TN

TECHNISCHE UNIVERSITAT MUNCHEN
DEPARTMENT OF INFORMATICS

MASTER’S THESIS IN INFORMATICS

Deep Learning in Smart Spaces

Markus Loipfinger







LT 0

TECHNISCHE UNIVERSITAT MUNCHEN
DEPARTMENT OF INFORMATICS

MASTER’S THESIS IN INFORMATICS

Deep Learning in Smart Spaces

Deep Learning in intelligenten Umgebungen

Author Markus Loipfinger

Supervisor Prof. Dr.-Ing. Georg Carle

Advisor Dr. Marc-Oliver Pahl, Stefan Liebald
Date September 15, 2017

Informatik VIII
Chair for Network Architectures and Services LA







I confirm that this thesis is my own work and I have documented all sources and material
used.

Garching b. Miinchen, September 15, 2017

Signature






Abstract

We aim to provide machine learning as a service with the result that users with little
or even no pre-knowledge in the area of machine learning are able to create, train and
deploy their own neural network. This is achieved by modularizing three machine
learning algorithms into suitable building blocks.

Both the training times and the running times of our neural network services are
comparable to the training times and running times of a regular implementation of the
respective neural networks. The advantage of our approach, however, is that users do
not have to implement the whole machine learning algorithm from scratch. Hence, our
service approach saves time and does not imply expert knowledge in machine learning
and the respective machine learning library.






Zusammenfassung

Wir wollen maschinelles Lernen als Service zur Verfiigung stellen. Das ermdglicht uner-
fahrenen Benutzern die Erstellung, das Trainieren und die Anwendung eines neuronalen
Netzes. Folglich ist weder Wissen in dem Bereich des maschinellen Lernens notwen-
dig, noch Erfahrung im Umgang mit der jeweiligen Programmbibliothek vorausgesetzt.
Dies wird dadurch erreicht, dass wir drei verschiedene Algorithmen des maschinellen
Lernens modularisieren.

Die Trainingszeiten und Laufzeiten unserer Services sind vergleichbar mit den Trainings-
und Laufzeiten der reguldren Implementierung des entsprechenden neuronalen Netzes.
Ein Vorteil unserer Vorgehensweise ist jedoch, dass sich der Nutzer Zeit spart, in dem
Sinne, dass er das neuronale Netz nicht von Grund auf implementieren muss. Des Weite-
ren wird kein Wissen im Bereich des maschinellen Lernens und in der entsprechenden
Programmbibliothek vorausgesetzt.






Contents
1 Introduction 1
1.1 Goalofthethesis ... ... ... ... ... ... ... ... ... 2
1.2 Outline . . . .. ... e 2
1.3 Methodology . . . . . . . . . 3
2 Analysis 5
21 Deeplearning . . . . . .. . ... e 5
211 Background . . ... ... Lo
2.1.2  Machine Learning Classifier . . . . ... ... ... ....... 14
213  Techniques . . . .. .. ... .. ... 17
2.1.4 Application Scenarios . . ... ... ... L L 49
2.1.5 Machine Learning & Deep Learning Frameworks . . . . . . .. 50
2.2 Smart Space Orchestration with VSL . . . . . .. ... ... ... ... 56
221 ContextModels . . . . ... ... L L 56
222 KnowledgeGraph . ... ... ... .. ... .. .. .. ..... 57
2.23 Knowledge Structuring . . . . . . .. ... Lo 58
224 Knowledge Vectors . . . . . ... ... .. 58
2.3 Using Machine Learning and Deep Learning in Smart Spaces . . . . . . 60
24 Summary . . ... e 61
2.5 Overview over Machine / Deep Learning Approaches in Smart Spaces . 63
3 Related Work 67
3.1 Machine Learning and Deep Learning in Smart Environments . . . . . 67
3.1.1 ACHE - A Neural Network House . . . . ... ... ... .... 67
3.1.2  Reinforcement Learning aided Smart-Home Decision-Making
in an Interactive Smart Grid . . . . . ... ... . oL 69
3.1.3 MavHome: An Agent-based Smart Home . ... ... ... .. 70

3.1.4  Smart Home Design for Disabled People based on Neural Networks 71
3.1.5 Recognizing Human Activity in Smart Home using Deep Learn-

ing Algorithm . . . . . . ... .. ... ... . .. 72
3.1.6 Human Behavior Prediction for Smart Homes using Deep Learning 73
3.1.7  Smart Home System Design based on Artificial Neural Networks 74



I

4

5

6

Contents
3.2 Machine Learning and Deep Learning in Classification Tasks . . . . . . 75
3.2.1  Deep Big Simple Neural Nets Excel on Handwritten Digit Recog-
nition . . ... 75
3.2.2  Deep Learning-Based Feature Representation for AD/MCI Clas-
sification . . . ... L 76
3.2.3 Domain Adaption for Large-Scale Sentiment Classification: A
Deep Learning Approach . . .. ... ... .. ... ...... 78
3.2.4 Deep Learning-Based Classification of Hyperspectral Data . . . 80
3.2.5  Using Deep Learning to enhance Cancer Diagnosis and Classifi-
cation . . . ... 81
33 Summary . ... .. e e e 84
Design 89
41 Reusability & Usability . . .. ... ... ... ... .. ......... 89
4.2 Parameters and Hyperparameters used in Neural Networks . . . . . . . 90
4.3 Machine Learning Algorithm as VSL-Service . . . . .. ... ... ... 91
43.1 Feedforward Neural Network . . . . ... ... ... ...... 94
432 DeepBeliefNetwork . . .. ... ... ... .. ... ...... 95
433 Recurrent Neural Network . . . . ... ... .. ... ...... 95
Implementation 99
51 Tools . . . .o e 99
5.2 Implementation Details . . . . . ... ... ... ... ... .. .. ... 100
5.2.1  Structure of the Services . . . . . ... ... ... ... ... 100
5.2.2 Read Configuration File . . . .. ... ... ... ... ..... 100
523 PrepareDataSets . . . ... ... ... ... ... 101
5.24 Feedforward Neural Network . . . .. ... ........... 103
5.2.5 DeepBeliefNetwork . . . ... ... ... ... ... ... .. 103
5.2.6  Recurrent Neural Network . . . . ... ... ... ........ 104
5.3 Example: MNIST DataSet . .. ... ... . ... ... ......... 104
5.3.1 Feedforward Neural Network . . ... ... ........... 105
53.2 DeepBeliefNetwork . . .. ... ... .. ... ......... 106
5.3.3 Recurrent Neural Network . . . . ... ... ... ... ... 107
Evaluation 109
6.1 Quantitative Evaluation Results using different Data Sets . . . . . . . . 109
611 ADLDataSet . . .. ... ... ... .. ... ... ..., 110
6.1.2 MIT Smart Home DataSet . . . . . ... ... .......... 112
6.1.3 RecognitionDataSet . . . . ... ... ... ........... 113
6.14 MNISTDataSet. ... ... ... ... ... ........... 114
6.2 Performance Analysis . . . . . . ... .. ... 116
6.3 Qualitative EvaluationResults . . . . ... ... ... .......... 118



Contents III

6.4 SUMMATY . . . . . ..o e e e 121
7 Conclusion 123
7.1 Futurework . ... ... 124
A Further Configuration Files 125
B Compared Training Times and Running Times 129

Bibliography 133






List of Figures

2.1

2.2

2.3
24
2.5
2.6

2.7

2.8

2.9

2.10

2.11

2.12

An example for learning complex features out of simpler representa-
tions [1]. . . . . . . ..
An artificial neuron with inputs x; and output y. Each input value is
weighted by a weight w;. The bias of the neuron is added to the weighted
sum of inputs. The output is computed by applying an activation func-

Sigmoid function . . . .. ... o L
Hyperbolic tangent function . . . . . ... ... ... ... ... ....
Rectified Linear Unit (ReLU) function . . . . .. ... ... ... ....
Two maxout units hy, h, with k = 4 unit groups in front (derived
from [2]). The output of both maxout units can be used for further
PrOCessSing. . . . . . . . ... e e
Dividing two classes in a low dimensional space using one linear hyper-
plane (derived from [3]). . . . . ... .. ... oL
The difficulty of dividing two non-linear separateable classes in low
dimensions (on the left). This issue can be solved by increasing the
dimensionality into a higher space (on the right) [4]. . . . . . . .. ...
Two different kinds of neural networks (derived from [5]). To preserve
overview, the arrows in (b) were omitted. . . . . ... ... ... ....
An example of 2D-convolution (derived from [6]). Note the dimension-
ality reduction after applying the convolution operation to the whole

Parameter sharing. a) shows the parameter sharing of a convolution
model, where the blue-colored arrow denotes the middle element of
a three-element kernel. Each input uses the same parameter (middle
element). b) shows a fully-connected model. The blue-colored arrow
indicates the middle element of the weight matrix. There is no weight
sharing, as each parameter is only used once (derived from [6]).

Denotations in Convolutional Neural Networks (CNNs). 2.12(a) shows a
layer of depth three and 2.12(b) shows same and valid padding (derived

21



VI

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23
2.24

2.25
2.26

2.27

2.28

2.29
2.30

List of Figures

A convolution pyramid resulting in compensating a large dimensionality
in width and height by a larger depth. This is done layer by layer (derived
from [7]). Attached after the last convolution layer is a regular fully-
connected neural network used for classification [6]. . ... ... ...
A 1 X 1 convolution added to a patch to obtain a mini neural network
(derived from [7]). . . . . . . . . ...
An Autoencoder (AE) with the encoding step on the left and the decod-
ing stepontheright. . .. ... ... ... . ... . ... .. ...

Restricted Boltzmann Machine (RBM) with four visible units connected
tothree hiddenunits. . . . . . ... ... ... ... L.
Reconstruction of the RBM input using a positive and negative gradient,
respectively. . . . . ..

An example for a Deep Belief Network (DBN) consisting of stacked
RBMs (derived from [8]). . . . . . . . ... . ... ... ... ... ...

A Recurrent Neural Network (RNN) on the left, the unfolded represen-
tation over time ¢ on the right (derived from [9]). . .. ... ... ...

Another representation of a RNN to clarify the usage of the previous

hidden state which is fed into the current hidden state (derived from [10]).

A Long Short-Term Memory (LSTM) cell, where both a denote the op-
portunity of using any non-linear activation function and o corresponds
to the sigmoid activation function. The dotted arrows indicate the pos-
sibility of the state of the previous step s;_; as extra input to the gating
units at time ¢ (derived from [6]). . . ... ... ... ... ... .. ..
An unfolded LSTM network to illustrate the flow of the state s; and the
output h; (derived from [11]). . . . ... . ... ... ...
The principle of a deep Q-network (derived from [12]). . .. .. .. ..
p(x) and g(x) denote the density functions of the probability distribu-
tions P and Q. The aim is to let both density functions overlap by mini-
mizing the error computed with the Kullback-Leibler (KL) divergence
and thus adjusting the weights. . . . .. ... ... .. ... ......
The principle behind Gradient Descent (GD) [6]. . . . . . .. ... ...

The principle behind momentum optimization. The gradients with an
additional momentum term (colored orange) accelerate learning (derived
from[6]). . . . . . . .
An illustration of underfitting on the left and overfitting on the right
side. The optimal capacity is shown in the middle (derived from [6]).
The principle of early stopping (derived from [7]). . . . ... ... ...
The Virtual State Layer (VSL) [13].. . . . . . . ... .. ... ... ...
Context management in Distributed Smart Space Orchestration System
(DS20S) [13] + + o e e e e e e

23

23

24

25

27

28

29

30

31

32
35

36
37

38

45

47
56



List of Figures VII

2.31 A knowledge graph constructed with three Knowledge Agents (KAs),
each one connected to the root node. Each KA has its own services. . . 58

3.1 Reconstruction of the input (a) at different iteration epochs 1, 10, 100,
1000 and 3500, respectively from (b) to (f) [14]. . . . . . . . . ... ... 82

3.2 Training time of an AE according to different hidden and input sizes (a),
the elapsed time on each epoch with varying hidden sizes (b) and the
elapsed time on each epoch while varying the input size [14]. . . . . . 82

4.1 Functionality of a machine learning service. . . . ... ... ... ... 94

4.2 An example of a configuration file used to initiate a Feedforward Neural
Network (FFNN). The file contains the default values. It is necessary to
change the feature size and the output size accordingly. Furthermore,
one has to provide a path to save the model. To create a deeper model
the number of hidden layers can be extended in the respective section. 96

4.3  An unfolded representation of the recursive method used to compute
the predicted output of a FFNN. As the output activation function might
differ from the activation functions of the hidden layers, the last step,
i.e. to compute the outcome of the output layer, is excluded from the
TECUTSION. . . . . o v v v vttt e 97

4.4 Design of a RNN consisting of three stacked LSTM cells. . . . ... .. 98

5.1 Example images from the MNIST data set of handwritten digits [15] [16]. 105

5.2 The development of the loss function and the accuracy during the train-
ingphaseof aFFNN. . . .. .. ... ... . ... ... . ... ... .. 107

5.3 Decaying reconstruction error of a DBN built-up by stacking 6 RBMs. . 107

5.4 The development of the loss function and the accuracy during the train-
ing phase of a RNN. Both, loss and accuracy were taken every training
iteration. . . . .. ... 108

6.1 Two graphs representing the loss (6.1(a)) and the accuracy (6.1(b)). Both
were taken every training iteration. The blue, continuous line indi-
cates the training set performance and the red, dashed line denotes the
performance on the validationset. . . . . .. ... ... ... ...... 111

6.2 Two graphs representing the loss (6.2(a)) and the accuracy (6.2(b)). Both
are taken every training iteration. The blue, continuous line indicates
the training set performance and the red, dashed line denotes the per-
formance on the validationset. . . . . ... ... ... .......... 114



VIII

6.3

6.4

6.5

6.6

Al

A2

B.1

B.2

List of Figures

The training times of our approach and the corresponding regular imple-
mentation. Each training procedure is repeated 50 times. Furthermore,
in Figure 6.3(a) and Figure 6.3(c) the mean convergence point including
its corresponding loss value is depicted. Both bends in Figure 6.3(b)
indicate the training of a new RBM. Figure 6.3(c) shows the overlapping
training times of the RNN service and the regular RNN implementation.
A more detailed representation of the training times of iteration 500 is
showninFigure 6.4. . . . . . . . . ... L

A more detailed representation of training iteration 500 showing the
difference in the training times of the regular implementation and our
service approach. Every data point indicates on run of the respective
network. . . ... ...

The difference in the training time between our approach and the cor-
responding regular implementation. Furthermore, the mean value of
the difference in the training times is shown. In Figure 6.5(a) and Fig-
ure 6.5(b) our approach is always slightly slower than the regular imple-
mentation. In Figure 6.5(c), however, the difference in the training times

alternates. A negative value indicates that the RNN service is faster than

the regular implementation. . . ... ... ... ... ... ... ..

A detailed representation of the run time distribution of each neural
network pair. . . . . . . ...

An example of a configuration file used to initiate a DBN. The file
contains the default values. It is necessary to change the feature size
accordingly. Furthermore, one has to provide a path to save the model.
To create a deeper model the number of RBMs can be extended in the
respective section. If an Artificial Neural Network (ANN), e.g. a FFNN,
is stacked on top of the DBN an output size is required. . . . . . . . ..

An example of a configuration file used to initiate a RNN. The file
contains the default values. It is necessary to change the feature size,
the output size and the number of time steps accordingly. Furthermore,
one has to provide a path to save the model. To create a deeper model
the number of LSTM cells can be extended in the respective section. . .

A comparison of all training times. The DBNs have the least training
time but the most iterations whereas the RNNs have the least iterations
and the longest training time. . . . . . . ... ... . L

A comparison of all running times. Except for the RNNs our service ap-
proaches run slightly slower than the regular implementation. However,
our RNN approach runs considerably faster than the regular implemen-
tation. . . . . ...

117

127



List of Figures IX

B3

A box plot showing the distribution of the running times of each neural
network. A cross marks an outlier, and the horizontal line in a box
marks the median running time. Each running process is repeated 1000






XI

List of Tables

2.1
2.2

31

3.2

3.3

34

4.1

6.1

6.2

6.3

Overview over machine / deep learning approaches in smart spaces (1/2). 64

Overview over machine / deep learning approaches in smart spaces (2/2). 65

Performance of the Stacked Autoencoder (SAE)-classifier denoted with
mean =+ standard deviation. The number of hidden units is given from
bottom-to-top layer. . . . . . . ... 78
The impact of the depth of a SAE according to the classification accu-
racy [14]. . . . o e 82
Evaluation of the different approaches mentioned in the related works
according to smart environments. (*) These networks were evaluated

on both datasets MIT1 & MIT2. These percentages show the Rising Edge
#correctlypredictednewlyactivatedsensors
Accuracy (REA) =

, meanin
#ofnewlyactivtedsensors &

to predict which sensors will be newly activated. . . . . . ... ... .. 86
Evaluation of the different approaches mentioned in the related works
according to classification tasks. (! The size of the different hidden
layers in the Multilayer Perceptron (MLP). The output layer has 10
units, each for one digit (0 - 9). ® The classification task which was
used. @ The generalization error. ¥ The used architecture. ) The
pair of Radial Basis Function (RBF)-Support Vector Machine (SVM) and
SAE-LR was evaluated using the corresponding data set. The number
of units in the input layer, hidden layer(s) and output layer is given for
both SAE-LR. () The better average accuracy of both was choosen. . . 87

Enumeration of the parameters and hyperparameters used in a FFNN, a
DBNandaRNN. . . ... ... ... . ... .. . . .. 92

Evaluation of our machine learning service acting as a FFNN compared
to a regular FENN implementation. . . .. ... .. .. ... ... ... 115
Evaluation of our machine learning service acting as a DBN compared
to a regular DBN implementation. . . . . .. .. ... ... ... .... 115
Evaluation of our machine learning service acting as a RNN compared
to a regular RNN implementation. . . . . . . .. ... ... ... .... 116



XII List of Tables

6.4 Qualitative evaluation of the three implemented machine learning ser-
vices. ML/DL represents thereby the terms machine learning and deep
learning, respectively. . . . . .. ... oo Lo oo 121



Chapter 1

Introduction

The population of the world is growing older. About 8.5% of the people worldwide were
65 years or older in 2015. Scientists estimate that this percentage rises up to 12.0% in
2030 and 16.7% in 2050 [17]. On the one hand, getting older involves that more elderly
people need help in their Activities of Daily Living (ADL). Hence, about 9% of adults of
age 65 and older and already 50% of people of age 85 and older are dependent on assis-
tance with ADL [18]. On the other hand, elderly people often want to be independent
of others assistance. One key to solve this problem are smart spaces. With the help of
them elderly people can be supported in their ADL in a certain range without needing
the assistance of another person.

Smart spaces are built up by using smart devices. A smart device is an embedded system.
It can be remotely controlled using a communication entity (e.g. an app) and it is able
to capture its environmental state by using sensors and act according to its purpose by
using actuators. A smart space controls all devices and can extract all information from
them. To be able to support people in their ADL another important factor needs to be
considered. Smart spaces need learning algorithms to control the environment. With
the help of a learning algorithm a smart space is able to learn the behaviour of people
acting in it. It can, for instance, predict their behaviour and adapt to their personal
preferences. This is done by employing machine learning and deep learning, respec-
tively. The algorithm is capable of optimizing itself during a training process. Hence,
the smart space can improve itself autonomously. This yields an increasing need for
machine learning services which can be created, configured and trained easily to one’s
preferences.

However, the creation and implementation of such learning algorithms, e.g. neural
networks, requires detailed knowledge in the area of machine learning and the corre-
sponding machine learning library. Additionally, if no expert knowledge is existing, the
implementation and training of such algorithms is time consuming. Due to that reason
an easy-to-use machine learning functionality with a high degree of parametrization
is necessary. Moreover, the machine learning service has to be provided in a way that



2 Chapter 1. Introduction

even users with little or no pre-knowledge in the area of machine learning are able to
create and train a neural network.

Besides usability, the focus of the machine learning services implemented in this thesis
is on reusability. Having the configuration of the neural network seperated from the
machine learning algorithm enables users to test different network configurations fast
and in an easy way. Additionally, this ensures portability as the file containing the
configuration, i.e. the current state, is only needed to restore a trained model.

Against this background, this thesis designs and implements three machine learning
services, each one equipped with a different neural network architecture. Moreover, it
is ensured that these services provide easy-to-use machine learning algorithms in terms
of both usablility and reusability.

1.1 Goal of the thesis

We aim at building a machine learning service which enables users with little or even no
pre-knowledge to build and train a neural network. Therefore, we provide an easy-to-
use machine learning functionality. This is why we modularize three different machine
learning algorithms and provide them as services. The user can choose between a
Feedforward Neural Network (FFNN), a Deep Belief Network (DBN) and a Recurrent Neural
Network (RNN). When calling one of the three services the user is provided with a
configuration file which contains all hyperparameters and parameters of the respective
neural network. This file can be changed according to one’s needs and is used to create
and train the neural network afterwards. When trained, new outputs can be computed
by restoring the saved neural network by means of the configuration file.

1.2 Outline

The thesis is structured as follows. In Chapter 2 we explain the principles of machine
learning and more specifically deep learning. We further introduce different kinds
of neural networks and their deep counterpart. Additionally, the Distributed Smart
Space Orchestration System (DS20S) with its Virtual State Layer (VSL) is described. The
application of machine learning in smart spaces is illustrated afterwards. The chapter is
concluded by showing various machine learning libraries. Chapter 3 gives an overview
over different approaches of neural networks in smart environments and in classification
tasks. It concludes with a comparison table containing the most important things to
keep in mind. Essential design ideas are explained in Chapter 4. In Chapter 5 details
about the implementation of our machine learning services are given. Moreover, it
contains an example at the end where we explain how to work with the implemented
machine learning services by training them on the MNIST data set of handwritten digits.



1.3. Methodology 3

Chapter 6 starts with a quantitative evaluation using different data sets. A performance
analysis and a detailed qualitative evaluation are conducted afterwards. Finally, the
thesis is concluded in Chapter 7 where we summarize our finding,.

