180405.1180418. url: http:
//doi.acm.org/10.1145/1180405.1180418.

[10] Stuart Haber and W. Scott Stornetta. “How to time-stamp a digital document”.
In: Journal of Cryptology 3.2 (1991), pp. 99–111. issn: 1432-1378. doi: 10.1007/
BF00196791. url: https://doi.org/10.1007/BF00196791.

[11] Don Johnson, Alfred Menezes, and Scott Vanstone. “The Elliptic Curve Digital
Signature Algorithm (ECDSA)”. In: International Journal of Information Security
1.1 (2001), pp. 36–63. issn: 1615-5262. doi: 10.1007/s102070100002. url:
https://doi.org/10.1007/s102070100002.

[12] Henry M. Kim and Marek Laskowski. “Towards an Ontology-Driven Blockchain
Design for Supply Chain Provenance”. In: CoRR abs/1610.02922 (2016). arXiv:
1610.02922. url: http://arxiv.org/abs/1610.02922.

[13] A. Kosba et al. “Hawk: The Blockchain Model of Cryptography and Privacy-
Preserving Smart Contracts”. In: 2016 IEEE Symposium on Security and Privacy
(SP). 2016, pp. 839–858. doi: 10.1109/SP.2016.55.

[14] Douglas M. Lambert, Martha C. Cooper, and Janus D. Pagh. “Supply Chain
Management: Implementation Issues and Research Opportunities”. In: The Inter-
national Journal of Logistics Management 9.2 (1998), pp. 1–20. doi: 10.1108/
09574099810805807. eprint: https://doi.org/10.1108/09574099810805807.
url: https://doi.org/10.1108/09574099810805807.

[15] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine Generals
Problem”. In: ACM Trans. Program. Lang. Syst. 4.3 (July 1982), pp. 382–401.
issn: 0164-0925. doi: 10.1145/357172.357176. url: http://doi.acm.
org/10.1145/357172.357176.

[16] Shivaramakrishnan Narayan, Martin Gagné, and Reihaneh Safavi-Naini. “Privacy
Preserving EHR System Using Attribute-based Infrastructure”. In: Proceedings
of the 2010 ACM Workshop on Cloud Computing Security Workshop. CCSW
’10. Chicago, Illinois, USA: ACM, 2010, pp. 47–52. isbn: 978-1-4503-0089-6. doi:
10.1145/1866835.1866845. url: http://doi.acm.org/10.1145/
1866835.1866845.

88

https://ssrn.com/abstract=2852689
https://ssrn.com/abstract=2852689
https://doi.org/10.1145/1180405.1180418
http://doi.acm.org/10.1145/1180405.1180418
http://doi.acm.org/10.1145/1180405.1180418
https://doi.org/10.1007/BF00196791
https://doi.org/10.1007/BF00196791
https://doi.org/10.1007/BF00196791
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
http://arxiv.org/abs/1610.02922
http://arxiv.org/abs/1610.02922
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1108/09574099810805807
https://doi.org/10.1108/09574099810805807
https://doi.org/10.1108/09574099810805807
https://doi.org/10.1108/09574099810805807
https://doi.org/10.1145/357172.357176
http://doi.acm.org/10.1145/357172.357176
http://doi.acm.org/10.1145/357172.357176
https://doi.org/10.1145/1866835.1866845
http://doi.acm.org/10.1145/1866835.1866845
http://doi.acm.org/10.1145/1866835.1866845

[17] Ricardo Neisse, Gary Steri, and Igor Nai-Fovino. “A Blockchain-based Approach
for Data Accountability and Provenance Tracking”. In: Proceedings of the 12th In-
ternational Conference on Availability, Reliability and Security. ARES ’17. Reggio
Calabria, Italy: ACM, 2017, 14:1–14:10. isbn: 978-1-4503-5257-4. doi: 10.1145/
3098954.3098958. url: http://doi.acm.org/10.1145/3098954.
3098958.