1.3 Methodology

As mentioned in Section 1.1 we aim at building an easy-to-use machine learning func-
tionality. Our approach is the following. We start with introducing several machine
learning and deep learning architectures, respectively. Additionally, we describe vari-
ous techniques to improve training. Based on the insights obtained from Chapter 3 we
identify three machine learning architectures, a FFNN, a DBN and a RNN as frequently
used in smart spaces. By applying the knowledge gained in Chapter 2 we list all possible
parameters of the respective machine learning algorithms in Chapter 4. We cluster them
into common parameters and parameters which are unique for each algorithm. That is
why each one of the three algorithms can be changed by only modifying its parameters.
Drawing on this we implement the three machine learning services in Chapter 5. We
thereby focus on a parameterized implementation based on a configuration file which
contains all parameters of the respective machine learning architecture. An evaluation
is conducted in Chapter 6. Considering the evaluation we determine our approach as
comparable to regular implementations of the respective neural networks in terms of
performance, i.e. training time and running time. The accuracy reached by the neural
networks is identical, as the same originial machine learning library underlies.






Chapter 2

Analysis

This chapter describes the principles of deep learning in the beginning. We explain
different learning mechanisms, three machine learning classifiers and the components of
an Artificial Neural Network (ANN). Additionally, different neural network architectures
are introduced including their deep counterpart. We reveal four machine learning
libraries afterwards. Then, we introduce the Distributed Smart Space Orchestration
System (DS20S). This chapter concludes by showing different machine and deep learning
approaches in smart spaces, respectively.

2.1 Deep Learning

Deep learning is an emerging field in the area of machine learning [19]. It denotes models
which are built-up by multiple processing layers between the input and output layer.
By exploiting the depth of such models which are called neural networks, deep learning
algorithms are able to break down a complex input into simpler representations [6].
Hence, deep learning turned out to work well for high-dimensional input data [19].
One of the best known problem solved by neural networks is image processing. Fig-
ure 2.1 shows how a deep learning algorithm learns to detect faces. In this case the
model gets grey-scaled values of pixels as input which define the corresponding image.
This is why layer 1is also called input layer or visible layer. In the first hidden layer
(layer 2) the model maps a set of pixels to edges and simple shapes like corners and
contours, for instance. It is called hidden layer as, in contrast to the input layer, the
values computed in the hidden layers are not observable in the data [6]. The second
hidden layer (layer 3) takes the output of the previous layer and detects objects, e.g. a
nose, a mouth or an eye. Finally, using these objects a deep learning algorithm puts
them together to learn how to detect human faces (layer 4).



Chapter 2. Analysis

FACIAL RECOGNITION

Deep-learning neural networks use layers of increasingly
complex rules to categorize complicated shapes such as faces.

Layer 1: The
computer
identifies pixels
of light and dark.

Layer 2: The
computer learns to
identify edges and
simple shapes.

Layer 3: The computer
learns to identify more
complex shapes and
objects.

Layer 4: The computer
learns which shapes
and objects can be used
to define a human face.

Figure 2.1: An example for learning complex features out of simpler representations [1].



2.1. Deep Learning 7

2.1.1 Background

Deep learning algorithms are based on neural networks. They consist of one input layer,
several hidden layers and one output layer. Before discussing different kinds of such
networks, we start this section by illustrating various artificial neurons. They are the
foundation for constructing neural networks. In addition, softmax as a special kind of
output unit is explained. Finally, different learning methods which are used in both
machine learning and deep learning are introduced. The learning method is not only
depending on the problem which we try to solve, but also on the available training data.

2.1.1.1 Artifcial Neurons

In general, neural networks are built by connecting artificial neurons. The term neuron
is based on the biological neuron [6]. Each artificial neuron has its own activation
function and, as a result, fires in another way. In this section four different neurons get
introduced, beginning with the first announced artificial neuron, the so-called percep-
tron [20]. Although using this neuron is not common anymore, it helps us understanding
the functional principle of an artificial neuron. A neuron (see Figure 2.2) takes several
inputs x; and produces one output y using its activation function a. In addition, each
input x; is weighted by a factor w;. Thus, the output is given by

y = a(z) (2.1)

with z being the weighted sum of inputs added to a bias b

z= Z xjw; + b. (2.2)

Figure 2.2: An artificial neuron with inputs x; and output y. Each input value is weighted by
a weight w;. The bias of the neuron is added to the weighted sum of inputs. The output is
computed by applying an activation function a.

Perceptron—This neuron takes binary values as input and produces a binary output

using a threshold value.



8 Chapter 2. Analysis

0,if 2.j xjw; < threshold
L,if 3 xjw; > threshold

where }; x;w; is the weighted sum of inputs to the neuron. By changing }’; x;w; to a
dot-product x - w, as x and w are vectors and moving the threshold value to the left side

of the inequality, we get

0,ifx-w+b<0
Lifx w+b>0

where the threshold value is replaced by a bias b [5]. The perceptron is limited in its
functionality, since it only takes binary values as input and produces a binary value as
output. As a result, a small change in the input can yield a total change in the output,
i.e. from 0 to 1.

Sigmoid Neuron—For learning algorithms it is important that small changes in any
weight or bias result in small changes in the output. This is not possible using per-
ceptrons since small changes in the input can lead to a complete change in the output.
Sigmoid neurons overcome this problem. The activation function looks as following

1
1+e*

y=a(z) =o(z) = (2.3)

where z is x - w + b. The graph of the sigmoid function is shown in Figure 2.3. It ranges
from 0 to 1, i.e. for large negative z the output becomes approximately 0

1
lim =0 (2.4)
200 1 + €77

for large positive z the output is approximately 1

1
lim =1. (2.5)
z—o0 1 +e7%

Sigmoid neurons are the most common ones, but there are other types of neurons
emerging in the area of deep learning and neural networks [5].

Tanh Neuron—Tanh neurons use the hyperbolic tangent function as activation func-
tion (see Figure 2.4). The output of it is given by

zZ _ o2

y = a(z) = tanh(z) = 2+—e_ (2.6)

where z is x - w + b. Figure 2.4 shows the graph of the tanh function. The difference
compared to the sigmoid function (see Figure 2.3) can be observed. The output of the



2.1. Deep Learning 9

1.0 +

— 0(2) = ;7=

0.8

\ T T T
-40 -3.0 -2.0 -1.0 1.0 2.0 3.0 4.0

Figure 2.3: Sigmoid function

latter one ranges from 0 to 1, whereas the output of the tanh function ranges from -1 to
1. Hence, the hyperbolic tangent function is just a rescaled sigmoid function [21].

1.0 y
’— a(z) = tanh(z) ‘

0.5
X
[ I I I I I I 71

—-4.0 -3.0 -2.0 -1.0 1.0 2.0 3.0 4.0
5
-1.0 -

Figure 2.4: Hyperbolic tangent function

Rectified Linear Neuron—This neuron is also called Rectified Linear Unit (ReLU) and
has the following activation function:

y = a(z) = max(0,z) (2.7)

where z is x - w + b. The function is drawn in Figure 2.5. ReLUs are one-sided, meaning
that they do not have any symmetry like sigmoid or tanh activation functions (see
Figures 2.3, 2.4). Furthermore, according to Glorot et al. [22], ReLUs make it easier
to obtain sparse representations as there is a true 0. If we consider, for instance, an
initialization of the weights of a network using a uniform distribution, around 50% of
the hidden unit’s outputs are true 0. Subsequent sections capture issues like sparsity (see
Section 2.1.3.3) and parameter initialization (see Section 2.1.3.14). A further advantage of
ReLUs is that the computational costs are cheaper since there is no need for computing



10 Chapter 2. Analysis

an exponentional function [22]. However, if symmetric or antisymmetric behaviour in
the data should be represented, neural networks built up by ReLUs require twice the
number of units compared to symmetric or antisymmetric activation functions [22].
Possible variations of ReLUs are leaky ReLU [23] and parametric ReLU [24], but we do
not cover them in this approach.

4.0
— a(z) = max(0, z) y
3.0
2.0 +
1.0
X
[ I I I T T T 1
—4.0 -3.0 -2.0 -1.0 1.0 2.0 3.0 4.0

Figure 2.5: ReLU function

One term which needs to be explained in this context is saturation of neurons. It affects
non-linear activation functions such as sigmoid or tanh. Saturation means that the
neuron’s activation output, meaning the result of a(z), is close to the interval boundary
of the particular neuron. In case of sigmoid neurons this is close to 0 or 1, and in case
of tanh neurons it is close to —1 or 1. Saturation is caused by large weights or biases,
whereas the weights comprise most of it. This is why we emphasize the initialization
of the parameters as very important (see Section 2.1.3.14). The computed gradient of a
saturated neuron is close to zero. Hence the weights are only updated by a very small
amount and so, learning slows down or terminates. ReLUs, on the other hand, do not
suffer from this problem as they are linear. If the weighted input to a ReLU is negative,
however, it stops learning entirely as the output is 0.

Maxout Unit—Goodfellow et al. [2] proposed another type of activation function
called maxout unit. It facilitates dropout (see Section 2.1.3.13) and is given by

a(x) = hi(x) = max_ z;; (2.8)
jel1,k]

where z;; = xTw ; + bij with W_;; representing the weight vector of the unit in row
i and column j. Thereby, W € R™<k and b;; € R™ ¥ are respectively the weights
and biases. Both are the same as in the previous artificial neurons, but with a slight
difference. Instead of being only of dimension d X m and m, they have an additional
factor k. It denotes the number of unit groups into which the input is divided up before it
gets fed into the activation function [25]. From each unit group the maximum weighted



2.1. Deep Learning 11

input is choosen. This circumstance is shown in Figure 2.6.
Maxout units are best used together with a regularization technique called dropout (see
Section 2.1.3.13). They have shown improvement in both the optimization by dropout
and the accuracy [2].

k

Unit Groups
Zjj

Maxout
Unit

Figure 2.6: Two maxout units hj, h, with k = 4 unit groups in front (derived from [2]). The
output of both maxout units can be used for further processing.

We introduced a large variety of different artificial neurons which are available nowa-
days. However, there is no precise definition when to use a particular kind of neuron.
For that reason, the appropriate type of neuron for a neural network can only be found
by trying different neurons and choosing the one for which the network performs best.

2.1.1.2 Softmax - an Output Unit

In general, every unit introduced in the previous section can be used as an output unit
(see Section 2.1.1.1). However, sometimes we want to describe the output of a neural
network in terms of a probability distribution among n values. Therefore, we need a
function transforming each weighted input z; into a probability. The softmax function

is defined as follows .

softmax(z;) = Zj e (2.9)
All probabilites computed by the function above always sum up to 1
Zsoftmax(zj) =1. (2.10)

J

To get an idea of how softmax works, have a look at the interactive applet at [5].



12 Chapter 2. Analysis

Depending on the problem we want our network to train on and depending on the data
available for training, different types of learning and training a neural network can be
used. We can not apply a supervised learning technique which uses labeled training
data, for instance, if we only have unlabeled training examples available.

Below, we provide information about three different learning methods which use la-
bels, no labels or both. Further, a fourth method which learns by interacting with its
environment is introduced.

2.1.1.3 Supervised Learning

A supervised learning algorithm gets labeled training data as input. Each input x; has a
desired output y;. According to how well the actual output y; matches y;, the algorithm
adjusts its weights and biases. In general, algorithms which apply supervised learning
try to predict y* from x. This is usually done by computing p(y*|x) [6].

Supervised learning is often used for classification tasks. Let us consider the recognition
of handwritten digits. The input is an image of a handwritten digit and the output is
the classification of the digit by the algorithm. The desired output, on the other hand,
is the digit shown in the image. For example, if we use an image of a handwritten 4 as
input, then the corresponding label is 4.

Supervised learning exploits the labeling of the data set which allows it to be very
accurate. However, the labeling process might be expensive, for instance, if a vast
amount of data has to be labeled manually.

2.1.1.4 Unsupervised Learning

Unsupervised learning is the opposite to afore-mentioned supervised learning. This
algorithm uses solely unlabeled training data (input vector x) and tries either to find
features and structure patterns in the training set by reconstructing the input or to learn
the entire probability distribution p(x) that generated the data set [6].

If we consider the recognition of handwritten digits again, unsupervised learning uses
in contrast to the supervised learning approach explained above, an input image without
the corresponding label. Thus, it learns by reconstructing the input without the help of
labels.

An advantage over supervised learning is the absence of labels. This is why the raw
input can directly used withou labeling it. This is cost-effective in terms of a non-existing
manual labeling process, for instance.



2.1. Deep Learning 13

2.1.1.5 Semi-Supervised Learning

A semi-supervised learning algorithm uses both labeled and unlabeled training data
and, therefore, requires one or another a priori assumption on the input. For instance,
the semi-supervised smoothness assumption states that if two points in a high-densitiy
regions are close to each other, so are the corresponding labels, and the cluster assumption
implies that points which are located in one cluster do likely have the same label [26].
Considering the above mentioned handwritten digit recognition again, we have a small
number of input images with corresponding labels. The majority of pictures is not
labeled.

Semi-supervised learning approaches are used if there is almost no labeled data available
but a vast amount of unlabeled data. Moreover, if the labeling process is too expensive,
semi-supervised learning is a tradeoff between labeling all data and leaving the data
unlabeled.

2.1.1.6 Reinforcement Learning

A reinforcement learning algorithm learns by interacting with its environment. The
interacting part is also often referred to as agent. Each action can have a reward as
a result. Considering the rewards, the agent learns which action to choose next in a
certain state. These rules are called policy. The explanation below is based on [12].
Reinforcement learning is formalized by a Markov decision process, containing a set
of states, actions and rules for transitioning between states: s; represents state i, s,
the terminal state, a; action i and r;;; is the reward after performing action i. The
probability of the next state s;1; depends solely on the current state s; and action a;
(Markov assumption).

Discounted Future Reward—As it is important to perfom well in the long-term, re-
wards of the future have to be taken into account. The future reward from time point ¢
is the following

Ri=ri+ripq +rego+ - +1y. (2.11)

As we are situated in a stochastic environment, the equation above needs to be modified,
i.e. we can not be sure that we get the same reward for the same action. Hence, we need
to add a factor y expressing the uncertainity of rewards in the future

Re =1 +yress +yrea + - +y" 'rn. (2.12)

This equation is called discounted future reward and y is the discount factor (between 0
and 1). Considering this equation, we can see that the more a reward is in the future,
the less it is taken into account. Rewriting the last equation expresses R; short in terms



14 Chapter 2. Analysis

of R 41
Ri=ri+y(rs1+y(resa+...) =ri + yRyi1. (2.13)

Summarizing, the algorithm must always choose an action which maximizes the dis-
counted future reward.

Q-Learning—Q-Learning defines a function Q(s,a), which exposes the maximum dis-
counted future reward when action a is performed in state s and it is continued optimally
from that point on

Q(ss, ar) = maxR41. (2.14)

Choosing the best action means choosing the highest Q-value
7(s) = argmax,Q(s, a) (2.15)

where 7 represents the policy. Getting this Q-function is almost the same as in Equa-
tion 2.13. By adding the discounted future reward to the current reward, we get

Q(s,a) =r + ymaxyQ(s’,a’) (2.16)

where the transition is given by <s,a,1,s’>. The Q-function is iteratively approximated
by repeating the following update-step

Qls,a] « Qls,al + a(r + ymaxyQ[s’,a’] — Q[s,al) ,

where « is the learning rate, which determines how much of the difference between the
previous Q-value and the new computed Q-value is taken into account, i.e. if & = 1 then
both Q-values cancel each other out and we get Equation 2.16. Q[S, A] is a table, where
S are the states and A are the actions. The current estimate of the Q-value of Q(s, a) is
given by Q[s, a].

An example of a reinforcement learning approach in use is a roboter whose aim is to
navigate in an unknown environment. The roboter moves in this environment and
every move brings a cost which is either positive or negative. Thus, the roboter learns
to move in this unknown environment.

2.1.2 Machine Learning Classifier

Since some deep learning classification approaches in the related works (see Chapter 3)
use machine learning classifier on top of neural networks, we briefly introduce three of
them. They are supervised learning approaches as they aim to estimate a probability
distribution p(y|x) (see Section 2.1.1.3) [6].



2.1. Deep Learning 15

2.1.2.1 Logistic Regression

A Logistic Regression (LR) algorithm calculates the probability of an input belonging
either to class 0 or 1 (binary classification). It computes the probability of class 0 by
knowing the probability of class 1 with p(y = 0[x;0) = 1 — p(y = 1|x;0). Thus,
p(y = 1|x; 0) is large if the input belongs to class 1 and low otherwise. The following
hypothesis is applied to compute this probability

ho(x) = o (07x) (2.17)

where o denotes a sigmoid function (see Equation 2.3) and 6 represents a parameter
vector. To find the optimal weights, the log-likelihood has to be maximized

Zm: log p (y*1x; 0) (2.18)
i=1

where y(?) is the corresponding label to the i-th input x(?). This can be done, for instance,
by minimizing the negative log-likelihood with Gradient Descent (GD) [6].

2.1.2.2 Multinomial Logistic Regression

If we are not only interested in classifying the input into two classes, but rather multiple
classes, we have to use multinomial LR. It is also referred to as Softmax Regression
(SR) [27]. The training set is equal to the one we use in LR { (x(l), y(l)) e (x('”), y('”)) }
Instead of y) € {0,1}, we now have yY) € {0,...,K}. The probability denotes how
likely an input belongs to each class K. Thus, we compute p(y = k|x;0) for each
k =1,...,K. The probabilities are computed using the principle of the softmax function
(see Equation 2.9). The hypothesis hg(x) is computed using

p(y = 11x:6) 0"
2T
p(y = 2Ix;0) 1 e
ho(x) = : = <% s : (2.19)
. j=1 .
p(y =Klx:0) 0"

where 0 for i e {1,...,K} indicates the parameters of the model [27]. Training is
then done by minimizing an objective function J () which is, for instance, given by

m K
JO) == > > 1{y" =k} log —

= < 00T
1= =1 j=

QU (i)

(2.20)

where 1{-} corresponds to a indicator function, which results in 1 if 1{a true statement
} and outputs 0 otherwise [27]. To find the minimum of J (f) one can use, for example,



16 Chapter 2. Analysis

a gradient-based learning technique (see Section 2.1.3.7).

2.1.2.3 Support Vector Machine

A Support Vector Machine (SVM) [28] is a supervised learning approach which does
not compute probabilites [6]. Unlike both above-mentioned approaches, SVMs decide
whether an input belongs to class 1 or 2 according to the class identity. If w”x + b is
either postive or negative, either the positive or negative class is present. As shown in
Figure 2.7, a SVM tries to fit a hyperplane between two classes represented by points in
a n-dimensional feature space. It is easy to seperate datapoints with 2 features using a
linear hyperplane as it is shown in Figure 2.7

A

y'....

>
>

X

Figure 2.7: Dividing two classes in a low dimensional space using one linear hyperplane (derived
from [3]).

If the datapoints consist of more features, the kernel-trick has to be applied. The kernel-
trick transforms the data from a lower dimensional input space into a higher dimensional
space. High enough to make the datapoints seperateable (see Figure 2.8) [3].

The kernel-trick bases upon the observation that many machine learning algorithms
can be solely expressed in terms of dot-products between examples [6]. For instance,
we can rewrite the linear function mentioned above into

m
wix+b=b+ Z aixx® (2.21)

i=1

where « is a vector of coefficients. The dot-product can now be replaced by a Kernel-
Function k(x,xD) = ¢(x) - ¢ (x(i)), where ¢(x) is a given feature function, which
replaces x with its output. - indicates an inner product. Equation 2.21 can be rewritten



2.1. Deep Learning 17

Figure 2.8: The difficulty of dividing two non-linear separateable classes in low dimensions (on
the left). This issue can be solved by increasing the dimensionality into a higher space (on the

right) [4].

into a non-linear function with respect to x
flx)=b+ Z aik (x, x(i)) . (2.22)
i

On the other hand, the relations between f(x) and ¢(x), and f(x) and « are linear,
though [6].

Later in the related works a Gaussian kernel and Radial Basis Function (RBF) are men-
tioned. They both use the following kernel

k(u,v) = N (u -;0, 021) (2.23)

where N/ (x; U, 02) represents the standard normal density given by

1
1 (— 5 (X—ﬂ)2>
ol 20 . (2.24)

Here, p represents the mean of the distribution, meaning E[x] = p. The variance is
indicated by o2. Thus, the standard deviation is denoted with o.

2.1.3 Techniques

The groundwork of a deep learning algorithm is a deep neural network. A neural
network is composed of three parts: an input layer, one or more hidden layers and an
output layer. We later introduce an exception to the rule, called Restricted Boltzmann
Machine (RBM), which consists of only two layers. The structure of two neural networks
is shown in Figure 2.9. Each layer is made up of multiple artificial neurons of the same
type (see Section 2.1.1.1). The output layer, however, might be composed of softmax
units (see Section 2.1.1.2). Each neuron in one layer is connected to every neuron in the



18 Chapter 2. Analysis

adjacent layer.

Different techniques can be used to build a neural network based on the purpose it
must fulfill. This is why we introduce various types of neural networks in the following.
Additionally, we describe how to obtain a deeper representation of the respective shallow
neural network. For instance, Figure 2.9(a) shows a shallow neural network. By adding
both more hidden layers and hidden units we are able to make it deeper (see Figure 2.9(b)).
Moreover, we explain how neural networks get trained and learn, respectively. We
conclude this section by illustrating different optimization techniques.

Hidden Layers

Input Layer

Input Layer - —n
A=  Hidden Layer —— M)
Output Layer
Output Layer ——
%
/
(a) Standard neural network (b) Deep neural network

Figure 2.9: Two different kinds of neural networks (derived from [5]). To preserve overview, the
arrows in (b) were omitted.

2.1.3.1 Feedforward Neural Network

The first type of neural networks introduced in this chapter are Feedforward Neural
Networks (FFNNs). FENNs are often also referred to as Multilayer Perceptrons (MLPs).
An example of a FENN is shown in Figure 2.9(a). FFNNs approximate a function f* (see
Equation 2.25) with a function f(x; 0) (see Equation 2.26) by learning the parameter 60

y = f(x) (2.25)

y = f(x;0). (2.26)

During training, the network adjusts the values of parameter 6 to get the output of
f(x;0) as close to f* as possible. 0 consists of the weights and biases. The training data
set contains examples x with desired labels y* with y* ~ f*(x). Each input has to be
of the same size, and it has to be strutured as a 1-D vector. Thereby, training is done
by using Backpropagation (BP) (see Section 2.1.3.8) with gradient based learning (see
Section 2.1.3.7) to adjust the weights and biases of the network.