[18] Phillip Rogaway and Thomas Shrimpton. “Cryptographic Hash-Function Basics:
Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage
Resistance, and Collision Resistance”. In: Fast Software Encryption. Ed. by Bi-
mal Roy and Willi Meier. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 371–388. isbn: 978-3-540-25937-4.

[19] Feng Tian. “An agri-food supply chain traceability system for China based on
RFID blockchain technology”. In: 2016 13th International Conference on Service
Systems and Service Management (ICSSSM). 2016, pp. 1–6. doi: 10.1109/
ICSSSM.2016.7538424.

[20] Marko Vukolić. “The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT
Replication”. In: Open Problems in Network Security. Ed. by Jan Camenisch and
Doğan Kesdoğan. Cham: Springer International Publishing, 2016, pp. 112–125.
isbn: 978-3-319-39028-4.

[21] Guy Zyskind, Oz Nathan, and Alex ’Sandy’ Pentland. “Decentralizing Privacy:
Using Blockchain to Protect Personal Data”. In: Proceedings of the 2015 IEEE
Security and Privacy Workshops. SPW ’15. Washington, DC, USA: IEEE Com-
puter Society, 2015, pp. 180–184. isbn: 978-1-4799-9933-0. doi: 10.1109/SPW.
2015.27. url: http://dx.doi.org/10.1109/SPW.2015.27.

89

https://doi.org/10.1145/3098954.3098958
https://doi.org/10.1145/3098954.3098958
http://doi.acm.org/10.1145/3098954.3098958
http://doi.acm.org/10.1145/3098954.3098958
https://doi.org/10.1109/ICSSSM.2016.7538424
https://doi.org/10.1109/ICSSSM.2016.7538424
https://doi.org/10.1109/SPW.2015.27
https://doi.org/10.1109/SPW.2015.27
http://dx.doi.org/10.1109/SPW.2015.27

	Introduction
	Topic
	Goals
	Outline

	Background
	Introduction to the Blockchain Technology
	Basic Concepts
	Consensus Mechanisms

	Hyperledger Fabric
	Architecture
	Ordering Service
	Endorsement Policies
	Transaction Flow
	Fabric Certificate Authority

	Cryptography
	Basic Principles of modern Cryptography
	Symmetric and Asymmetric Encryption
	Attribute-Based Encryption: Ciphertext-Policy and Key-Policy

	Analysis
	Problem Statement
	Reliable Asset Tracking in the Supply Chain
	Use Cases
	Leveraging the Blockchain Technology for Asset Traceability
	Evaluation of available Blockchain Platforms

	Data Management
	Privacy and Anonymity
	Verifiability and Data Validation
	Accessing Data
	System Longevity Analysis

	Summary of Requirements

	Design
	Overview
	Reflecting the Supply Chain on the Blockchain
	Privacy Principles
	Data Model
	User Asset
	Part Asset
	Model Asset

	User Management and Distribution of Cryptographic Material
	User Registration with the Blockchain Network
	Private ABE Key Retrieval

	Conclusion

	Implementation
	Overview
	Platform Selection
	Development Environment
	Infrastructure Setup and Deployment
	Chaincode Implementation
	Users Chaincode
	Parts Chaincode
	Models Chaincode

	Client-Side Implementation
	Authenticating with the HLF Network
	CP-ABE Implementation
	Creating and updating a Part Asset
	Retrieving Data from the Blockchain Network

	Evaluation
	Performance Evaluation
	Evaluation Environment
	Throughput
	Resilience Testing

	Requirement Satisfaction
	Evaluation of Main Goals
	Privacy
	Anonymity
	Platform Evaluation
	Storage Requirements and Longevity of System

	Risks and Limitations

	Related Work
	Conclusions
	Appendix
	Deployment Configuration
	Client-Side Configuration

	List of acronyms
	Bibliography