2.1. Deep Learning 19

Deep Feedforward Neural Network—Stacking more and more hidden layers consec-
utively yields a deeper FFNN. Figure 2.9(b) shows a Deep Feedforward Neural Net-
work (DFFNN) with three hidden layers and more units in each hidden layer than the
shallow representation in Figure 2.9(a).

2.1.3.2 Convolutional Neural Network

A Convolutional Neural Network (CNN) [29] works with a mathematical operation called
convolution. CNNs are mostly used for image classification [7]. Their input has a
grid-like structure, for instance, time series data represented as a 1D-grid or an image
consisting of a 2D-grid of pixels [6]. We first explain the principle of convolution before
we illustrate CNNs and the principle behind them.

Vividly explained, convolution is a weighted average operation, meaning to weight a
function x (input) by w (kernel). This operation, which outputs a feature map s(t), is
given by

s(t) = (x xw)(t) = /x(r)w(t —1)dr (2.27)

where * is the convolution operator and 7 represents a variable which states how strong
the value of the weight function w(t — 7), which is computed 7 steps back in time, is
included in the output at time step t. Since we work with computer data, meaning
with discrete time data, Equation 2.27 can be rewritten. By taking into account that the
functions x and w are only defined on integer values t a discrete convolution is obtained

(o)

s(t) = (x+w)(t) = )" x(D)w(t - 7). (2.28)

7=0

As we pointed out in the beginning CNNs are often used for image data. This is why
the input and the kernel of Equation 2.28 are replaced with a two-dimensional input I
and kernel K, respectively. This yields the following equation

S, ) = (U= K)(i, ) = Y > Im,m)K(i —m,j—n). (2.29)

This functionality is illustrated in Figure 2.10. While shifting the input window over
the 2D-grid we obtain a 2D-grid with reduced dimensionality.

So far, we know how convolution is applied to a 2D-grid, for example to an image. Now
we describe how CNNs exploit the convolution operation and how they work. CNNs
are based on following ideas: local receptive fields, shared parameters and pooling [5].
The first one means that, in contrast to usual neural networks, output units interact
with only a small fraction of the input units. This leads to sparse interactions [6]. For
instance, consider a 2D-grid of pixels of an image as input. Each hidden neuron of
the first layer has its own small region (local receptive field) to interact with, meaning



20 Chapter 2. Analysis

Input
Dniainjee
e [ehfel[m] 4"
]l

Output h‘

r--- l

|

|aw+bx+ bw + cx + || cw + dx +
Iey+fz Ify+gz gy + hz
| 1

ew + fx + | | fw + gx + | | gw + hx +
iy + jz jy + kz ky + lz

Figure 2.10: An example of 2D-convolution (derived from [6]). Note the dimensionality reduction
after applying the convolution operation to the whole 2D-grid.

each hidden neuron analyzes its particular local receptive field [5]. According to our
explanation above, the size of the local receptive field is the size of the kernel except
for boundary positions. Using these sparse interactions the dimensionality of the input
can be reduced rapidly, yet the important features (e.g. edges) of the input remain [6].
This greatly reduces the runtime if we consider that a normal matrix multiplication
of m inputs and n outputs takes O(m X n), whereas the approach with limited output
connections k has a runtime of O(k X n) [6].

The principle of shared parameters is shown in Figure 2.11. We assume that if a feature in
one receptive field is detected successfully, it works also for the same feature in another
position [5]. This means, that the parameter sharing function used by the convolution
operation detects exactly the same features of the input [5]. The same kernel is used
among the whole input, meaning, we apply every value of the kernel to every position
of the input. An exceptional case are the boundary positions where, according to the
design constraints of the CNNs, not every position is accumulated with every kernel
member [6]. This circumstance can be seen in Figure 2.10, where the boundary fields are
not multiplied with every kernel value. This greatly reduces the number of parameters.
Thus, there is no need to learn a seperate set of parameters for every input unit like in
fully-connected neural networks [5]. Suppose each hidden neuron is connected to its
local receptive field by a 5 X 5 kernel K (weight matrix) and a bias b. Then, the i,j — th
neurons activation would look like

4 4
Yi,j = a(b + Z Z Ij+m,i+nKm,n) (2.30)

m=0 n=0

where a denotes an activation function and I the input activation at position j+m, i+n [5].



2.1. Deep Learning 21

The CNN uses the same weights K for every neuron in this layer. Another property
convolutional layers have is equvariance to translation, meaning that if the input changes
the output changes the same way [6]. For example, if we move objects in the input
image, these objects move the same way in the output.

OISIOIOIO)
a) CL X X
() (&) () () (%

b) @@@@ <
(&) () (x) (20 ()

Figure 2.11: Parameter sharing. a) shows the parameter sharing of a convolution model, where
the blue-colored arrow denotes the middle element of a three-element kernel. Each input uses
the same parameter (middle element). b) shows a fully-connected model. The blue-colored

arrow indicates the middle element of the weight matrix. There is no weight sharing, as each
parameter is only used once (derived from [6]).

As we do not always have grey-valued input images (2D-grids) but sometimes RGB-
images (3D-tensors), we need to explain width, height and depth. For example, a colored
image of size 28 X 28 has a width of 28, a height of 28 and a depth of 3 (see Figure 2.12(a)).
The latter number indicates the three color channels red, green and blue. This leads
to three feature maps of size 28 x 28. If a convolution step is applied to this image
with the help of a kernel, we get k feature maps, which yields an output depth of k [7].
Sometimes the kernel is often referred to as patch or filter. Another important term is
called stride. This denotes the number of pixels that are shifted when the filter moves. A
stride of 2, for instance, roughly halves the size of the input [7]. The above-mentioned
problem with boundary positions is solved by using padding. We can either choose
valid or same padding. The first one refers to moving the filter in such a way that it
fits in the input and does not go past the edge. This reduces the output size. The latter
one moves the filter of the edge, leading to an output size that is exactly the size of the
input map [7]. Figure 2.12(b) illustrates both padding variations.

The last idea from above which we need to figure out is called pooling. Pooling layers
are used directly after convolutional layers [5]. According to [7], pooling is a better



22 Chapter 2. Analysis

width

A
Y

height

valid
y /&‘\9

o
&7 same
(a) Height, Width and Depth (b) Padding variations Same and Valid
g P g

Figure 2.12: Denotations in CNNs. 2.12(a) shows a layer of depth three and 2.12(b) shows same
and valid padding (derived from [7]).

way to reduce the dimensionality of the feature maps than striding. The latter removes
a lot of information, and is hence not the optimal way. Each unit in the pooling layer
summarizes a certain location of the output of the convolutional layer. This is done
with the help of a pooling function in order to get a condensed feature map [5]. Next,
several pooling functions are described. First, max-pooling displays the maximum
output activation within a rectangular region. On the other hand, average-pooling
reports the average output activation within a rectangular region. Another pooling
function is called L?-pooling, which outputs the L?-norm of the activations within the
region defined by the square root of the sums of the activations [5] [7]. The last function
reports the weighted average based on the distance from the central pixel [6]. Pooling
can be viewed as discarding the exact positional information of a feature in the input.
The approximate location relative to the other features is sufficient [5]. After the last
pooling layer, one or more fully-connected layers are attached. The output consists of
softmax functions to classify the input, for example an image [6].

The activation functions used in CNNs are typically ReLUs (see Section 2.1.1.1) [6]. One
core principal of CNNs to keep in mind is that the large dimensionality in width and
height is compensated layer by layer by a larger depth, yielding a Convolution Pyramid
(see Figure 2.13) [7].

Deep Convolutional Neural Network—A deeper representation of a CNN is obtained
the same way as of a FFNN, by stacking more layers. For an example of a deep CNN
applied to face representation have a look at [30]. Another deep CNN is proposed in [31].
It is used to detect pedestrians. Another method to make standard CNNs deeper is to
add 1 X 1 convolutions, looking on only one pixel instead of a small patch. Adding



2.1. Deep Learning 23

Fully-connected
+

Classifier >

Regular (Deep)
Neural Network

[ 1—

Figure 2.13: A convolution pyramid resulting in compensating a large dimensionality in width
and height by a larger depth. This is done layer by layer (derived from [7]). Attached after the
last convolution layer is a regular fully-connected neural network used for classification [6].

a 1 X 1 convolution between the kernel operation and its output yields a mini neural
network running over the patch instead of a linear classifier (see Figure 2.14) [7]. Such
an insertion gives us a deeper model with more parameters in an inexpensive way, as
1 X 1 convolutions are only matrix multiplications [7].

'Mini'-Deep Network
over the Patch

Figure 2.14: A 1 X 1 convolution added to a patch to obtain a mini neural network (derived
from [7]).

2.1.3.3 Deep Belief Network

A Deep Belief Network (DBN) consists of either several stacked Restricted Boltzmann
Machines (RBMs) or several stacked Autoencoders (AEs). That is why we at first describe
the functionality of a RBM and an AE in more detail before we discuss the structure
and principle behind a DBN in the end.

Autoencoder—An AE is an unsupervised approach which aims to copy its input to
its output [6]. It is mostly shallow and built-up by three layers, one input layer, one
hidden layer h that tries to learn a ‘code’ to represent the input x and one output layer.
More hidden layers are possible, if more dimensionality reduction is needed. Typically,
the number of hidden units is less than the number of input and output units. This is
why AEs are often used for dimensionality reduction, as they are forced to pack all the



24 Chapter 2. Analysis

information of the input into less units. Using this sparse representation it needs to
reconstruct the input. Briefly, this network type consists of two parts, encoding and
decoding. The input is first encoded using h = f(x), where f denotes the encoding
function and then decoded to represent the reconstruction r = g(h). Here, g indicates
the decoding function [6]. Summarizing, this is how AEs try to figure out the underlying
structure of a data set. The important part of an AE is not the exact copy of the input
to the output but h, as h comprises useful properties of the input. Hence, when trained,
the reconstruction layer of an AE is removed together with its parameters and only the
input layer and hidden layer are used for further computation [14].

Encoder Decoder

Code
W
VAR
m—

Figure 2.15: An AE with the encoding step on the left and the decoding step on the right.

Input
mdinQ

There is a variety of different types of AEs, such as undercomplete and overcomplete
AEFs, Regularized Autoencoders (RAEs), Sparse Autoencoders (SpAEs) and Denoising Au-
toencoders (DAEs). Furthermore, a Variational Autoencoder (VAE) is an example for a
deep generative model [6]. Below, the different kinds of AEs are depicted briefly. An
undercomplete AE was in parts already described above, because it restricts the code
h to a smaller dimension than the input x has. That forces it to compress the most
important features of the input. Its learning process is given by

L(x,g(f (x))) (2.31)

where L is a loss function computing the difference between input x and output g(f(x)).
However, if undercomplete AEs, or AEs with code dimension equal to the input dimen-
sion, is given too much capacity, they are not able to learn important features. This is
due to their learning of copying the input to the output without extracting important
features of the input [6].

Although the code of overcomplete AEs is composed of a greater dimension than the
input, they also suffer from the problem mentioned above. And what is worse, even
linear encoder and decoder are able to skip the feature extraction. A way around this
problem is to limit the model capacity by, for instance, choosing a small code size and
both a shallow encoder and decoder.

Instead, RAEs use a loss function which solves the problem of only copying the input to
the output the following way. It fosters the AE to have other properties in addition, for



2.1. Deep Learning 25

example sparsity of the representation, smallness of the derivative of the representation
and robustness to noise or to missing inputs [6].
A SpAE adds a sparsity penalty Q(h) to Equation 2.31, which results in

L(x,g(f (x))) + Q(h). (2.32)

Due to its sparsity on the hidden units, this type of AE is often used to learn features
for another task, such as classification, which are then again used in pretraining this
task [6].

A DAE minimizes in contrast to Equation 2.31

L(x,9(f(x))) (2.33)

where x represents a by some form of noise corrupted copy of x. That is why DAEs
are not able to just copy the input to the output as they have to rather resolve this
corruption. Have a look at Chapter 20.10.3 in [6] or [32] to get detailed information
about VAEs.

AEs are widely used in classification tasks in order to get the most important features
out of the input, which are then in turn used as input to a supervised learning algorithm
(see Section 3.2).

Restricted Boltzmann Machine—A RBM is also used for unsupervised learning. The
principle behind RBMs is similar to the one of AEs. This network type is shallow and
consists of only two layers, though, one layer of visible units connected to a layer of
hidden units. This concept is illustrated in Figure 2.16.

Visible

it
Units Hidden

Units

Figure 2.16: RBM with four visible units connected to three hidden units.

A RBM is an energy-based model. Its visible and hidden units are canonically binary but
there are other types of visible and hidden units, too [6]. The joint probability function



26 Chapter 2. Analysis

is specified by the energy function E

1

P(vym =v,h, = h) = Ee—EW’) (2.34)

where v, represents a vector of visible variables of size m and h, a vector of hidden
variables of size n. The energy function is given by

E(,h) = -blv—cTh-vTWh (2.35)

where b and c are respectively the biases from the visible units v and the hidden units
h. W represents the weight matrix connecting the visible and the hidden layer. Z is a
normalizing factor called partition function and is computed the following way

z=) > eten, (2.36)
v h

Due to the restricted structure of a RBM (see Figure 2.16, only connections between
visible and hidden units), the units in one layer are conditionally independent from
each other given the opposite layer [33]. Thus, the conditional probabilities p(h|v) and
p(v|h) are given by

p(hlo) = | | p(hulo) (237)
pGlh) = [ [ pjih). (2.38)
J
The individual conditional probabilities of a binary RBM are computed using
P(h; = 1[v) = o ("W, + b;) (2.39)
P(hi = 0lv) = 1= 0 (v"W.; + b;) (2.40)

where vT W, ; denotes the weighted sum of inputs 2ito Wj,iv).

The above-mentioned properties make Gibbs Sampling efficient. Simply put, Gibbs
sampling can be performed in two steps (Block Gibbs Sampling) [6]. We can sample a
new vector h based on p(h|v) and a new vector v based on p(v|h).

Gibbs sampling takes a vector x of variables of length n as input. To get an appropriate
probability distribution p(x), a Gibbs sampling step has to be repeated several times
using the last sampled vector as input. The output of sampling step i is a new vector

x(, where each element of the vector x](l) is derived the following way

x](.i) =p (xj(.i)lxii}) (2.41)
where x(_lj) involves all variables xl(:), kef{o,...,j—1,j+1,...,n}. In general Gibbs

sampling x(fj) consists of variables (x](:),xl(i_l)), where k € {0,...,j—1} and | €



2.1. Deep Learning 27

{j +1,...,n}. This means, for all sampled variables the current sample is used, and for
all yet non-sampled variables the last sample is used. The conditional independence
from all variables of one layer given the other in a RBM allows us to perform block
Gibbs sampling. As a result, Gibbs sampling is performed for each variable x](.i) of vector
x) simultaneously (see Equation 2.41) [6].

Training an RBM is performed by the help of Contrastive Divergence (CD) or Kullback-
Leibler (KL) divergence [6].

hn hw

i 0G0

1
<V, h>

Visible
Data Batch Reconstruction

v° v'

Figure 2.17: Reconstruction of the RBM input using a positive and negative gradient, respectively.

CD is mostly used to update the weights of RBMs. Recall Figure 2.17 to follow the
subsequent explanation. First, the input data from vector v° of the visible layer is
used to compute a hidden vector. A hidden vector h° is sampled from this outcome.
Afterwards, the positive gradient < v°, h® >0, which represents the outer product of the
visible vector and the hidden vector, is computed. Continuing from K0, a reconstruction
vector v! is sampled. A hidden vector h! is sampled using v!, afterwards. As before, the
outer product < v!, ! >1, which is called the negative gradient, is computed. Eventually,
the weights w and the biases b and c are updated with the following equations

we—w+n (< v, hY >0 — <! B! >1) (2.42)
be«—b+n (vo - vl) (2.43)
c—c+n(n'-h') (2.44)

where 7 indicates the learning rate [34].

Altogether, RBMs work by reconstructing and recreating the input data, respectively.
This is done without labels since RBMs extract important features on their own.

As mentioned above, DBNs consist of stacked RBMs (or stacked AE). Figure 2.18 visual-
izes the principle of a DBN built-up by three RBMs on top of each other which works
as follows. The first RBM consisting of a visible layer with input x and the first hidden
layer h; is trained as a normal RBM by reconstructing the input. After training this



28 Chapter 2. Analysis

RBM, the hidden layer h; and the second hidden layer h; form the next RBM, which is
trained with the output of the underlying RBM. This concept continues until the last
layer h;, with layer h;_; acting as visible layer, is reached. As a result, DBNs are able to
learn high hierarchical structure features of the input x.

In both cases, stacked RBMs and stacked AEs, two methods called pre-training and fine-
tuning show performance improvements [35]. Pre-training is the unsupervised process
we already introduced above, meaning stacked RBMs/AEs get trained greedy layer-
wise [36]. First, the first RBM/AE gets trained with the input, then the next RBM/AE
gets trained using the output of the former as input, and so on. In case of stacked AEs
only the input layer and the hidden layer of a single AE remain, as they are responsible
for the compressed feature representation. The reconstruction layer is only used for
training. Thus, a stacked AFE consists of stacked encoders [14]. If a DBN is used for
classification tasks, a fine-tuning step is applied. This is performed in a supervised
manner. On top of the pre-trained DBN another layer is stacked upon, for instance a
SVM, a LR classifier or another neural network [37]. Then, the whole network is trained

using a gradient-based learning technique (see Section 2.1.3.7).

Hidden
- ’\‘."(‘. Layer h3
2,90 Hidden
.‘.’. Layer h2
N
Dol
XIS Hidden
.’\ 9"('. Layer h1
RBM1 ' Q"“" Visible
Layer
(Input)

Figure 2.18: An example for a DBN consisting of stacked RBMs (derived from [8]).

2.1.3.4 Recurrent Neural Network and Long Short-Term Memory

The kind of neural network explained next is called Recurrent Neural Network (RNN).
We show how such networks work and illustrate the principle of unfolding RNNs.
Furthermore, the problem of long-term dependencies gets captured. Along with it,
we propose two possible solutions to overcome this problem which are called Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). Both are explained in
detail at the end of this section.

On the contrary to FFNNs which only use the current input, RNNs take also the output
of the hidden layer of the previous step into account. Hence, the decision at time step
t is affected by the decision reached at time step ¢ — 1. As it incorporates decisions
from previous steps, it possesses a backward loop which is shown in Figure 2.19. This
figure also displays the unfolded illustration of a RNN over time, which implies that



2.1. Deep Learning 29

the network’s input at time step t is defined by the hidden state s;_; and x;, where s;_4
represents the memory of the network of the previous step. The parameters U, V and
W are shared among all steps. This is another difference to FFNNs which use different
parameters at every layer. In this Figure, three different weight matrices U, V and W
are shown. Thereby, U weights the input, V the output of the hidden state and W is a
transition matrix which weights the values of the hidden state.

The calculation steps are as follows. First, the hidden state s; needs to be computed with

st = a(Uxy + Ws_1 + b) (2.45)

where a is a non-linear activation function (see Section 2.1.1.1) and b represents an
added bias.
Then, s; is multiplied with V and added to a bias c. The result is fed into, for instance, a
softmax function (see Section 2.1.1.2) to form an output o,. In this case the output o; is
given by

o; = softmax(Vs; + c). (2.46)

In the subsequent time step t + 1, s; is multiplied with W and added to b, and behaves
as an input to the hidden state s;1.

For training RNNs, meaning to adjust U, V, W and b, ¢, also a gradient-based learning
algorithm is applied but with a little extension and it is therefore called Backpropagation
Through Time (BPTT). As shown in Figure 2.19, the parameters are shared among all
time steps and this is why the gradient needs to be computed for all previous time steps,
too. The principle of BPTT is explained in Section 2.1.3.8.

Figure 2.19: A RNN on the left, the unfolded representation over time ¢ on the right (derived
from [9]).

A simpler representation of a RNN is given in Figure 2.20. The input x; is weighted with
U and fed into the hidden layer s;. Concurrently, the state of the hidden layer of the
previous time step is also fed into the hidden layer weighted by W. The output of the
hidden layer is then weighted by V and provided to the output layer, which computes
the output o;.

As already mentioned, RNNs take previous information into account. However, there
comes a problem along with it, which involves long-term dependencies. This is not a
particular problem of RNNss since it might equally include deep neural networks with a



30 Chapter 2. Analysis

St

Figure 2.20: Another representation of a RNN to clarify the usage of the previous hidden state
which is fed into the current hidden state (derived from [10]).

large depth. The issue with learning long-term dependencies was explored in detail by
Bengio et al. [38] and Hochreiter et al. [39]. Hochreiter and Schmidhuber [40] introduced
a type of network which is able to learn those long-term dependencies and which was
subsequently refined by others. It is called long short-term memory network.

Long Short-Term Memory—LSTM networks belong to gated RNNs which are accord-
ing to [6] the most effective sequence models used in practical applications. These kinds
of RNNs solve the long-term dependencies problem by constructing a path through time
with neither vanishing nor exploding derivatives and gradients, respectively. Gated
RNNs learn on their own, at which point in time to discard the long-term information
from the previous steps.

The usual hidden units of RNNs are replaced by LSTM cells. As illustrated in Figure 2.21,
the input x; and the output of the previous step h;_; are given as usual input to the
activation function a of the input unit, where a represents a non-linearity, for instance,
tanh (see Section 2.1.1.1). In addition to that, both values are also fed into the three
gating units, all equipped with a sigmoid activation function. First, the LSTM cell de-
cides if and how much of the input is accumulated into the state s;. This is done by
using the input gate. The input gate, therefore, updates the state by combining the input
and the information needed from the previous steps with the information in the state
unit. The forget gate is next. It determines which of the values in the state unit must
be kept for further processing steps and which ones to forget. It does this by merging
the information of the previous state s,_; with the output of the sigmoidal forget gate
which expresses a value between 0 and 1, where a 0 deletes a value completely and a 1
keeps a value completely. The linear loop built by feeding back the state into the output
of the forget gate is called self-loop (see Figure 2.21). The output of the state s, is fed
into a non-linear activation function a as in usual RNNs. There is, however, a slight



2.1. Deep Learning 31

difference since the output gate is in charge of deciding whether the output is allowed
to pass through or not and if, which parts of the information are needed. Additionally,
Goodfellow et al. [6] mentioned that the state unit can also be used as an additional
input to the three gating units (dotted arrows in Figure 2.21).

Figure 2.22 shows an unfolded representation of a LSTM cell. There it can be seen that
the cell state is modified with solely linear operations. For simplicity issues, we let out
the additional third input of the state to the three gating units.

Xt ht-1 Xt ht-1 Xt ht-1 Xt ht—1

Input Input Forget Output
Gate  Gate  Gate

Figure 2.21: A LSTM cell, where both a denote the opportunity of using any non-linear activation
function and o corresponds to the sigmoid activation function. The dotted arrows indicate the
possibility of the state of the previous step s;—; as extra input to the gating units at time ¢
(derived from [6]).

In the following, the equations needed to perform learning in LSTM networks are
described briefly. These equations are derived from both [6] and [11]. As mentioned,
the forget gate is in charge of deleting information from the cell state. It computes

ft =0 (fot + tht—l + bf) (247)

where x; is the input, h;_; the output of the previous step and Uy and Wy indicate weight
matrices for the input and the hidden vector, respectively. A bias is given by by.



32 Chapter 2. Analysis

Output
he, hy

State
St

ht»1 e X h[

Forget Input
Ga%e Gate Input Output

ﬁ') ONONENOMN

Input X
X,

Figure 2.22: An unfolded LSTM network to illustrate the flow of the state s; and the output A,
(derived from [11]).

The input gate unit g, is computed as follows
gr =0 (ngt + Wght—l + bg) (248)

where as above, the input x; and hidden vector of the previous step h,_; are weighted
by matrices Uy and W,. A bias is represented by b,.
The ordinary input unit as in standard RNNs is given by

ir=a (U,'Xt + I/Vih[_l + bl) (249)

where a denotes any non-linear activation function and U;, W; and b; represent the
matrices and the bias into the LSTM cell, respectively.
The internal cell state is updated, using Equations 2.47, 2.48, 2.49 and the previous state
s¢—1, with

St = fiSi—1 + Gris. (2.50)

Finally, the output h;, where the output gate is capable of how much information is let
through, is given by
he = a(st) q: (2.51)

with g; representing the output gate
qr =0 (qut + tht—l + bq) (252)

where U,, W, and b, indicate the weight matrices and the bias of the output gate.
The activation function a of Equation 2.51 can again be choosen from any non-linear



2.1. Deep Learning 33

activation function, for example, tanh.

Every gate possesses its own parameters, meaning its own weights and biases. As
already stated out above, the state s; can be used with its own weight as an additional
input to the three gating units, which results in three extra parameters. For further
knowledge about this kind of LSTM, have a look into [6] or at [11], where more variatons
of LSTM cells are described.

Gated Recurrent Unit— Another type of a gated unit was proposed by Cho et al. [41].
It is called Gated Recurrent Unit (GRU). A GRU cell is similar to a LSTM cell but uses
one less gate. The equations performed in a GRU cell are described below according
o [41] and [42].

A reset gate r, is obtained by

ry =0 (Wrxt + Urhl'—l) . (253)
Further, an update gate z; is computed with
Zr =0 (szt + Uzht—l) . (254)

The current input is denoted by x;. h;_; represents the hidden state of the previous
time step t-1. W,, U, and W,, U, indicate the weight matrices of the reset and the update
gate, respectively. The candidate activation is given by

he = a(Wx; + U (rs - hey)) (2.55)

where U and W again represent weight matrices of the candidate function and - is
an element-wise multiplication. Moreover, a can be any activation function. For in-
stance, [41] use a sigmoid activation function o, whereas [42] apply a tanh activation
function. r; represents the reset gate, which is computed in Equation 2.53. The actual
activation and, thus, the output of the GRU cell at time step ¢t is finally computed by

ht = (1 — Zt) ht—l + ZthNt (256)

where z; and h; denote respectively the update gate (see Equation 2.54) and the can-
didate activation (see Equation 2.55). The previous hidden state is given by h;_;. h;
in Equation 2.56 is the equivalent to the output of a LSTM cell represented with h; in
Equation 2.51, Figure 2.21 and Figure 2.22.

Deep Recurrent Neural Network— As depicted in the context of DBNs in Section 2.1.3.3,
where we stacked several RBMs on top of each other, we can also build a deeper archi-
tecture of a RNN by stacking up multiple RNN hidden layers, e.g. multiple LSTM cells.
On the other hand, if we pay attention to the unfolded representation of a RNN;, we



34 Chapter 2. Analysis

may already denote this as deep (see Figure 2.19). Furthermore, Pascanu et al. [43] show
other ways of expanding a RNN to a deeper architecture.

2.1.3.5 Deep Q-Network

A deep Q-network, which relies on the Q-learning algorithm (see Section 2.1.1.6), is the
last neural network type introduced in this chapter. In this context, we also explain
the meaning of experience replay and exploration - exploitation. With the Q-learning
algorithm introduced in Section 2.1.1.6, a deep neural network, which is able to compute
the Q-value, can be created. Its input is a state s and it outputs the Q-value for each
possible action a (see Figure 2.23). This is beneficial, since it gets easy to pick the action
with the highest Q-value this way. Two techniques making deep Q-learning work more
effectively are called experience replay and exploration - exploitation. The former uses a
replay memory to store all the experiences < s, a,r, s’ > computed during the run of the
algorithm. From this replay memory, random mini-batches are used to train the network
instead of the most recent transition. Exploration - exploitation is based on e-greedy
exploration. As the network is initialized randomly, the choice of the highest Q-value is
random. The problem that comes along with it is that this choice is greedy, which means
that it chooses the first possible highest Q-value. To overcome this problem e-greedy
exploration was introduced. This strategy chooses a random action with probability
¢, with probability (1 — ¢) , on the other hand, it chooses the action with the highest
Q-value. ¢ should be decreased from 1 to 0.1 while training is progressing.

Allin all, the exploitation step makes the best decision out of the current information and
exploration gathers more information. Hence, enought information has to be collected
to make the best decisions out of it [12].

A deep reinforcement algorithm, namely Deep Q-Learning with Experience Replay was
shown in [44] from DeepMind Technologies. The approach is applied to Atari-Games.

2.1.3.6 Cost Function

A cost function C, often also referred to as loss function L is used to compute the error
during training the network and helps to adjust the parameter 8. Note that we use the
terms cost and loss function synonymously throughout this chapter. The error is mostly
measured by taking the difference between the acutal output and the desired one. In
the following, important cost functions are explained.

Cross-entropy is defined by

1

C=— Exl@lnym—y) In(1 - y)) (2.57)



2.1. Deep Learning 35

Q-value 1 Q-value 2

Network

e

Figure 2.23: The principle of a deep Q-network (derived from [12]).

where n indicates the total number of training data,  represents the desired output for
input x and y is the outcome of the activation function a(z) with z being the weighted
sum of inputs }’; x;w; + b, where w are the specified weights and b is an overall bias [5].
Cross-entropy is a positive cost function, meaning C > 0 and if the network outputs all
y close to 7, C is close to zero, C ~ 0.

The log-likelihood cost function is given by

1
C=—- 1 2.58
nle ny (2.58)

where y denotes the outcome of the activation function g, x indicates the input and n is
the total number of training data. The log-likelihood function is small if the network is
sure of the right output.

The Sum of Squared Errors (SSE) is different from the Mean Squared Error (MSE) in that
way, as the latter one calculates the average of the SSE. The equation for SSE is given

by

SSE =" (9 - yi)? (2.59)
i=1
and the MSE is defined by
1 n
MSE = —= j; — y;)* 2.60
2=y (2:60)

i=1
where n represents the total number of training data, 7 is the desired output and y
indicates the predicted output.

RBMs sometimes use the difference between the computed probability distribution P
and the corresponding true probability distribution Q of the input as cost function. It is



36 Chapter 2. Analysis

measured by using the KL divergence given by

Dgr(P||Q) = /p(x)log(f}%)dx (2.61)

where p(x) and g(x) represent the density functions of P and Q, respectively. Figure 2.24
illustrates both density functions and their mismatch. After several iterations, this gap
should nearly close and both functions overlap.

T T

0.4+ —p(x) H
—q(x)

0.3 .
0.2 B
0.1} .
0 | .

| | | | | | |

Figure 2.24: p(x) and g(x) denote the density functions of the probability distributions P and Q.
The aim is to let both density functions overlap by minimizing the error computed with the KL
divergence and thus adjusting the weights.

2.1.3.7 Gradient-based Learning

According to the computed error, gradient-based learning algorithms are used to update
the parameters 0 (weights and biases) of a network in order to make it more precise.
These algorithms are mostly used in combination with BP methods (see Section 2.1.3.8),
which are necessary for computing the gradient of the cost function.

Hereafter, two gradient descent techniques are introduced. Thereby, Stochastic Gradient
Descent (SGD)is an improvement of the standard GD. The aim of gradient-based learning
is to get a cost function as small as possible, meaning C(0) ~ 0. This indicates that a
neural network learns well as the output is close to the desired result.

Gradient Descent—With GD, we want to find weights w; and biases b; to make a cost
function (see Section 2.1.3.6) as small as possible. The GD update rule is defined as

follows
o6C

—_— 2.62
U (2.62)

W < Wi —



2.1. Deep Learning 37

é6C

bl (—bl—l]a—bl.

(2.63)

6C 6C
Here, 1 denotes the learning rate (see Section 2.1.3.10). All components — and —,

Swy db;
respectively, are contained in a gradient vector VC. This process of updating the weights

and biases can be thought of as moving these values closer to the minimum of the cost
function with step size . Gradient descent comes along with some problems, though.
It takes, on the one hand, a long time if a large number of training inputs is used and
hence the network seems to learn slowly. That is, to get the gradient VC, all gradients
VC, for each training input x have to be computed, as the cost function averages over
all costs VCy. The principle of GD is illustrated in Figure 2.25.

2.0 T T T T T T T
\ /
1.5F N\ Global minimum at z = 0. 7
\ Since f/(z) = 0, gradient y;
1ok \ descent halts here. Y |
N /
N ’
0.5} 4
~ ”
~ -
0.0} RN 4
' For = < 0, we have f’(z) R For z > 0, we have f'(z) >0,
so we can decrease f b, so we can decrease f by
—0.5F moving rightward. moving leftward. 1
710 = —
- f(z) =422
—15}F , H
— fll@)==
—20 1 1 1 1 ! I I

-20 -15 =10 =05 0.0 0.5 1.0 1.5 2.0

Figure 2.25: The principle behind GD [6].

Stochastic Gradient Descent— As mentioned previously, SGD is an improvement over
GD. This technique speeds up learning, as it only uses a small number of training inputs
to estimate the gradient VC. These training inputs are randomly choosen and often
referred to as mini-batch. The update rule for SGD is given by

0Cx;
U X;
- = 2.64
W € W = - Z‘ S (2.64)
6Cx,
by «— by — A % (2.65)
m & ob;

where m denotes the size of the mini-batch. The elements of the mini-batch are termed
with Xj. After all X are used up, another randomly picked mini-batch is trained. This
process is repeated until all training examples are used up, meaning one training epoch



38 Chapter 2. Analysis

is completed. Besides, the number of how often a mini-batch is fed into the neural
network, is referred to as number of iterations. An efficient way to compute the partial
derivatives shown in Equations 2.62, 2.63 and Equations 2.64, 2.65 is the BP approach
described in the next section.

Optimization of SGD—SGD can suffer from high oscillations and hence learning
occurs slowly. Momentum [45] names an additional term that overcomes this problem
by including knowledge from previous steps. Thus, it helps SGD to find the right
direction faster and dampens the oscillations as shown in Figure 2.26 [7]. The update
rule for the momentum approach with SGD is given by

1 m

ve— ¢dv—nVog— Z L; (2.66)
mia

0 0+ (2.67)

where the parameters (weights and biases) are denoted generally with 0,  expresses
the learning rate and L; is the computed loss of mini-batch i. Besides, a new variable
v is introduced. It indicates a kind of velocity, meaning it involves both the direction
and the speed of the parameters through the parameter space. ¢ is yet again a new
hyperparameter terming the contribution of the update vector of the past time step
vs—1 to the current one v;. The larger ¢ is relative to 7, the more previous gradients are
involved in the computation of the current direction [6].

Figure 2.26: The principle behind momentum optimization. The gradients with an additional
momentum term (colored orange) accelerate learning (derived from [6]).

2.1.3.8 Backpropagation and Backpropagation Through Time

The weights and biases in a deep neural network are adjusted during training by ap-
plying gradient-based learning (see Section 2.1.3.7). Therefore, a method is needed that
computes the gradient of a cost function with respect to weights and biases. Moreover,
it has to propagate the error computed by the cost function (see Section 2.1.3.6) back



2.1. Deep Learning 39

through the network. Hence, this algorithm is called Backpropagation (BP). Below, the
principle behind this method is explained in more detail.

The general BP algorithm can be applied to almost all neural network structures ex-
cept RNNs. These nets need a more specific algorithm called Backpropagation Through
Time (BPTT). BP terms the computation of the gradient from the output layer back to
the input layer. One important constraint of BP is, that the cost function, which is used,
has to be differentiable.

Backpropagation—The subsequent algorithm makes use of different abbreviations
which are quickly explained below.

l
] w]k

the j* neuron in the I*" layer

—> weight for the connection from the k** neuron in the (I — 1)*" layer to

. b}l. — bias for the j'* neuron in the I*" layer

. aj. — activation of the j*" neuron in the I'" layer

. 5; — error in the j*# neuron in the I** layer

. le. —> weighted input to the j** neuron in the I*" layer

+ a —> activation function of the neurons (see Section 2.1.1.1)

As computing the partial derivatives Sol and —C; for GD (see Section 2.1.3.7) is ex-
pensive, the BP approach is applied to apj;roximatej these derivatives.

As already mentioned, training the network is done by adjusting and changing the
weights and biases, respectively. This requires three steps. First, a forward pass called
forward propagation is performed. This step computes the output of the neural network
depending on the input. Afterwards, the error is measured by means of comparing
the actual output computed in the first step with the desired output. This is done with
the help of a cost function. In the last step, a backward pass is executed. The error
calculated in the previous step is propagated back to the input units. Along the way the
weights and biases are modified to reduce the error term. This is where BP takes place.
It computes the gradients of the cost function with respect to the weights and biases.
Of course, the steps described above are only suitable for supervised learning algorithms
(see Section 2.1.1.3), since they use pairs of input and corresponding output labels to
train a network.

According to [5], four fundamental equations are required to understand and apply BP.
First, the overall error in the output layer is denoted with §* and its components 5}“ are
computed as follows

st = —d'(zh). (2.68)



40 Chapter 2. Analysis

As a matrix-based form is required, Equation 2.68 needs to be rewritten into
sl =v,codh) (2.69)

é6C
where V,C is a vector which includes the partial derivatives Sal
as

j

The error 8’ is expressed in terms of the error in the next layer using
51 — ((WI+I)T5I+1) o) a/(zl) (270)

where (W) is the transponed weight matrix for layer [+1. Intuitively explained,
(WHHT§141) moves the error backward and returns the output error at layer L Apply-
ing the remaining part of the equation gives back the error 8 in the weighted input to
layer L
By combining Equations 2.69 and 2.70 the error 8 can be computed for any layer in the
neural network.
The third equation is given by 5o

5—19} = 6] (2.71)

é6C
This implies that the error is equal to 5ol which represents the rate of change of the cost

with respect to a bias. The following equation is similar to Equation 2.71 but instead of
being applicable with respect to the bias it is used with respect to the weights

é6C
— =al sl (2.72)
Sw! !
jk
Considering Equations 2.71 and 2.72, both derivatives necessary for GD (left side of the
equations) can be substituted with terms whose computation is already known (right
side of the equations).

The five steps of the BP algorithm derived from the equations above are shown below:
1. Input: Set the corresponding activation a' for the input layer.
2. Feedforward: For each [ = 2,3, ..., L compute Z=wa' + bl and a! = a(zl).
3. Output error 5: Compute the vector §* = V,C © a’(zh).
4. Backpropagate the error: For each [ = L — 1,L — 2,...,2 compute §' =
((Wl+1)T5l+1) o) a/(zl)'
. PR 6C _ 6C -1l
5. Output: The gradient of the cost function is givenby — = §; and —- =a;7 6.
j Wi
The output of step 5 is then used for updating the weights and biases with gradient-based
learning (see Section 2.1.3.7).



2.1. Deep Learning 41

In the following a short parenthesis about the chain rule of calculus is given, as the BP
algorithm builds upon it [6]. This rule states that the derivative of a function can be
computed by using derivatives which are already known

dz dzdy
_—= = 2.73
dx dydx @73)
Here y = f(x) and z = f(g(x)) = f(y), where x and y are real numbers. Generalizing
the equation above into using vectors x € R™ and y € R" with functions g : R™ +— R"

and f : R" — R gives us

0z 0z 6y]
— = — . 2.74
(9x,- ; 6y] 8xi ( )

Equation 2.74 can be equivalently rewritten into

Viez = @TVZ (2.75)
7 \ox v '

0
which represents a vector notation, where % is the n x m Jacobian matrix of g. Such

x
a matrix contains all partial derivatives of a function. Thus, the Jacobian matrix J €
Of (x)i

6xj

R™ x R™ of a function f : R™ +— R" has the following entries: J; ; =

Backpropagation Through Time—As already mentioned, BPTT is applied in RNNs.
Figure 2.19 indicates that the error has to be propagated back through several layers.
BPTT works similar to the general approach, but with slight differences in the com-
putation. Considering the same parameters as depicted in Section 2.1.3.4, we have the
weight matrices U, V and W together with the bias vectors b and c. Forward propaga-
tion needs the following equations (the initial state h(®) needs a certain initialization).
Due to another index i, which arises in the following, the denomiation varies slightly
from 2.1.3.4, meaning that the time ¢ is now superscript.

The weighted input z(*) to the hidden neuron A'*) is given by

zZ® = Ux® + wht 4+ p, (2.76)

Section 2.1.3.4 already stated out that RNNs use the input x multiplied by matrix U and
additionally the previous state K~ weighted with W. The outcome of the equation
above is then fed into the activation function of the hidden neuron (here tanh activation
function)

R = tanh (z(t)) . (2.77)



42 Chapter 2. Analysis

Finally, the output of the RNN is computed with
o =vh® 4 ¢ (2.78)

where t ranges from 1 to 7. Let the loss function or, alternatively, cost function be
denoted by L® for each time step t. The total loss L, in other words the sum of all L®),
is given by
L ({x<1>, R N FTI y(f)}) = Z L® (2.79)
t

where x is the input sequence and ¢j; are corresponding target values for each x; € x. It
can be recognized from Equation 2.79 that all previous time steps need to be taken into
account to compute the gradient. This makes the BPTT algorithm performing with a
runtime of O(r), since the unrolled graph needs to be considered.

The algorithm needs to compute the gradient for each node recursively. Goodfellow et
al. [6] assume that the output of the last layer o*) is used as input for a softmax function
(see Equation 2.9) to get a vector g of probabilities over the output. Thus, at time step ¢
the gradient V ) L of the output is given by

oL oL dL®

V,nl); = = 2.80
(VuolDi = 75 = 59 o (280)

for all i. The gradient at the final time step 7 is
VoL = VTVO(z)L (2.81)

since only the hidden state h(*) succeeds the output o(”). Then, the BPTT algorithm
starts. It iterates backward from ¢t = 7 — 1 down to ¢t = 1. Considering that each h(*)
with t # 7 has two descendents, o) and h(**1), the gradient with respect to the hidden
unit A’ is given by

ont+\T a0 \"
Vh(t)L = (W) (Vh(t+1)L) + (m) (Vo(z)L) (282)
=WT (VL) diag (1 - (h(”l))z) +VT (VL) (2.83)

where diag (1 - (h(”l))z) denotes a diagonal matrix whose elements are 1 — (h(”l))z.

This is in turn the Jacobian matrix of the activation function (here tanh) of hidden unit
i at time step ¢ + 1.
The gradients of the other parameters are calculated using the following equations

dot\ T
VL= Z (E) VL= Z‘ VL (2.84)



2.1. Deep Learning 43

VoL = (a—ht)T Vil = Z diag (1 - (h(t))z) VueL (2.85)

VyL = Z Z (j—;) Vyol) = Z (VL) hO" (2.86)

Vil = Z Z (ahf) Vi h'? Z dzag( ) ) (Ve L) RV (2.87)
Yyl = Z Z ( : ht) Z diag ( (h) ) (Vi L) x® (2.88)

Another explanation regarding BP and BPTT is given in [46].

2.1.3.9 Problem with Unstable Gradients

As already mentioned several times, gradients might explode or vanish. The latter
occurs, for instance, if the weights are initialized randomly and choosen either very
high or very low and hence the activation functions (sigmoid or tanh) saturate. This
issue is counteracted with the methods explained in Section 2.1.3.14. The vanishing
gradient problem is mentioned by Hochreiter et al. in [39]. Although this is mostly
about the gradient problem in RNNSs, the essential part is the same as for other neural

networks.

2.1.3.10 Learning Rate

The learning rate n measures how fast an algorithm learns. It should be choosen in
a decreasing way. In early training steps it is good to apply a high learning rate to
make the weights change quickly. This is due to the reason that the weights and biases
were recently initialized. As learning progresses the learning rate should be more and
more decreased in order to perform more fine-tuning steps. That is to only make little
adjustments to the weights of a neural network [5]. This circumstance is called learning

rate decay.

2.1.3.11 Hyperparameters and Cross-Validation

One important aspect to keep in mind when setting up a neural network is that the right
hyperparameters are not known from beginning. This is why the hyperparameters need
to be adjusted while training. Hyperparameters denote, for instance, a learning rate 7, a
momentum value ¢, a regularization parameter «, a mini-batch size m, a number of train-
ing iterations, a number of hidden neurons and so forth but not the weights and biases.
Mostly, various values have to be tried in order to get the best network performance.



44 Chapter 2. Analysis

However, there are some methods which help tuning the hyperparameters. Some are
introduced in the corresponding chapters, learning rate decay affecting the learning rate
in Section 2.1.3.10, early stopping helping to set the number of training iterations in
Section 2.1.3.13 and initialization of parameters in Section 2.1.3.14 giving fasciliations
on how to initialize the weights and biases in the beginning. As weights and biases are
no hyperparameters it might not fit into this section but initializing these parameters is
an important step to efficient training. Other techniques and hyperparameters can be
derived from [47].

For choosing the right hyperparameters, a validation set is required. If only a training
and test set is used, the model tends to overfit, since the parameters always choose the
maximal model capacity (see Section 2.1.3.12) [6]. This is where the validation set is
applied. It contains examples which are neither in the training set nor in the test set. The
validation set is constructed using the training data. This is done by splitting it up into
two disjoint subsets, typically 80 % of this data for training and 20 % for validation [6].

Cross-Validation—If the dataset we need for training/validation or training/testing
is too small, cross-validation can be applied. The most common form of it is k-fold
cross-validation [6]. The dataset D is thereby partitioned into k disjount subsets D;.
Then, k trials get performed. On trial j the subset D; is used for validation/testing
and the remaining ones {IDy, ..., Dx_1}\{ID;} are used for training. After each run, an
error e; is computed. This procedure is repeated k times. After that, the validation
set error/generalization error e is computed by taking the mean among all errors e;,
ie{o,...,k—1}[6].

2.1.3.12 Generalization, Overfitting and Underfitting

Learning algorithms need to generalize well on new situations, on which they are not
trained on. This is why measures and regulations are required in order to assure this.
Below, generalization of neural networks is described. As known from Section 2.1.3.11,
a data set is divided up into three parts: a training set, a validation set and a test set. The
first one is used for learning, that is to adjust the weights reasonable. The validation
set contains less examples as the former set used for training and is applied to tune
the hyperparameters of a neural network such as the number of hidden neurons or the
learning rate. If all parameters and hyperparameters are adjusted well the latter set
is used to evaluate the performance, meaning the generalization of the trained neural
network. This leads to following two terms, underfitting and overfitting. Underfitting
results in a network that does not model the training data well and hence can not
generalize well to new data. On the other hand, overfitting occurs if a network learns
the training data too well, meaning that it adapts all the details of this set as well as
the noise. This yields a low generalization. In the example of Figure 2.27, a linear, a
quadratic and a degree-9 predictor are applied to solve a quadratic problem. As it can



2.1. Deep Learning 45

be seen, algorithms that tend to underfit are not able to find an appropriate fit for the
model (here the linear function). On the contrary, overfitting algorithms model the
problem too accurate although it captures all points (here the degree-9 polynomial).
Only the quadratic function generalizes well to the quadratic problem.

All in all, underfitting and overfitting of a neural network can be regulated by changing
its capacity, meaning the ability to model a large variety of functions. If a neural network
suffers from underfitting (low capacity) the number of hidden units should be increased,
as it is not able to fit the underlying complex structure of the model appropriately. This
can be seen, for instance, when the training error is still large after training. How to
prevent a neural network from overfitting (high capacity) is explained in Section 2.1.3.13.

Appropriate
Underfitting Capacity Overfitting
A A A
'y J
/

> >
> > >

Figure 2.27: An illustration of underfitting on the left and overfitting on the right side. The
optimal capacity is shown in the middle (derived from [6]).

2.1.3.13 Regularization

Regularization is used to prevent a neural network from overfitting by mostly limiting
the capacity of it [6]. This is done by adding an additional term, called parameter norm
penalty Q(0), to the objective function J (a function which needs to get optimized, e.g.
a cost function) which is given by

J(0:X;v) = J(6; X;y) + aQ(6) (2.89)

where the hyperparameter a € [0, c0) measures the contribution of the parameter norm
penalty Q(6) to the objective function J. A small a ensures that the original objective
function J is taken into account and thus gets minimized. In contrast, a high « prefers
small weights. Goodfellow et al. [6] suggest to choose a parameter norm penalty that
only affects the weights and leaves the biases unregularized, as this can lead to under-
fitting.

Different regularization techniques are described afterwards. First, L?> parameter reg-
ularization also known as weight decay is introduced. Here, the regularization term



46 Chapter 2. Analysis

1
corresponds to Q(8) = 5||w||§, where ||w||; represents the L?norm of w, defined by

=, lwi|%. The effect of weight decay can be seen in the following equations [6].

Consider the regularized objective function
~ a
Jw; X;y) = Ew w+ J(w; X;y) (2.90)

where 0 is just w, since the biases are left out for simplification. The term w”w belongs
to ||w||Z, multiplying the weights vector with itself. The corresponding gradient of the

objective function with respect to w is given by
Vo W: X;y) = aw + Yy J(w; X3 7). (2.91)
A single step to update the weights, for instance with GD, is accomplished with
we—w - nlaw + Vy, J(w; X; ). (2.92)
Equation 2.92 can be rewritten into
we— (1-na)w —nVyuJ(w; X;y). (2.93)

From Equation 2.93 it can be recognized that each update step involves an additional
factor (1 — ner), which shrinks the weight vector by a constant factor before performing
the usual update.

Another regularization technique is L'regularization. The regularization term conforms
thereby to Q(0) = ||lw|l; = ); lw;|. Therefore, the regularized cost function is given by

Jw: X;y) = allwll + J(w; X; y). (2.94)
The corresponding gradient function is determined by
Vo (s X3 y) = asign(w) + Vi J (w; X; y) (2.95)

where sign(w) is the sign of w applied element-wise [6]. A single gradient update step
is performed with
w «— (1 - na)sign(w) — nVyJ(w; X;y). (2.96)

The regularization contribution to the gradient is now a constant with sign sign(w). The
effect of L! regularization on the weights is completely different from L? regularization.
Whereas the latter one focuses on shrinking the weights with each step, the first one
concentrates on important weights. That is why L! Regularization decreases weights
much less if they are large than it decreases them if they are small. Hence, this regu-
larization type results in a solution that is more sparse, meaning that some parameters
values are driven towards zero [5].



2.1. Deep Learning 47

The third type of regularization which is explained in this section is called dropout [48].
This method is quite different from the both explained above as it does not add a pa-
rameter norm penalty to the objective function. It rather modifies the neural network
itself. The principle behind dropout is as follows. For every training example, half of
the activation functions of the hidden neurons are primarily set to zero, meaning to
virtually delete half of the hidden neurons. These neurons are chosen randomly. After
that, forward and backward propagation takes place and the weights and biases are
updated appropriately. Finally, the virtually deleted neurons are restored and another
subset is chosen randomly. The procedure is repeated for the next training example
afterwards. Thus, the neural network can not be sure that a certain activation function
and a hidden neuron, respectively, is present. That is why the network needs to learn
a redundant representation of the training examples. Training a neural network with
dropout is like training different networks at the same time. Then, the neural network
takes the consensus of the collectivity of all networks. A type of activation function
which works efficiently together with dropout is maxout (see Section 2.1.1.1) [2].

The last method introduced here is called early stopping. It differs from the regular-
ization techniques in a way that it does not apply artificial constraints to the neural
network. Strictly speaking, early stopping is not a regularization method. Nevertheless,
it prevents a neural network from overfitting. The concept of early stopping is best
illustrated using Figure 2.28. If the validation performance reaches its peak, the training

procedure stops.

Stop
Validation

H
Set / ere
Performance

Training
Time

Figure 2.28: The principle of early stopping (derived from [7]).

2.1.3.14 Initialization of parameters

The initialization of all parameters of a neural network must not be disregarded and is
an important aspect of training. The choice of the parameters can affect both the speed
by which learning converges and the generalization of comparable costs. Furthermore,
a reasonable initialization is also necessary to break symmetry [6]. That means that if



48 Chapter 2. Analysis

two hidden units with the same inputs and the same activation functions have the same
parameters, they are always the same and thus, redundant. This leads to the assumption
that the parameters of a neural network should be initialized randomly. According
to [6] unlike weights, biases need to be set to constants which are heuristically chosen.
The following aspects indicate that larger weights have to be chosen. First, they result in
a stronger symmetry-break effect and hence avoid redundant units. Furthermore, larger
weights prevent multiplicated matrices of getting to small. Consequently, they help to
not lose signal by forward and backward propagation through the linear component of
each layer [6]. This linear component is mostly the weighted input without involving
the activation function.

Too large weights, however, yield exploding values and gradients during forward and
backward propagation, respectively. Additionally, they result in an extreme sensibility
to small changes in the input of RNNs and hence the behaviour of the forward propaga-
tion step seems to be random [6].

Large weights can also cause the neurons, more specifically their activation functions,
to saturate because of extreme values (see Section 2.1.1.1). This results in a loss of the
gradient.

In summary, it can be stated that it is important to find a right initialization regarding
all the competing factors mentioned above. Hence, there needs to be a compromise
between large weights favouring the successful propagation of information through
the network and smaller weights facilitating regularization.

Below, both a very common technique and a specific heuristic for weight initialization
are described. For one thing, the weights can be uniformily drawn from an interval

1 1
U(—+/—=s4/— | where m is the number of inputs to a fully-connected layer. Its out-
m \Nm

puts are denoted with n. Another initialization technique established by Glorot and
Bengio [49] sets the weights using a normalized initialization

6 6
Wij~U (—\/ : ) (2.97)
m+n m+n

Most weight initialization heuristics aim at choosing the weights with mean 0 and

1
standard deviation —. However, there comes one problem along with initializing all
m

weights to the same standard deviation. They become extremly small if the network
layers become larger. All in all, a reasonable weight initialization is necessary to prevent
a neural network from both slowing down learning and saturation.

2.1.3.15 Batch Normalization

Batch normalization was introduced by Ioffe and Szegedy in 2015 [50]. It helps to
avoid lower learning rates and hence speeds up training. They address a problem



2.1. Deep Learning 49

called internal covariate shift. This means that the input distribution of internal nodes
changes every training step [51]. This is due to the reason that weights and parameters
are modified every training step and thus, the data is changed. Simply put, batch
normalization is an additional step between two layers. The output of layer n — 1 gets
batch normalized before it becomes the input to layer n, i.e. the normalized value x after
layer n becomes the input to a sub-network which applies a linear transformation to x
by using Equation 2.101 [50]. This output becomes the input to the regular layer n — 1.
The batch normalization algorithm works the following way [50]. First, both the mean
u and the variance o2 of the mini-batch x with elements x;,i = {1,...,m}, have to be
computed

1 m
p=— Z X; (2.98)

i=1

o? = %Z (xi — )2 (2.99)

i=1
The normalization of every element x; is then given by

. Sl (2.100)

(02 +¢)
where € is an additonal parameter to avoid a division through zero. X is afterwards

scaled by y and shifted by f using

y=yx;+p (2.101)

where y as well as § indicate parameters which need to be learned.

Due to two more parameters (y, ) the BP algorithm needs to be adjusted. The further
learning procedure of batch normalized neural networks is shown in detail in [50]
and [51].

2.1.4 Application Scenarios

Deep learning is ambitious of detecting highly hierachical features in data sets (see
Section 2.1) [19]. That is why it is used in computer vision tasks such as detecting faces
and recognizing objects in an image. Further applications are natural language pro-
cessing, the use of human speech by a computer, and speech recognition, the mapping
of human speech to the intended words. Additionally, in our approach it is applied to
smart spaces. All in all, deep learning can be applied to a large variety of use cases. It
will help artificial intelligence to be spread among various areas like driverless cars [52],
TV programm recommendations [53] or smart homes [54]. The latter one applies deep
learning for energy saving, security issues, health care and home care (see Table Iin [54]
and Tables 2.1, 2.2 in Section 2.5).



50 Chapter 2. Analysis

2.1.5 Machine Learning & Deep Learning Frameworks

Different machine learning and deep learning frameworks, respectively, are available.
In the following, four of them are introduced. Three of them are using Python and one
is using Java. Sonnet and Caffe2 were released recently in April 2017. All of them have
pre-trained models and there a several tutorials for each library.

2.1.5.1 Theano

Theano' is a Python library. Below, a Theano example? is shown. It shows the computa-
tion steps for a XOR neural network.

Listing 2.1: Theano example

#A code snippet of a simple network consisting of
#2 input units, 2 hidden units, 1 output unit

import theano

import theano.tensor as T

import theano.tensor.nnet as nnet
import numpy as np

T.dvector()
T.dscalar()

#define a layer with input x, bias b=1, weight matrix w, sigmoid unit
def layer(x, w):
b = np.array([1], dtype=theano.config.floatX)
new_x = T.concatenate([x, bl)
m = T.dot(w.T, new_x) #thetal: 3x3 * x: 3x1 = 3x1 ;;; theta2: 1x4 * 4x1
h = nnet.sigmoid(m)
return h

#gradient descent: T.grad() computes the gradient
def grad_desc(cost, theta):

alpha = 0.1 #learning rate

return theta - (alpha * T.grad(cost, wrt=theta))

#define and initalize the weight matrices randomly

#'shared’ variable as we want to update it

thetal = theano.shared(np.array(np.random.rand(3,3),
dtype=theano.config.floatX))

1http://deeplearning.net/software/theano/
2http://outlace.com/Beginner-Tutorial-Theano/


http://deeplearning.net/software/theano/
http://outlace.com/Beginner-Tutorial-Theano/

2.1. Deep Learning 51

theta2 = theano.shared(np.array(np.random.rand(4,1),
dtype=theano.config.floatX))

hidl

layer(x, thetal) #hidden layer

outl = T.sum(layer(hidl, theta2)) #output layer
fc = (outl - y)**x2 #cost expression

cost = theano.function(inputs=[x, y], outputs=fc, updates=][
(thetal, grad_desc(fc, thetal)),
(theta2, grad_desc(fc, theta2))l])

run_forward = theano.function(inputs=[x], outputs=outl)

inputs = np.array([[0,1],[1,0],[1,1],[0,0]]).reshape(4,2) #training data X
exp_y = np.array([1, 1, 0, 0]) #training labels Y
cur_cost = 0
for i in range(10000):
for k in range(len(inputs)):
cur_cost = cost(inputs[k], exp_y[k]) #call our Theano-compiled cost
function, it will auto update weights

2.1.5.2 TensorFlow & Sonnet

Sonnet® builds on top of TensorFlow* and is based on Python. A TensorFlow example®

on the MNIST dataset of handwritten digits is given below [16].

Listing 2.2: Tensorflow example

#A code snippet of a single layer network:

#The input is fed through a softmax-output-layer

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST data/", one_hot=True)

import tensorflow as tf

x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

#y contains the actual output
y = tf.nn.softmax(tf.matmul(x, W) + b)

3https://github.com/deepmind/sonnet
4https://www.tensorflow.org/
5https://www.tensorflow.org/get_started/mnist/beginners


https://github.com/deepmind/sonnet
https://www.tensorflow.org/
https://www.tensorflow.org/get_started/mnist/beginners

52 Chapter 2. Analysis

#y_ contains the correct answers (1,...,10)
y_ = tf.placeholder(tf.float32, [None, 10])

#loss function: cross-entropy

cross_entropy = tf.reduce_mean(cross_entropy =
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_,
logits=y)))

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

#operation to initialize the variables created
# outdated: init = tf.initialize all_variables()
init = tf.global_variables_initializer()

#launch the model in a Session
sess = tf.Session()
sess.run(init)

#Let’'s train -> perform the training step 1000 times

for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

Our learning algorithms are implemented with TensorFlow (see Chapter 5). This is
due to the reason that a variety of applications use this framework. Moreover, a large
community provides additional information and we are able to apply parametrization
efficiently. Furthermore, it provides a good performance and a well-structured architec-
ture [55].

A detailed evaluation of different machine learning and deep learning frameworks is
given in [56] and [57].

2.1.5.3 Caffe & Caffe2

Caffe2° builds on Caffe’ and is Python-based. Caffe differs from the other libraries
explained here in that it stores the definiton of the network in a protobuf-structure®.
The data is organized in blobs (chunk of data in memory) and workspaces store all the
blobs. The example® below is implemented in Caffe2. The first def-part defines the
model with its convolutional layers and a softmax output layer. The second one adds
training parameters to the model.

6https://github.com/cafer/cafer

7http://caffe.berkeleyvision.org/
8https://developers.google.com/protocol-buffers/docs/overview
9https://github.com/caffe2/caffe2/b10b/master/caffe2/python/tutorials/MNIST.ipynb


https://github.com/caffe2/caffe2
http://caffe.berkeleyvision.org/
https://developers.google.com/protocol-buffers/docs/overview
https://github.com/caffe2/caffe2/blob/master/caffe2/python/tutorials/MNIST.ipynb

2.1. Deep Learning 53

Listing 2.3: Caffe2 example

def AddLeNetModel(model, data):
"""Adds the main LeNet model.

This part is the standard LeNet model: from data to the softmax prediction.

For each convolutional layer we specify dim_in - number of input channels

and dim_out - number or output channels. Also each Conv and MaxPool layer
change

image size. For example, kernel of size 5 reduces each side of an image by
4.

While when we have kernel and stride sizes equal 2 in a MaxPool layer, it
devides each side in half.

# Image size: 28 x 28 -> 24 x 24

convl = model.Conv(data, 'convl’, dim_in=1, dim_out=20, kernel=5)

# Image size: 24 x 24 -> 12 x 12

pooll = model.MaxPool(convl, ’'pooll’, kernel=2, stride=2)

# Image size: 12 x 12 -> 8 x 8

conv2 = model.Conv(pooll, ’conv2’, dim_in=20, dim_out=50, kernel=5)

# Image size: 8 x 8 -> 4 x 4

pool2 = model.MaxPool(conv2, 'pool2’, kernel=2, stride=2)

# 50 * 4 x 4 stands for dim_out from previous layer multiplied by the image
size

fc3 = model.FC(pool2, 'fc3’, dim_in=50 * 4 x 4, dim_out=500)

fc3 = model.Relu(fc3, fc3)

pred = model.FC(fc3, ’'pred’, 500, 10)

softmax = model.Softmax(pred, 'softmax’)

return softmax

def AddTrainingOperators(model, softmax, label):
"""Adds training operators to the model."""
xent = model.LabelCrossEntropy([softmax, label], ’xent’)
# compute the expected loss
loss = model.AveragedLoss(xent, "loss")
# track the accuracy of the model
AddAccuracy(model, softmax, label)
# use the average loss we just computed to add gradient operators to the
model
model.AddGradientOperators([loss])
# do a simple stochastic gradient descent
ITER = model.Iter("iter")
# set the learning rate schedule
LR = model.LearningRate(
ITER, "LR", base_lr=-0.1, policy="step", stepsize=1l, gamma=0.999 )



54 Chapter 2. Analysis

# ONE is a constant value that is used in the gradient update. We only need
# to create it once, so it is explicitly placed in param_init_net.
ONE = model.param_init_net.ConstantFill([], "ONE", shape=[1], value=1.0)
# Now, for each parameter, we do the gradient updates.
for param in model.params:
# Note how we get the gradient of each parameter - CNNModelHelper keeps
# track of that.
param_grad = model.param_to_grad[param]
# The update is a simple weighted sum: param = param + param_grad * LR
model.WeightedSum([param, ONE, param_grad, LR], param)
# let’'s checkpoint every 20 iterations, which should probably be fine.
# you may need to delete tutorial_files/tutorial-mnist to re-run the
tutorial
model.Checkpoint ([ITER] + model.params, [],
db="mnist_lenet_checkpoint_%05d.leveldb",
db_type="leveldb", every=20)

2.1.5.4 DeepLearning4]

DeepLearning47' is a library based on Java. Below, an example!! of a FFNN with one
hidden layer is given. It is trained on the MNIST dataset of handwritten digits [16].

Listing 2.4: DeepLearning4] example

//A code snippet of building and training a simple FFNN in DL4J]
final int numRows = 28;
final int numColumns = 28;

int outputNum = 10; // number of output classes
128; // batch size for each epoch

int rngSeed = 123; // random number seed for reproducibility

int batchSize

int numEpochs = 15; // number of epochs to perform

//Get the DataSetIterator:
DataSetIterator mnistTrain = new MnistDataSetlIterator(batchSize, true,
rngSeed) ;

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(rngSeed) //include a random seed for reproducibility
// use stochastic gradient descent as an optimization algorithm
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.iterations(1)
.learningRate(0.006) //specify the learning rate

10https://deeplearning4j.org/
11https://deeplearning4j.org/mnist-for-beginners


https://deeplearning4j.org/
https://deeplearning4j.org/mnist-for-beginners

2.1. Deep Learning 55

.updater(Updater.NESTEROVS) .momentum(0.9) //specify the rate of
change of the learning rate.

.regularization(true).12(1le-4)

Llist()

.layer(0, new DenselLayer.Builder() //create the first, input layer
with xavier initialization

.nIn(numRows * numColumns)
.n0ut(1000)
.activation(Activation.RELU)
.weightInit(WeightInit.XAVIER)
.build())

.layer(1l, new
OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD)
//create hidden layer

.nIn(1000)

.nOut (outputNum)
.activation(Activation.SOFTMAX)
.weightInit(WeightInit.XAVIER)
.build())

.pretrain(false).backprop(true) //use backpropagation to adjust
weights

.build();

MultiLayerNetwork model = new MultilLayerNetwork(conf);
model.init();

for( int i=0; i<numEpochs; i++ ){
model.fit(mnistTrain);




56 Chapter 2. Analysis

2.2 Smart Space Orchestration with VSL

Smart Space Orchestration [58] faces some difficulties nowadays, as the used entities
(e.g. temperature sensor, light sensor, smart TV) are usually heterogenous. For instance,
mostly only entities with the same functionality (e.g. heating entities) can communicate
with each other. To overcome this problem of heterogeneity, the Distributed Smart Space
Orchestration System (DS20S) was developed [59]. It is a middelware framework con-
sisting of a Virtual State Layer (VSL) middleware (see Figure 2.29), a Service Management
Layer (SML) and a Smart Spaces Store (52S). Among these, VSL is the most important
one for our approach.

DS20S Site Local Global

Services i

Hardware
Underlay

| N o o o o A ...;_.. n . ..'--
¥ i ¥ * |9 Logical Connectivity <€+~
J _.1++> Physical Connectivity_| .-. .-
b .. . 3 W W
= o ie) o s £y v
1 3 _i Gateway Services
§

omE T,
R
P

A sensor 7 Actuator

i__i Other Services

Figure 2.29: The VSL [13].

Therefore, VSL is explained in more detail now. VSL is a middleware based on a peer-
to-peer system, meaning all nodes in the network are equally priviledged and can
communicate with each other, no matter if their underlying software or hardware is
heterogenous. It implements a so-called blackboard communication pattern which results
in a loose coupling of the services. Loose coupling means that we communicate only
with the interfaces of the services, which are also working asynchronously. This allows
full encapsulation of the services, since the communication is done with the help of the
interfaces (context models) [60]. This is where data models (see Section 2.2.1) come into
focus, as structured data is required.

The principle of blackboard communication is as follows [60]: A service can write
data produced by itself on the board or it can read data from the board, consuming
it. Thus, each service needs its functionality autonomously, for instance, for reading
sensor values or changing the environmental state with its actuators.

2.2.1 Context Models

To define context model, we illustrate the term context first. While a service is on-line, it
gathers information to accomplish its purpose. The appropriate information is thereby
called context. Context models are used for structuring such context information and
hence represent structured data about the real world. That means that context models



2.2. Smart Space Orchestration with VSL 57

express a virtual state of the real world. The context is structured using a simple XML
representation [58]. In DS20S, VSL stores the context for and brokers between the
services [60]. If a service is registered, a context model is initialized. In this context
model, all context data the particular service produces is stored. Thus, the context model
of each service becomes its abstract interface. A service can also access context from
other services. Context can be changed using the VSL interface with the commands

GET and SET [60].

Context Model Repository—A global Context Model Repository (CMR) stores all con-
text models which can be used in all VSL Smart Spaces. The context models are identified

by means of a unique model identifiers (ModelID) [60].

2.2.2 Knowledge Graph

As mentioned above, the VSL is based on a peer-to-peer system (see Section 2.2). The
peers in the VSL are called Knowledge Agents (KAs). As it can be seen in Figure 2.30, a
KA offers principally two functionalities, context management and context repository.
The interface of a KA provides following methods. Values of a context node are returned
or changed with the methods get or set. To get notified, when a value of a node changes,
you can subscribe to that node. On the other hand, you can unsubscribe to remove the
subscription. The last method refers to the registration of virtual nodes. If a node is
registered as virtual, all queries to this node will not be handled by the VSL. This task is
taken over by the virtual node handler, specified for that node. You can also unregister

a virtual node to enable VSL handling again [60].

’/Knowledge Agent

>
2
S
S
Gz
0
o
3
o
o
o
>

Local \

Aioysoday 1xe1uo)

4

get /search/type/modellD

Figure 2.30: Context management in DS20S [13].

Context Manager

| Shared ontology

oocD o
(addr | val| (addr addr |

| addr |

Furthermore, it can be seen in Figure 2.29, that each computing node equipped with
sensors and actuators runs its own instance of a KA. All KAs connected to a root



58 Chapter 2. Analysis

node build up a hierarchy, a so-called knowledge graph, containing services and their
parameter values. This circumstance is shown in Figure 2.31. Before a service can
use the methods provided by the VSL through the KAs it needs to register itself to a
particular KA [60].

Root Node

Knowledge
Agents

Services

Context
Data

A particular
service with
its context data

Figure 2.31: A knowledge graph constructed with three KAs, each one connected to the root
node. Each KA has its own services.

2.2.3 Knowledge Structuring

The context data of a smart space is structured using context models. Each service
connected to its KA processes its own data. As shown in Figure 2.31 each service has
its own number of nodes to store context in. These nodes are determined by its context
model. For example, a weather service stores context data like outdoor and indoor
temperature, humidity and rain probability.

2.24 Knowledge Vectors

The virtual state can not only be represented via a knowledge graph but also by a
knowledge vector or state vector. This possibility is exploited in our deep learning
approach, as neural networks use vectors as input (see Section 2.1). Knowledge vectors
contain the same data as context models, but are less structred. This is due to the flat
structure of a vector in contrast to the tree-like structure of a knowledge graph (see
Section 2.2.2). These vectors look like the following [60]

EntireSpace

Service Process

(< s1,s2,s3,...,sN >, < al,a2,a3,...,aN >, < bl,...,bl >,...). (2.102)




2.2. Smart Space Orchestration with VSL 59

The state vector of an entire space, for example a flat, contains both services and
processes which go over multiple services. The knowledge vector changes and develops,
respectively, over time. This is due to the ongoing collection of sensor data, since data
from the outside is taken continously (e.g. temperature) or something from the inside
changes (e.g. a reasoning mechanism concludes it is getting night and, thus, changes
the setting of a lamp).



60 Chapter 2. Analysis

2.3 Using Machine Learning and Deep Learning in Smart
Spaces

Machine learning and deep learning, respectively, can be applied in various sectors in
smart spaces. As smart spaces are built up using sensors, actuators and smart devices we
are able to get every information about the particular smart space. This information is
provided for the machine learning algorithms. In the case of DS20S, all the information
about the smart space is encapsulated in knowledge vectors (see Section 2.2.4). Some
application scenarios in smart spaces are summarized in Tables 2.1, 2.2.

As learning algorithms are based on vectors and matrices, they use a vector notation
as input. Hence, we exploit the knowledge vector representation described above in
Section 2.2.4 and Equation 2.102. However, the vectors must have the same length.
This is due to the fixed size of input units in neural networks (see Section 2.1). Due
to this constraint, we need to either pad the vectors with zeroes or resize them in a
different way. Another important aspect to keep in mind is that the vectors used as
input have to have the same structure. As we already know, state vectors develop over
time. Therefore, they should not lose their inner structure, meaning for example, all
services get listed before the processes are. This is due to the reason that after training,
neural networks have adjusted their weights according to their training input.

To apply a learning algorithm it is sufficient to have a large data set. This data set is then
split up into a training set, a validation set and a test set. Thus, before a machine learning
algorithm can be applied in smart spaces it needs to be trained using the training set.
The trained neural network is then able to predict concrete results using an abstract
input, e.g. a new knowledge vector representing the current state of the smart space.
It is almost impossible to find related works (see Chapter 3) about such rather new
approaches like deep learning applications in smart spaces. On the other hand, there
exists a number of different approaches which apply machine learning classifier and
other simple neural networks to smart spaces. Tables 2.1, 2.2 in Section 2.5 list such
approaches.

It is difficult to implement a machine learning algorithm without detailed knowledge
in both machine learning and the corresponding machine learning library. Hence, we
develop an approach which makes machine learning available for users, respectively
developers, with little or almost no pre-knowledge in these areas. Therefore, we attach
importance to usability and reusability. This approach aims at modularizing machine
learning algorithms. By modifying a created configuration file one can simply build
a machine learning algorithm and train it on a particular data set. Depending on the
values provided to the configuration file, the user can either train a shallow or a deep
neural network architecture. This is why we refer to our services as general machine
learning services. Furthermore, this approach can be applied to smart spaces.

Chapter 4 describes further details about the design of our implemented machine learn-
ing services.



2.4. Summary 61

2.4 Summary

In this chapter, we introduced deep learning as an area of machine learning. We focused
thereby on different types of neural networks and provided information about how to
make each neural network deeper. Furthermore, the DS20S was explained. Afterwards,
we described how to apply machine learning in smart spaces by exploiting the DS20S.
We started with explaining four different kinds of artificial neurons (Section 2.1.1.1),
beginning with the first announced neuron called perceptron, a binary neuron. We
added the sigmoid neuron, ranging from 0 to 1 and the tangens hyperbolicus neuron with
a range of —1 to 1. The Rectified Linear Unit (ReLU) formed the tail. It is either 0 or
the input itself if it is positive. In addition to that, we explained the term saturation of
neurons. Unlike sigmoid and tanh neurons, ReLUs are unaffected by this phenomenon.
Additionally, another kind of activation function called maxout was introduced.
Afterwards, we depicted a special kind of output unit called softmax (Section 2.1.1.2).
This unit describes an output with a probability distribution among several values. It is
therefore important for classification tasks. For example, if we are processing an image
with a cat on it, the output can look as follows: 0.5 % chicken, 5.5 % dog, 94 % cat (three
output units).

Then, four different learning techniques called supervised learning (Section 2.1.1.3),
semi-supervised learning (Section 2.1.1.5), Reinforcement Learning (Section 2.1.1.6) and
unsupervised learning (Section 2.1.1.4) were introduced. We also pointed out the use
of labeled training data. The amount decreases from the first to the latter, meaning
the first needs solely labeled training data and the latter no labeled training data at all.
The third works by getting feedback from the environment, meaning right actions are
advantageous and wrong actions get penalized.

As three machine learning classifier are used in the related works, they are examined
in Section 2.1.2: Logistic Regression (LR), Softmax Regression (SR) and a Support Vector
Machine (SVM). The first two compute probabilites to solve a classification task, whereas
the latter uses a class identity which is either positive or negative.

Next, several types of neural networks were illustrated (Section 2.1.3). We provided
thereby additional information about how to make the respective network deep. First,
a Feedforward Neural Network (FFNN) was described (Section 2.1.3.1). After the expla-
nation of a Convolutional Neural Network (CNN) (Section 2.1.3.2) with its distinctive
local receptive fields, shared parameters and pooling layers, we introduced Deep Belief
Networks (DBNs) (Section 2.1.3.3). They can either consist of several stacked Autoen-
coders (AEs) or several stacked Restricted Boltzmann Machines (RBMs). When we de-
scribed the functionality of RBMs, we also introduced Contrastive Divergence (CD) as
a method to update their parameters (see Figure 2.17). Subsequently, Recurrent Neural
Networks (RNNs) were depicted (Section 2.1.3.4). Important to keep in mind is that RNNs
include previous states into their current output. As this yields long-term dependen-
cies, the Long Short-Term Memorys (LSTMs) network was presented to overcome this



62 Chapter 2. Analysis

problem. We finished the different kinds of neural networks with a deep Q-network
(Section 2.1.3.5). It makes use of reinforcement learning.

As we need to measure an error to train a neural network, the following cost func-
tions (Section 2.1.3.6) were introduced: cross-entropy (Equation 2.57), log-likelihood
(Equation 2.58), Sum of Squared Errors (SSE) (Equation 2.59), Mean Squared Error (MSE)
(Equation 2.60) and Kullback-Leibler (KL) divergence (Equation 2.61). They compute the
error by taking the difference of the actual output and the desired one, in general.

To update the weights and biases of a neural network two gradient-based learning tech-
niques were described in Section 2.1.3.7, usual Gradient Descent (GD) (Equations 2.62, 2.63)
and Stochastic Gradient Descent (SGD) (Equations 2.64, 2.65). The latter is an improve-
ment over the first, as it speeds up learning by only using a small number of training
inputs called mini-batch to estimate the gradient. SGD can be further optimized by
applying a momentum (Equations 2.66, 2.67). This approach takes previous knowledge
about the gradient into account.

The above-mentioned gradient-based learning techniques require a gradient of the cost
function. This is why, Backpropagation (BP) and Backpropagation Through Time (BPTT)
were depicted (Section 2.1.3.8). The latter is used in RNNs. It is called BP as the gradient
is calculated at the output layer and propagated back through the network.
Thereafter, we illustrated the problem of unstable gradients (Section 2.1.3.9), explained
the role of the learning rate n (Section 2.1.3.10), mentioned some methods for hyperpa-
rameter tuning and introduced cross-validation (Section 2.1.3.11).

The next terms described were generalization (Section 2.1.3.12), underfitting and over-
fitting. The first means that neural networks need to generalize well to unknown data.
The latter two terms are reasons for a non-appropriate generalization. A neural network
suffering from underfitting is not able to model the training set well. On the other hand,
a network that tends to overfit models the training data too well. Thus, it adapts all
details of the training set as well as the included noise.

To overcome the above mentioned problem of overfitting, several Regularization tech-
niques were introduced in Section 2.1.3.13. First, L? regularization and L' regularization
were described. Both techniques add an additional term called rarameter norm penalty
3(0) to the objective function. Then, we mentioned dropout which modifies the neural
network itself. This is done by randomly setting half of the activation functions of the
hidden units to zero, for each training example. Finally, we illustrated early stopping
which does not apply any constraints to the network. It states that the neural network
should stop training if the validation set performance has reached its peak.
Afterwards, we represented why the initialization of parameters is important to cobe
with learning slowdown and the generalization problem (Section 2.1.3.14). We sug-
gested two possibilities. First, the weights can be drawn uniformily from an interval U

1 1
with boundaries — [ — and 4/ —. The alternative is setting the weights according to a
m m

and
m+n m+n

normalized initialization with boundaries — . The parameters m



2.5. Overview over Machine / Deep Learning Approaches in Smart Spaces 63

and n denote the number of input units and the number of output units, respectively.
We further introduced batch normalization as a technique to speed up learning by avoid-
ing smaller learning rates in Section 2.1.3.15. This is done by normalizing each input to
an internal node. Furthermore, the normalized input gets scaled by y and shifted by j
using Equation 2.101. Both describe parameters which need to be learned additionally.
The BP algorithm needs to be modified in order to train batch normalized neural net-
works. We did not cover this step as it is described in detail in [50] and [51].

We concluded the section about deep learning with some Application Scenarios (Sec-
tion 2.1.4).

The second part was about the Distributed Smart Space Orchestration System (DS20S)
(Section 2.2). We described the Virtual State Layer (VSL) middleware as the core of the
DS20S. It enables simple communication between heterogenous smart devices and ser-
vices, respectively. By using context models the real world is represented in a structured
way (Section 2.2.1). Each registered service uses its own context model to store all its
data in it. A service runs on a Knowledge Agent (KA) (Section 2.2.2). Furthermore, we
introduced the possibility to represent the data stored in the context models as knowl-
edge vectors (Section 2.2.4). These knowledge vectors allow us to use machine learning
and deep learning in smart spaces.

Next, we described how to apply machine learning and deep learning, respectively, to
smart spaces. This is, for instance, possible by using the knowledge vectors introduced
above. Moreover, we explained the basic structure of our approach meaning to develop
machine learning services which are easy-to-use and do not require pre-knowledge in
both machine learning and the corresponding machine learning library. Hence, usability
and reusability of the services are important aspects. Due to the reason that the user is
able to decide on his own whether he wants to apply a shallow or a deep neural network,
we refer to our services as machine learning services in general.

2.5 Overview over Machine / Deep Learning Approaches in
Smart Spaces

Tables 2.1, 2.2 summarize important approaches about deep learning and machine
learning in smart spaces, respectively. Although a similar table (Table 3.3) is depicted
in Chapter 3, these two outline the approaches in more detail. We revert to them in
Chapter 4. Both tables are constructed the same way. The first column holds the name
of the work, the second denotes the method(s) applied and the third one represents the
accuracies of the methods. Column four contains details about the dataset(s) used. The
fifth column gives an overview about the architecture of the methods. The last two
columns express remarks about the approaches and the year of the work, respectively.
The tables show that the most used neural networks are FFNNs or MLPs, DBNs and
RNNE.



Chapter 2. Analysis

64

‘(z/1) sooeds jrews ur sayoeordde Surures] doop / SUIYDRW I9A0 MITAIIAQ :T'Z J[qeL,

S9JIATIO®
Jo Surum [ny
-a1ed ‘pPI[aqe]

[e€] wyitro8ye

sdajs Surunj-aur] + SurureI]-ai1J ‘son} 01 :InQO Arenuew Sururea| deog
-1ATJ0® (T JO Ino T sjudsaidar jndjno yoey ‘001°005°00S | ‘sAep (G ueyy dursn swo} }rewS
‘AJTATIO® [[OBD 10 SITORINII. AU} IOAO UBIWI }¢‘C‘TTH | 210w Sunmp % 918898 SINGY | ur A31A)0y  uewr
$10Z | oy} Sunyel Aq paindwod sem AdeINOdY | ‘Bjep g paIdyien uedy | AQIINq NG | -nH  Surzrugooay
1 [79] syuswruoaiauy
(" Jres * - 1) 10A€] | 03 PAXY N «— JUSSI[[IU] Ul UOoT}
uoIstoap e Surppe Aq uonorpaird inoraey | TH Jo SIYSom | Ppajo[op eIep -Tu8009Y SONIATIOY
-9( [EWLIOUQY ‘SPOYIdW UOIJOUNJ PUE POOY | ‘pauIed] TH <« Po3IOTJU0D 10 yoeoxddy
-10qU31ou Aq poAeire ST 10309A 9e}ls I0S | U] JOo SIYSom | 4S9, 00T NIomloN  TeInaN
8007 | -U9S ‘WOO0Ipaq IdSn © paje[nuirs eje(] | ToAe] uappry [ | ‘Sururei], 00g % 26 NNJO | ssed-auQ [2A0N V
(12/59)
s197o1d oy Aep 1 JO
2 pa3o1paxd a1y} Jo UOTIOR YITYM WY SYSE ordures :jos
:19SN AU} I SIORIUI NNY < SUOroe 2 MO | 1593 Yoam | [£9] syIOMION
¢ s101pa1d ‘yndur se suorjoe ¢ 10 g Jo 19§ | ‘c:u]  ‘prowrgig | :39s Sururei], % 08 NNY [eINaN UO paseq
(€2/€9) a1doaq parqesiq
100 ‘G | 1891 % Gz ‘Sur I0j uSIsag
¥102 uostad pa[qesip e uo Apnjs ased eniiA | :uj ‘suonydodorsg | -urery % G/ % G6 NN WO 1IeWS
(uoryeprrea
% 0z ‘Sur
Teaul] :nQ | -uren % 08) % T¥'88
‘quel 0z :¢TH | ®¥ep 089562 UOT}ORJSI [29] YromIaN [ex
Suny3ry yoes 103 | ‘yuey o¢ :ITH ‘syjoom | -Jeg 198 -NON M Suny3ry
YI0M]9U JUO «— SINSST ATOWSW 03 NP J[qIS | ‘[8C ssyoody | 11 I9A0 | ‘€0€0°0 :I0LId [erIuspIsYy Jo asn
010Z | -sod jou s3unySIy G 103 JI0MIdU [EINAU U | ‘GSI 210117 pa1ayen oderany NNAI | °2y3 Jo uonyezrundQ
Aypruuny pue arnjeradwa) 10j
pauren; A[uQ ‘yoeoxdde paseq a[ni :NNY
woy juspuadopur NNJJ ‘uosiod renorn LT
-1ed a1y} 105 o[go1d ® sojerouds 31 snyj ‘Aep | :syoodg ‘1070
® 19178 NNY Y} OJUI paj pue ATowow Ul | =T ‘TS NN [19] NNV uo
PaI103s Iosn 9} WOIJ A[SNONUIIUOD UNe} | JUISIJ  JUSIP 189, 00T % 75°69 poseq uSIsa(q swe}
1102 | sTere(q ‘A30ynads 2 Ajgnisuag :A0eInddy | -e10) “gqs :1o1rg | ‘Sururer], 09T | 2 % £6°96 | NNY ‘NNAJ | -SAS Qwol] jrews
s[relaq
Iedx SHTeway 2INJINYITY jasereq Adeandoy POYIdIN yoeoxddy




65

2.5. Overview over Machine / Deep Learning Approaches in Smart Spaces

(z/z) s9oeds jrews ur sayoeordde Surures] doap / SUTYIRW I9A0 MITAISAQ :Z'Z I[qRL

[£9] wrprrodry
NNV rerodwa], o3
parpdde Surraysny)

uonepIfeA $S0ID) P[OJ-0] :uolenyesy ordoad uIped guisn
‘NNV ‘Surrajsnp urejred-y ‘Sururur uidj 2 Aq (S)Moom | SGI'GZ 29 S66€ SOWIOL] 1IeWIS
-1ed juonboai] ‘uvonjeurxorddy uorjedoid (MO | ¢ 2 1 1940 | :oWMUNY ‘Y 0°EY ur uonjrudod9y
6102 | -8v orfoquiAg ‘urssadordaid eyep 1osuag | “TH ‘U) ST1oAeT ¢ paIayien) | 2 % (°88 ‘UBIN JTN | A&manoy beNgl
a1doad
prow3is | z woIy
TUOINAN ‘0T | sjuaAd  I0S [99] wry3tI08TY
UOTJEpIeA | :INQ  ‘Surdrea | -uds 68y/H9 uorjededoig-yoeq
SS0I)) P[OJ-€ :UOIIeNn[eAq ‘S9IAIIOR Jo 335 | :TH ‘Surdrea :uf ‘SATIIATIOR Jursn swO}] jreWS
-qns a1} uo Surpuadep syrun usppry pueind | ‘000001 1193 | Jo saouejsur Ul UOI}O9[S aInj
-ur Jo roquunu SurAIeA 90UR)SIP SSE[O-IAUI | ‘G00'0 YT ‘6°0 | 009  ‘sAep -9 U0  paseq
19U} 03 Surp1odoe saInjesj juelroduwrun TWNJUIWON | GS I9A0 uonrudodsy Al
$10Z | SAOWDI « $2INJBIJ O SBY ATATIOR Yoeq | “SS :10119 parayen % 816 dTN | -AIRY uewny
sanuTw 6§ snoraaxd atpy
woIJ eyep AIOSUIS UO PIseq SI SAINUIW G
JX3U 31} UI PIJBANIIE 3( [[I4 JOSUIS [OTYM
noqe uonIpaid (¢ 9[qe], 2reduroo) sios
-Uds pajeAlde Amau jo uornorpaid jysu (s3run
oy} Summsesawr ‘(YY) AoeIndoy 98pd | 001 ‘siun 00z
Sursry a3 juasardar aaoqe sadejuadiad | ‘ul) N IeAe] ¢
(syrun 00¢ *TH)
%ELER % YT | NNV Tohe] ¢ %826 %LE6 |  NNV-NId
[PuIsy] [¥¢] Sururea]
% LYER % 0°LT | -ADT Y WAS CLIN | % €562 %056 INAS-NId dos(q Sursn
%8152 % 0°L1 | UOLONIISU0IY RTILIN | %6€6% %066 d-Ndd SOWOH Jrews
PuIay] 196G elR(] I0J UOTIOIPaI]
€102 % €8% % 9T | -A9d YIM NAS | 2WOH  LIN % C'L6 2 096 WAS | Inolaeysq Ueling
[$9] prro 1rews
sunyjode 9ATJORIOIU] UR UI
wopuelr  pue Sunfew-uorsTag
1°0 :2 ‘sdais Apaai13 uey} QWO 1IeWIg
UQAIS UOTJBWIONUT | O] :POLIdd Sul 90URULIOJ papre Sururea
$10Z | 39S ®BIEp OU pUE UOIJEN[eAd AdeINnode ON | -Urel], ‘0 ‘YT / | -1ad Io10g | Surures -0y JUSWIADIOJUINY
s[relaq
Ieax Sy Tewray 3IN3INIYITY 19sereq Aserndoy POYIPIN yoeoxddy







67

Chapter 3

Related Work

As mentioned in the previous chapter, there is not much related work available regarding
deep learning approaches in smart spaces. However, appropriate learning applications
in smart environments are described below. These apply, for instance, simple neural
networks or machine learning. Machine learning and deep learning approaches in
classification tasks are presented afterwards. This chapter concludes with a summary
comparing the introduced approaches to our requirements.

Tables 2.1, 2.2 show additional machine learning approaches in smart spaces.

3.1 Machine Learning and Deep Learning in Smart

Environments

3.1.1 ACHE - A Neural Network House

One of the oldest approaches is Adaptive Control of Home Environment (ACHE), a neural
network house built in 1992 [68]. This approach wants to anticipate the needs of
the inhabitans and on the other hand reduce the overall energy consumption. It uses
Feedforward Neural Networks (FFNNs) to predict future states and control the physical
devices. This is done by means of models of the house and the devices. Reinforcement
learning is applied to satisfy the user needs. In this case, any manual adjustments of the
users are considered in a discomfort cost d(x;), where x; denotes an environmental state
x at time ¢. This means that if the user is not satisfied with the settings, the algorithm
gets penalized. In addition to that, an energy cost e(u;) is computed, involving the use
of electricity and gas resources. Thereby, u; expresses the control decision u at time t.
Both costs are combined in a way, that an expected average cost J(t,) can be calculated.
The aim of the reinforcement learning algorithm is to minimize this expected average



68 Chapter 3. Related Work

cost starting at t,, given by

ty+K
1
J(t) = E| lim = Z d(x;) +e(uy)] . (3.1)
k—inf K Marrt

For that reason, a mapping from states x; to decisions u; has to be computed yielding
an optimal control. As states and decisions have to be compared, both have to be
represented in the same currency, in particular dollars. Hence, the energy costs can
be represented straightforwardly. The discomfort cost needs an allocation to dollars
using a misery-to-dollar conversion factor. It is computed either by measuring the loss
of productivity, if the inhabitant’s needs are not reached or it is adjusted over several
months taking the inhabitant’s willingness to pay for gas and electricity into account.
The following architecture is replicated among all control domains, for example air
heating, lighting and ventilation. The instantaneous environmental state is used as
input for both a state transformation and an occupancy model. The result after the first
one gives statistics in a given temporal window providing more information about the
environmental state. The latter determines whether a zone (usually a room) is occupied
or not. The output of both is fed into predictors which predict a future state given the
current state. These are implemented either as FFNNs trained with Backpropagation (BP)
or as a combination of a neural net and a lookup table. With the help of the predicted
future states control decisions need to be made. This is done by using a setpoint generator
followed by a device regulator. The first one specifies a setpoint profile. It denotes a
target value of an environmental variable like lighting level or air temperature. To
achieve this computed setpoint, the device regulator controls the physical devices. The
decision process is split into two part in order to encapsulate knowledge. Thus, if the
needs or preferences of the inhabitants change over time, only the setpoint generator
needs to adjust its values. The reason for this is that the setpoint generator involves
knowledge about the preferences of the users. On the other hand, the device regulator
knows only about the physical environment. There are two approaches for controlling,
indirect control or direct control. The first one is based upon dynamic programming
and models of both the environment and the inhabitants, whereas the latter one uses
reinforcement learning. The setpoint generator as well as the device regulator are built
by one of these two approaches. The direct approach involving reinforcement learning
is used, for example, by a setpoint generator for the lighting controller. On the contrary,
the device regulator for indoor air temperature applies the indirect approach using a
neural network to learn deviations from a thermal model and the actual behaviour of
the house.

Unfortunately, the ACHE approach has no realised evaluation. Due to this lack of
evaluation, it is difficult to rate the ACHE approach. In any case, the idea behind ACHE
is well elaborated. An example for this is the dividing of the preferences of inhabitants
and physical devices in different sections. Also, the use of reinforcement learning
to involve the needs of the user is a good attempt. Moreover, the encapsulation of



3.1. Machine Learning and Deep Learning in Smart Environments 69

knowledge enhances reusability which is required in our approach.

3.1.2 Reinforcement Learning aided Smart-Home Decision-Making in an
Interactive Smart Grid

Li and Jayaweera [65] use a Hidden Mode Markov Decision Process (HM-MDP) model
for on-line decision making and a Q-learning algorithm to solve the HM-MDP problem.
Using this Q-learning approach requires no need for building up a Markov model
previously. With probability e (exploration factor) the customer selects his actions
randomly, and with probability € an action according to the lookup table is choosen.
The Q-function is defined as follows

O(s,p,a) = R(s, p, a) + Z Prob(s’|s, p, a)V*(s’, p&) (3.2)

where s denotes the current state and y the estimated belief mode pair. Given the current
state s and the current belief mode p, the next belief mode is determined by an action a

and a next state s’ )
2m xmm’PSas’/m p(m)

”
Zm” Zm xmm"Psa;/m .u(m)

where m defines the current environmental mode. xp,,y expresses a transition probability

§e(m') = (3:3)

of environment mode m to m’, which does not depend on the current state s and action
a. On the other hand, the transition of state s to s’ is independed of the current mode
m. This is due to the determination of the environmental mode on external factors like
weather conditions. These factors are not relying on the user action and the user state.
If action a is performed by the user in the current state s, the state switches to s’ with
transition probability P(;," ", while the environment mode changes to m’. V* indicates
the value function, meaning the expected return

T-1
th (S) = En’ YTRt+T(st+T, at+r)|st =S (3-4)

7=0

which is the expected discounted sum of rewards over the entire time period [t, T].
Above, y denotes the discount factor, s the current state. The policy x is given by a
sequence of descision rules = = (dy, d, . . ., dr) for each time step t, where d; : S — A
maps a set of states to a set of actions. The Q-learning algorithm with the Q-function
of Equation 3.2 chooses action a based on the pair (s, ;). Then, the agent observes the
subsequent state s” and computes the resultant estimated belief mode . After that, a
reward R(s, j1, a) is received. Finally, its old Q-value Q,_; is adjusted using a learning



70 Chapter 3. Related Work

factor @, according to the following equation

Qn-1(s, p, a), otherwise
(3.5)
The training steps of this approach are set to 10%, the learning rate is fixed to 0.3 and

On(s. 1, a) = { (1= an)Qn-1(s, 1, a) + an [R(s, p, @)y maxy Qu_y(s’, pd,a’], (s, p,a) = (Su, fin, an) '

the exploration factor is chosen to be 0.1.

As in the ACHE approach (see Section 3.1.1) no real evaluation, to compare with the
other approaches, is conducted. However, they state out, that the Q-Learning approach
shows a better performance than a greedy and a random algorithm. As the Q-learning
algorithm constantly updates its Q-Table, it outperforms the other two after several
training steps. This approach maximizes its own profit taking both into account, the fully
observable local information and the estimated hidden information of the environment.
Q-learning is a deep learning approach exploiting reinforcement learning and is thus
well appropriated for smart homes. However, the Q-learning algorithm is provides a
rather poor performance in terms of reusability since the underlying reinforcement
learning algorithm is trained on a specific environment.

3.1.3 MavHome: An Agent-based Smart Home

Another reinforcement learning algorithm is used in the MavHome project [69]. The
algorithm uses an inhabitant history consisting of actions of the user. Additionally, the
frequency of how often a certain action is performed in a certain state is calculated.
Thereby, the next action is predicted using a ranking algorithm. As you can see in
Table 3.3, the MavHome project uses four different approaches. The Smart Home In-
habitant Prediction (SHIP) algorithm works with sequences collected in the histories.
The most recent sequence is matched to a sequence in the afore-mentioned history. It
returns the action which has the greatest prediction value by ranking different matches.
An online algorithm called Active LeZi (ALZ) is also used for sequential prediction, as
the interaction of inhabitants with the devices is modeled using a Markov chain of the
events. It starts by building a Markov model and predicts an action with the highest
probability. The third prediction algorithm discussed in this approach is called Task-
based Markov Model (TMM). Thereby, a Markov model is built-up from collected action
sequences. This model is used to predict the next action given the current state. As
additional information is useful for a better prediction, TMM first partitiones the action
sequence into individual tasks. Then, the partitioned tasks are clustered using a k-means
custering algorithm. With the help of the clustered output the initial Markov model
can be refined using the connection of tasks in the same clusters. A fourth data-mining
algorithm called Episode Discovery (ED) is used to improve prediction. It identifies sig-
nificant episodes (e.g. interactions with devices) in the event history of an inhabitant.
These significant episodes are then used as basis for further activity prediction.



3.1. Machine Learning and Deep Learning in Smart Environments 71

All in all, the agent wants to maximize its goal. Therefore, a function to maximize
the comfort and productivity of the inhabitants while minimizing the operation cost
is implemented. As in the previous presented approaches a reinforcement learning
algorithm is implemented. It takes the preferences of the inhabitants into account. On
the other hand, it wants to operate efficiently. Although an evaluation was realised,
the outcome of it can not really be compared to real world applications. This is due
to the evaluation being mostly on synthetic data. The algorithm performs well on this
synthetic data set, though. Only the predictive accuracy of SHIP was analysed on real
world data, on which it did not achieve a good result, namely 53.4 %.

3.1.4 Smart Home Design for Disabled People based on Neural Networks

Hussein et al. [63] designed a smart home for disabled people by applying both a FENN
and a Recurrent Neural Network (RNN). The first one is used for safety and security
issues determining the outcome of several alarms, e.g. fire alarm. The latter one predicts
human behaviour. Both Artificial Neural Networks (ANNs) are needed for prediction
issues and thus, the environment adapts to the needs of the inhabitants according to
the predicted scenarios. The networks learn by using sampled data from sensors and
cameras. The FFNN and RNN together accomplish the main goals of this smart home,
security and automation. For example, the first one uses access codes on the main
door and windows, motion sensors and cameras which perform face recognition. The
latter facilitates controlling and monitoring of all devices in the smart home. Other
goals, not to neglect especially for disabled people, are health care and safety. These are
achieved using, for instance, fall detection mechanisms, constant monitoring in search
for abnormal events of both the vital signs and the daily activities of the inhabitants.
Additionally, the emergency personnel is informed in case it is needed. Furthermore, a
suitable interaction method for the users according to their disability is required, which
acts as an interface to the environment, e.g. speech recognition or a visual interface
like a tablet or computer. Technically, the FFNN-based fire alarms permanently monitor
the levels of, for example, carbon monoxide and oxygen. If something is wrong with
these values, the fire department is informed automatically. Moreover, in case of fire it
is traced and passed on to the fire department personnel to help them extinguishing it.
The inhabitants are also informed using a fire alarm and the emergency lights are turned
on leading them the way to the nearest exit. In order to be 100% reliable, particularly
in case of an emergency, redundant connections to the outside world are established.
The FFNN is implemented with perceptrons as type of artificial neuron. It uses an input
layer with five units, representing the five main parameters indicating a fire (carbon
monoxide level, oxygen concentration, smoke detection, heat level, flame detection).
The output layer consists of one single output determining either if there is fire or not.
The data collected from sensors is divided into two subsets, a training set (75%) and
a test set (25%). Furthermore, the RNN is implemented having an input layer of three



72 Chapter 3. Related Work

units and an output layer consisting of two units. To find the best fitting type of neuron,
the sigmoid and tanh neuron are tested. The sigmoid neuron is choosen. The data used
for training this network is collected from the Activities of Daily Living (ADL) of the
inhabitants. The outcome of the RNN represents two actions, predicted with respect to
the two or three input actions. The FFNN is evaluated using a learning set of 63 sets
and a test set of 23 sets. Its test result is 95%. On the other hand, the RNN is analysed
using learning samples of 65 sets and test samples of 21 sets with a test result of 80%
correct samples.

This approach, however, is only a theoretical design proposal. Thus, the data used is
virtually collected and the RNN and FFNN are not evaluated on real world applications.
Furthermore, no real specification about the number of hidden neurons in both networks
is indicated, if there even are any hidden neurons. However, using a FFNN to forecast
fire and other emergencies is a good idea, as it can be trained in a supervised manner
with labeled training data. Moreover, the RNN fits well to sequential data. It further
depends on previous steps and is therefore ideal for human behaviour prediction in a
smart environment. It is a good attempt to use different neural networks for different
purposes. Each network is thus applied where it performs best. Hence, a FFNN and a
RNN are appropriate neural networks which can be applied in smart homes. The first
one suits well for classifying data and the latter is good in predicting human behaviour.

3.1.5 Recognizing Human Activity in Smart Home using Deep Learning
Algorithm

A deep learning algorithm which recognizes human activity in a smart home is im-
plemented by Hongging and Chen [33]. Their algorithm builds upon a Deep Belief
Network (DBN) consisting of several Restricted Boltzmann Machines (RBMs). They divide
the training steps into pre-training and fine-tuning. The first one is a bottom-to-top
process, as it trains each RBM on its own beginning with the first one. The output of
the hidden layer of the first one is then used as visible layer for the next RBM and so on
until the last RBM is reached. After the pre-training step fine-tuning is applied. As this
approach uses supervised learning, the error is computed and propagated back. This
process is repeated until the error becomes less than a predefined threshold value. The
output of this DBN is one out of ten actvities, e.g. leaving the house, bathroom and
lunch. These activities are chosen as they are thought of being difficult for disabled
people to be finished on their own. The data used for training and testing was collected
from the Center of Advanced Studies in Adaptive Systems (CASAS) research project at
Washington State University. Training data is gathered by students performing activ-
ities in this smart home. The data is labeled with an activity-ID and a person-ID. As
already mentioned, ten activities are chosen. Each of them is executed in this smart
environment for more than 50 days. Each activity sample has five parts, representing
date, time, sensor-ID, sensor value, and activity label. The DBN was built-up with 500



3.1. Machine Learning and Deep Learning in Smart Environments 73

units at the first hidden layer followed by 300 units in the next hidden layer and another
100 hidden units, adding up to three hidden layers. The output is constructed by 10
units, each representing one out of the 10 activities. The learning rate in this approach
is chosen to be 0.1. To update the weights, a gradient-based Contrastive Divergence (CD)
algorithm is used. Then Gibbs sampling is applied to update the reconstruction distri-
bution of the model. Hongqing and Chen detect that initializing the weights randomly
does not work well as the model performs worse. Hence, they decide to use a layer by
layer pre-training step to find appropriate weights according to [70]. Instead of initaliz-
ing the weights randomly in the beginning, they are drawn from the standard normal
distribution. Then, pre-training is applied. After the probability of the top layer units
is computed, the probability and weights of every layer can be obtained. Afterwards,
BP is performed as a fine-tuning step. The above mentioned contrastive gradient is
used for updating the weights. This method yields both a fast convergence and a fast
search in different directions of the function. Each activity is evaluated on its own, thus,
we calculated the average value of all the probabilities of the activities. This accuracy
is 86.89%. The deep learning approach is compared with a hidden Markov model and
a naive Bayes classifier model. It performes better, although in two activities a lower
recognition rate is reached. The accuracy of their DBN gets worse if more pre-training
epochs are executed.

The approach introduced above is evaluated on real world data collected in a smart
home project called CASAS. Hence, this DBN is suitable for activity recognition in
smart environments as it achieves good results in analyzing human activities. This,
however, is a supervised approach, as it already has labeled training data. Nevertheless,
a DBN is well suited to be applied in smart spaces since it can be trained in an effective
way and does not necessarily need labeled training data.

3.1.6 Human Behavior Prediction for Smart Homes using Deep Learning

Another approach, which uses a DBN with RBMs as well, is the one by Choi et al. [34].
However, it makes use of an improved CD method using bootstrapping and selective

oV+H ), where

learning. The standard CD method has a computational complexity of O (
V and H are respectively the numbers of visible and hidden units. This bootstrapping
method is evaluated on the Pima-Indians-Diabetes data set resulting in a classification
rate of 74.21%. The online-learning method reached 72.67%, mini-batch learning 73.89%,
and full-batch learning 72.86%, not differing much from each other. To perform this
evaluation, the weights are drawn from the Gaussian distribution with zero mean and a
standard deviation of 0.01. Additionally, a learning rate of 0.01 is choosen. Full-batch
learning updates the weights over all training data, whereas in on-line training the
weights are updated by using one training instance at a time. On the other hand, mini-
batch learning updates weights over a mini-batch, which size is less than the whole
data set. They also introduce two hybrid deep architectures, a DBN combined with a



74 Chapter 3. Related Work

ANN using BP with Mean Squared Error (MSE) and a DBN with a reconstruction method.
The neural network consists of three hidden layers, each having 100 hidden units. The
latter concatenates the input and output data in the visible layer to train the DBN. By
propagating up and down the hierarchy of the DBN, they reconstruct the visible layer
(like in a single RBM). The predicted output is the output part of this reconstructed
visible layer, though. The DBN consists of one visible layer and two hidden layers, the
first hidden layer consisting of 200 nodes and the second one consisting of 100 nodes.
The methods introduced in this paper are evaluated on both data sets MIT1 and MIT2.
As this evaluation includes both activation and deactivation of sensors and sensors can
be active (deactive) a long period of time, an algorithm can make a high accuracy value
while having poor prediction on the activation (deactivation) of a sensor. Due to the
reason that many sensors are inactive most of the time, a new evaluation metric called
Rising Edge Accuracy (REA) is introduced. It measures the prediction of newly activated
sensors (see Table 3.3).

As the deep learning approaches in this paper are evaluated on real world data (MIT
dataset), they suit well for human behaviour prediction in smart homes. The accuracy
for both DBNs is above 93%. Hence, a DBN is an architecture which can be used in
smart spaces, applying deep learning and yielding both a good accuracy and an efficient
performance.

3.1.7 Smart Home System Design based on Artificial Neural Networks

Badlani and Bhanot [61] designed a smart home system using both a FFNN and a
RNN to reduce the overall power consumption. A system based on an ANN tracks the
action of the user at different times in order to predict human behaviour accurately.
Moreover, it switches of devices accordingly. For instance, if the user wants to study
the intensity of the desk lamp is increased and the light is dimed. This is how energy
is saved. As the approach in Section 3.1.4, the FFNN is used for security and safety
applications like fire alarms and the RNN predicts the human behaviour by taking
previous actions into account. Both networks are trained with BP and Backpropagation
Through Time (BPTT), respectively, using Gradient Descent (GD) and minimizing the
Sum of Squared Errors (SSE). Additionally, values of power measurement devices can
be used as input to the system. Supervised learning is used to implement the RNN.
Continuously, data is taken from the user and stored in memory. All this data becomes
the learning data, which is fed into the neural network after one day. As RNNs are
efficient in processing sequential data, changes in the human behaviour over time can
be detected. The weights for feeding back the current hidden state into the memory,
representing the state of the previous hidden unit, are set to 1.0. The storing of previous
states requires a memory which holds data for a certain time window and adapts to
the rapid input changes. To determine the size of this window is crucial. If it is too
small between important events, the gradient vanishes exponentially and, thus, the



3.2. Machine Learning and Deep Learning in Classification Tasks 75

error diminishes faster. On the other hand, a large window size allows for storing
more data and this helps to not miss any important information needed. The RNN is
independent from the FFNN which also uses a supervised approach. It is trained using
labeled training data to detect security issues, e.g. a bursting fire. The reason why a RNN
is used for human behaviour prediction is clearly the including of past states into the
current prediction. This proposed system feeds the data collected over one day into the
RNN and trains it that way. Subsequently, a profile of the specific person is created. All
in all, the FFNN uses sensor outputs for processing and the RNN user inputs. Moreover,
the system uses an ANN-based approach to register and authenticate users. First, a
registration phase uses a hashed user name as input and the corresponding hashed
password as desired output. Then, the network gets trained and afterwards the weights
are stored in the system. These weights can not be exploited by an intruder and, hence,
the neural network-based user registration allows to securely store the passwords, user
profiles, device profiles and access controls in smart home applications. Furthermore,
an authentication phase is used for user recognition. Therefore, the system applies the
same hash function to both the user name and the password. Then, the output of the
trained neural network is compared to the hashed password. Depending on the identity
of the results the user is either authenticated or rejected. The RNN is built as a single
layer perceptron model with two input units. The learning rate is set to 0.01 and the
final number of training epochs is 117. The training set consists of 160 samples and the
test set of 100 samples. The evaluation yields a specificity of 70.96% and 65.52% and a
sensitifity of 97.47% and 96.97% on the training set and test set, respectively.

Badlani and Bhanot use a home controller which acts as a middleware system. Thus,
the devices and sensors are able to communicate with the controller. This approach is
comparable to the Distributed Smart Space Orchestration System (DS20S) with Virtual
State Layer (VSL) as corresponding middleware [59]. Furthermore, the idea of a RNN
generating a user profile to adjust the smart home devices is well thought out. Moreover,
performing user authentication with the help of a neural network is a good idea for
further developments. Here again, it can be seen that FFNNs and RNNs are well suited
as application in smart spaces. The first one classifies data efficiently and the latter one

predicts human behaviour precisely by taking previous time steps into account.

3.2 Machine Learning and Deep Learning in Classification
Tasks

3.2.1 Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition

Ciresan et al. [71] propose a statistic with Multilayer Perceptrons (MLPs). They evaluate
MLPs of different size on the MNIST handwritten digit benchmark data set [16]. MNIST
consists of two sets, a training set and a test set. The first one has 60.000 examples of



76 Chapter 3. Related Work

handwritten digits and the latter one 10.000. The image size is 28 X 28. The training set
is thereby often divided into two sets, one for training (55.000) and one for validation
(5.000) [71]. Five MLPs are used in that study, the number of hidden layers ranging
from 2 to 9. The number of hidden units is also varying, yielding 1.34 to 12.11 million
free parameters and hyperparameters. The networks use the BP approach without
momentum, but with a decaying learning rate as the training progresses (from 107> to
107°). The weights are initially uniformily drawn from [—0.05, 0.05] and the activation
function used in this approach is a scaled version of the hyperbolic tangent: y(a) = A
tanh(Ba) with A = 1.7159 and B = 0.6666. They increase the number of training examples
by applying affine and elastic deformations on the already available images. Table 3.4
shows the accuracy of the different MLPs. As it can be recognized, the more layers and
units are added, the better the accuracy gets. MLP 5, for instance, has more layers but a
smaller number of neurons per layer and thus performs worse than MLP 4.

Hence, if using MLPs or FFNNSs it is necessary to be able to choose different numbers
of hidden layers and hidden units, respectively, in order to obtain the best performance.
This can be achieved by providing all necessary hyperparameters and parameters in

one file, which can be easily changed to the needs of the user.

3.2.2 Deep Learning-Based Feature Representation for AD/MCI Classification

To diagnose Alzheimer’s Disease (AD) and its prodromal stage Mild Cognitive Im-
pairment (MCI), Suk et al. [72] make use of a Stacked Autoencoder (SAE) and multi-
task and Multi-Kernel (MK) Support Vector Machine (SVM) learning. In this work, they
use the Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET) and
Cerebrospinal Fluid (CSF) data available in the ADNI dataset [73]. The data is gathered
from 51 AD patients, 99 MCI patients and 52 healthy normal patients. The MCI patients
are further divided into 43 patients who progressed to AD and 56 patients who did not
progress to AD in 18 months. Each data file consistes of a brain image and two types
of clinical scores, called Minimum Mental State Examination (MMSE) and Alzheimer’s
Disease Assessment Scale-Cognitive Subscale (ADAS-Cog). Both, MRI and PET images are
preprocessed using different procedures. After this step, 93 features from a MRI image
and a PET image are filtered out, respectively (see Section 2 Materials and Preprocessing
in [72]). These features are used as input for the SAE, which then discovers the underly-
ing feature represenation. A Sparse Autoencoder (SpAE) along with a sigmoid activation
function is used as building block for the SAE. In particular, SpAEs penalize a large aver-
age activation of a hidden unit over the training samples. Thus, sparse connections are
obtained as a result of driving the activation function of many hidden units toward zero.
In addition, unsupervised pre-training is performed to initialize the parameters before
the they are further optimized using supervised fine-tuning. To conduct fine-tuning,
an additonal output layer is stacked on top of the SAE. The number of units contained
in this layer are equal to the number of different classes. The resulting multi-layer



3.2. Machine Learning and Deep Learning in Classification Tasks 77

network can now be optimized using BP with GD. Furthermore, the top output layer of
the multi-layer network is used to find the optimal SAE structure, which yields the best
classification accuracy. The output of the last hidden layer from the SAE determines
the final underlying feature representation. This latent feature representation is con-
catenated with the original input features to build an augmented feature vector, which is
then fed as input to the multi-task learning. The aim of the multi-tasking step is to find
optimal weight coefficients aim) in order to regress the target response vector tﬁm) with
a combination of the features in F™ with a group sparsity constraint. F(™ ¢ RN*P
represents the augmented feature vector, where N denotes the number of samples and

D indicates the dimension of the vectors. The objective function 7 is given by

S

J(A™) = min 2 3 1™ = Fal | + 1A (3.6)
s=1
with A denoting a sparsity control parameter and A™ = [agm) . a§’”> . a(Sm)]. me

1,...,Mands € 1,...,S indicate respectively the modality index and the task index.
Furthermore, ||A(m)||2,1 = Zgzl [|A(m) [d]l|; represents the L, ;-norm, which is applied
to select jointly-used features. A [d] incidates the d-th row of the matrix A(™).

The decision function of the MK-SVM depends on the selected features X (™) = {fcl(m) }Zl,
which are used as training samples. They are derived from the multi-task learning above
(see Equation 3.6) by taking only the features with weight coefficients larger than zero.
Thus, this decision function is given by

N M
£(E0..... 50 = sign {Z G Y Bk (£ 5 + b} (3.7)
i=1 m=1

where {; denotes the class-label of example i, and @; and b are a Lagrangian multiplier
and a bias, respectively. The kernel function of the m-th modality is indicated by
k(™) (JNCEm), fc(m)) = ¢(m) (fcgm))T Pt (f(”’)), where ¢(™ represents a kernel-induced
mapping function. Further, 8, > 0 expresses the weight coefficient of the m-th modality,
constrained by Y,,, S = 1. Additionally, Suk et al. reference [74] and [75] for a more
detailed explanation.

The evaluation is conducted using the following three classification problems: AD
vs. Healthy Normal Controls (HC), MCI vs. HC, and Mild Cognitive Impairment-
Converter (MCI-C) vs. Mild Cognitive Impairment-Non-Converter (MCI-NC). They
make use of 10-fold cross-validation for training/testing. For unbiased evaluation cross-
validation is repeated 10 times. Furthermore, a linear kernel is used in the SVM. The
SAE is built-up by three hidden layers for MRI, PET and CONCAT and by two hidden
layers for CSF based on experiments, where CONCAT expresses the concatenated MRI,
PET and CSF features in a single vector. Moreover, the number of hidden units is derived
by using the classification results of the SAE-classifier. Table 3.1 shows the number of



78 Chapter 3. Related Work
Number of hidden units based on the best performance result of the classifier
Classification Task | MRI PET CSF CONCAT
0.857 = 0.018 | 0.859 + 0.021 | 0.831 £ 0.016 | 0.899 £ 0.014
AD vs. HC
500, 50, 10 1000, 50, 30 50,3 500, 100, 20
0.706 = 0.021 | 0.670 = 0.018 | 0.683 = 0.020 | 0.737 £+ 0.025
MClvs. HC 100, 100, 20 | 300,50, 10 | 10,3 100, 50, 20
0.549 = 0.037 | 0.595 £+ 0.044 | 0.589 £+ 0.026 | 0.602 + 0.031
MCI- . I-
CI-C vs. MCINC 100, 100, 10 100, 100, 10 30, 2 500, 50, 20

Table 3.1: Performance of the SAE-classifier denoted with mean + standard deviation. The
number of hidden units is given from bottom-to-top layer.

hidden units of the SAE based on the best classifier performance. The performance of
the MK-SVM is represented in Table 3.4. The SVM is evaluated using the augmented
feature vector including both the low-level features, meaning the input to the SAE, and
the latent features, meaning the learned feature representation of the SAE.

3.2.3 Domain Adaption for Large-Scale Sentiment Classification: A Deep
Learning Approach

A deep learning approach, which extracts important features in an unsupervised manner,
is conducted in [76]. The work focuses on domain adaption. This means that two data
sets are used, a source domain S and a target domain T. Thereby, S provides labeled
training examples and T provides examples of data, on which the classifier is applied. In
case of domain adaption S and T do not have to be sampled from the same distribution,
in other words S is drawn from distribution pgs, whereas T is drawn from distribution
pr. The aim of the deep learning algorithm is to find a good function for mapping S to
T. This is, the algorithm is trained on ps and should generalize well on pr. Glorot et
al. [76] use a Stacked Denoising Autoencoder (SDAE) in their work. For measuring the
reconstruction error loss (x, r(x)) the Kullback-Leibler (KL) divergence between x and
r(x) was used. A Denoising Autoencoder (DAE) is fed with a stochastically corrupted
input vector x instead of the usual input x. As the name reveals it, the DAE has to
denoise the input, meaning to minimize the reconstruction error loss (x, r(x)). Thus, the
DAE can not just copy its input x to its output.

The domain-adaption for sentiment classifier is approached the following way. They use
unlabeled data from various domains and a labeled dataset from one domain only. First,
a SDA learns higher-level features from text reviews of all available domains. The hidden
layer is composed of Rectified Linear Units (ReLUs). Training is done greedy-layer wise
using Stochastic Gradient Descent (SGD). Furthermore, sigmoid neurons are used in
the first layer of the decoder. The corruption of the input vector is done by a masking
noise, meaning each input is set to zero with probability p. As already mentioned, for
measuring the reconstruction error, the KL divergence is chosen. The DAEs in upper



3.2. Machine Learning and Deep Learning in Classification Tasks 79

layers do not only use the softplus activation function, meaning log (1 + e*), as decoder
output units, but also the squared error as reconstruction loss and a Gaussian corruption
noise. Furthermore, ReLUs are used in the input layer in upper DAEs. The reason
behind it is to keep the representation sparse. The new feature representation of the
data is thus defined in the code layer at different depths. Afterwards, as a second step,
a linear SVM is trained on the extracted features of the SDAE which uses the labeled
training data of the source domain S as input. The error of the SVM is measures by the
squared hinge loss max (0, 1 — ty)®, with y being the output of the SVM. Due to the use
of ReLUs, sparse representations with exact zeroes are provided for the code layer. This
is advantageous for a linear SVM.

For evaluation, the described SDAE-SVM is compared against a linear SVM which is
trained on the raw data and acts as a baseline. The hyperparameters of both SVMs are
choosen by cross-validation. The masking noise probability is explored in {0.0, 0.3, 0.5,
0.6, 0.7, 0.8, 0.9}, the optimal value is 0.08. A Gaussian noise standard deviation, which is
used in upper layers instead of the masking noise, is examined in {0.01, 0.1, 0.25, 0.5, 1.0}.
The size of hidden layers is varied between {1000, 2500, 5000} and the best performance
is obtained using 5000 hidden units. Furthermore, a L;-regularization penalty is imposed
on the activation values, it ranges between {0.0, 1078,107°, 1073, 10_2}. The learning

rate is chosen from {10_4, 1073,1072, 10_1}. To analyze the performance the transfer
loss t is defined by (S, T) = e(S,T) — ep (T, T), where e(S, T) indicates the transfer error
which corresponds to the test error from a method which is trained on the source domain
S and tested on the target domain T. Moreover, e(T, T) represents the in-domain error.
On the other hand, e, (T, T) denotes the baseline in-domain error describing the test
error which is obtained by the baseline method, in this case, the linear SVM trained on

1 T,T
the raw data. Furthermore, the in-domain ratiol = — ) g e(—) and the transfer ratio
m ep(T,T)
1 e(S,T) . .
Q== 28, T)sur W are computed. The evaluation is conducted using the Amazon-
n ep(T,

benchmark consisting of more than 340.000 reviews from 22 different product types.
The labels of the reviews are either positive or negative. This dataset is heterogeneous,
heavily unbalanced and large-scaled. In Table 3.4 three methods are compared to the
baseline SVM: a SDAE-SVM-1 which uses one layer, a SDAE-SVM-3 composed of three
layers of 5000 units and a MLP consisting of one hidden layer with 5000 units with tanh
activation functions. On top of it, a Softmax Regression (SR) classifier is stacked. In [76]
the averaged generalization transfer error according to the transfer ratio of each model
and their in-domain ratio is depicted.

It can be recognized from the results shown Table 3.4 that stacking more layers yields a
better error if applying unsupervised learning.



80 Chapter 3. Related Work

3.2.4 Deep Learning-Based Classification of Hyperspectral Data

Chen et al. [14] propose a deep learning approach to classify hyperspectral data. The
problem of classifying hyperspectral data is that due to the high dimensionality (high
number of spectral channels) and the large spatial variability of spectral signature,
almost no labeled training examples are available. They present an unsupervised ap-
proach for feature extraction of hyperspectral data which makes use of a SAE. The
Autoencoders (AEs) which build the SAE use the principle of tied weights (see Equa-
tion 3.10). Simply put, the encoded input y (Equation 3.8) and the reconstructed output
z (Equation 3.9) are computed using the same weights W

y=f(Wyx+by) (3.8)
z=f(W,x+b,). (3.9

Thereby, the activation function is denoted by f, x indicates the input. W, b, and W,, b,
are respectively the weights and the bias of the encoder and decoder. Applying the tied
weights constraint

W, =W, =W (3.10)

the parameters get almost halved. To train this SAE approach, first, pre-training is
applied. After stacking a Logistic Regression (LR) classifier on top of the SAE, a fine-
tuning step is adapted using BP. The activation functions of the encoder and decoder in
Equations 3.8, 3.9 are set to a sigmoid functions. The cost function used in this approach
is cross-entropy (Equation 3.11, since it works well together with sigmoid neurons. It
further helps to change weights although the neurons saturate

€= _% Z Z [xik log (zik) + (1 = xiic) log (1 — zix)] - (3.11)

d
i=1 k=1

Since the weights are updated using a mini-batch update strategy, two sums are needed,
where the second one sums over the mini-batch of size m. On the other hand, d indi-
cates the size of the input vector and x;; and z;; denote respectively the k-th element
of the i-th input and the i-th reconstruction of the mini-batch. As the reconstruction
layer is only needed for adjusting the weights and biases and obtaining a good feature
representation, it is removed after training. The SAE is built-up by stacking several
encoders layer by layer. The LR layer stacked on top of the SAE uses softmax as its
output activation function. The LR is a neural network consisting of one single layer
only. That is why it uses the features of the last layer of the SAE as input and produces
the output according to the number of classes defined by the number of softmax output
units. Furthermore, the dataset is partitioned into 60% training set, 20% validation set
and 20% test set yielding a split ratio of 6:2:2. First, a single AE using 100 hidden units
is trained and evaluated on the Kennedy Space Center (KSC) dataset, which represents



3.2. Machine Learning and Deep Learning in Classification Tasks 81

the mixed vegetation site over the KSC. The result is shown in Figure 3.1. As it can be
seen there, after merely 100 training epochs a almost perfect reconstruction is reached.
Chen et al. further analyse the runtime according to different hidden and input sizes
while the pre-training epochs are fixed to 5000 and the fine-tuning epochs to 50000.
Figure 3.2 shows the analysis results. The training time grows with increasing input
and hidden layer sizes whereas the training time grows proportionally with respect to
the number of training epochs with fixed input or hidden layer sizes. Furthermore, they
evaluate the testing time. It shows, for instance, that the AE-LR with hidden size 20
requires 1.14 s on the KSC dataset, whereas a linear SVM needed 52.32 s. This evaluation
depicts that deep learning approaches are much faster on testing than conventional
machine learning techniques.

Additionally, the approach studies the impact of the depth of a SAE according to the
classification accuracy. Table 3.2 illustrates this accuracy and the testing runtime. There-
fore, SAEs with different depths are tested on the KSC data consisting of 176 spectral
channels and 13 classes. This results in a SAE with 176 input nodes, the size of the
hidden layer is set to 20 and the output layer of the classifier is set to 13, one unit for
each class. Higher accuracies can be reached if the pre-training and fine-tuning epochs
are increased. Furthermore, the depth is evaluated using the Pavia data set, which shows
an urban site over Pavia, Italy. It consists of 103 spectral channels and 9 classes.
However, the above mentioned analysis is conducted using only spectral data. They
discovered that joint data consisting of both spectral and of spatial-dominated data
yields a higher accuracy. In Table 3.4, the SAE-LR approach introduced in this paper
is compared to a SVM using a Radial Basis Function (RBF) (RBF-SVM). The SAE-LR is
built by one hidden layer with 20 units. Its pre-training step consists of 3300 epochs
and the fine-tuning step takes 400000 epochs. The classification is repeated 100 times
and the average accuracy can be seen in Table 3.4. The RBM-SVM and the proposed
approach are tested on both the KSC and Pavia dataset.

From Table 3.4 it can be seen that the difference between the RBF-SVM and the proposed
SAE-LR classifer do not vary much. Furthermore, this approach does not only evaluate
the accuracy of the classifiers but also perform tests on the impact of depth and different
sizes of hidden and input layers. From it, we can deduce that an increasing depth yields
on the one hand a higher accuracy, but on the other hand a depth which is too large
causes the opposite. Note that, according to the depth evaluation, the accuracy for KSC
dataset is best using a depth of 3. However, in the evaluation a depth of 1 is used and it
is called stacked although it is a simple single-layer AE.

3.2.5 Using Deep Learning to enhance Cancer Diagnosis and Classification

Another unsupervised feature learning approach together with supervised classification
is conducted in [77]. Cancer classification is based upon the gene expression data, which
measures the level of activity of genes within a given tissue. The problem regarding



82 Chapter 3. Related Work

WG —3a a0 e @ 106 130 w0 186 10 %0 2 40 e & 100 120 190 160 180

(a) (b)

100 120 110 160 180 20 A0 60 B0 100 120 10 160 180

" © @

G55 @ 6o mo 100 150 w0 160 10 g W w0 e s 100 120 M0 0 10

(e)

Figure 3.1: Reconstruction of the input (a) at different iteration epochs 1, 10, 100, 1000 and 3500,
respectively from (b) to (f) [14].

Figure 3.2: Training time of an AE according to different hidden and input sizes (a), the elapsed
time on each epoch with varying hidden sizes (b) and the elapsed time on each epoch while
varying the input size [14].

Effect of Depth on the Classification Accuracy

Depth Overall Test Set Accuracy | Running Time on Test Set
KSC Pavia KSC | Pavia

1 94.63 % | 92.93 % 0.12s | 0.19s

2 9545 % | 94.95 % 0.15s | 0.27 s

3 96.55 % | 94.99 % 0.20s | 0.35s

4 95.27 % | 95.16 % 0.22s | 0.42s

5 9391% | 95.13 % 0.24s | 0.48s

Table 3.2: The impact of the depth of a SAE according to the classification accuracy [14].



3.2. Machine Learning and Deep Learning in Classification Tasks 83

cancer diagnosis with learning techniques is the high dimensionality of the gene ex-
pression data as well as the small number of available training examples for a given
tumor (only a few hundred). To overcome this issue, an unsupervised feature learning
approach is applied. As there is no need for labeled training data, the unlabeled data is
obtained by combining data from different tumor cells. This approach is divided into
two phases, feature learning and classifier learning.

The first is further split up into two steps. First, the dimensionality of the feature space
is reduced using Principal Component Analysis (PCA). Due to the high dimensionality
of the data, ranging from 20000 to 50000 features, which also contains redundant and
noisy data, this step is necessary. The result of PCA is a linear function of the input data.
As there is also an interest in the non-linear data, meaning the underlying structure of
the dataset, a second step is attached. The output of the PCA is extended by randomly
adding some of the original features of the data. By applying a SpAE to the augmented
feature data, the non-linearities of the data can be captured. The SpAE with K hidden
units is trained using BP by minimizing the squared reconstruction error

m K
: (i) _ (B 2 (i)
min 1% ;aj byl + Bllalh (3.12)

where the last part $||a?||; represents a sparsity penalty, which fosters the activations

to have a low L;-norm yielding most of them to zero. xl(j) denotes the unlabeled training

input, b is a basis vector and a is a vector of activations, where aj. ) is the activation

of basis b; for input xff). Equation 3.12 is choosen according to [78]. They choose the
sigmoid function as activation function. Additionally, Fakoor et al. build a SAE with
two layers. It was trained using greedy layer-wise pre-training. The output of the SpAE
is used as input for the next phase.

In the classifier learning phase, a SR classifier is trained using both a set of labeled data
and a sparse feature representation.

For the evaluation four architectures are compared. The above-mentioned SpAE and
SAE with pre-training, a SAE with pre-training and additional fine-tuning, a SVM with
Gaussian kernel and SR. The latter two (SVM, SR) are used as classifier on the PCA-
based data and therefore act as a baseline. Furthermore, 13 different datasets are used.
10-fold cross-validation is applied in order to get the averaege classification accuracy.
Due to overview issues only two accuracies out of the 13 of this paper are shown in
Table 3.4.

According to Table 2 of [77], the SpAE outperformes the others four times, the SAE with
fine-tuning six times and the PCA + SR/SVM together two times. Hence, fine-tuning is
a good technique to increase the accuracy of a SAE. Further, it can be recognized that
the SpAE works well, too.



84 Chapter 3. Related Work

3.3 Summary

The evaluation of different approaches regarding learning algorithms in smart spaces is
depicted in Table 3.3. Thereby, the first column denotes the approaches described above,
the second the method(s) used, the third the evaluation accuracy of this method(s) and
the last column shows several remarks to the approaches. Summarizing, the ACHE
project [68] made use of a FFNN to predict future states and control the physical devices.
Additionally, reinforcement learning was applied to satisfy the preferences of the users.
The next approach about human-behaviour prediction [34] used a DBN constructed
by stacked RBMs as basis. Stacked upon it were either a SVM or a simple ANN con-
sisting of three hidden layers, each built of 100 units. DBN-R denotes a DBN which
uses a reconstruction method. These different approaches were further compared to a
standard kernel-SVM and a k-means clustering algorithm. The MavHome project [69]
analysed three different prediction algorithms called SHIP, ALZ and TMM. The last
one, ED denotes a data mining algorithm. The subsequent work [65] made use of a
reinforcement learning algorithm using Q-learning to solve a HM-MDP. Another DBN
consisting of RBMs was applied in [33]. The output of the DBN described one out of
ten predefined activities in a smart room. The next approach built a smart home for
disabled people [63]. They used a FFNN and a RNN. The first acts as an alarm system,
e.g. a fire alarm. The RNN, on the other hand, is deployed to predict human behaviour.
The last approach [61] applied a FFNN and a RNN. The FFNN maked use of sensor
outputs, whereas the RNN employed user inputs. Furthermore, this approach used an
ANN to authenticate users.

Table 3.4, on the other hand, shows the evaluation of the proposed classification ap-
proaches using deep learning algorithms. It has the same structure as the above-
mentioned table. The first approach [71] analyzed MLPs with a various layer size
on the MNIST dataset of handwritten digits. The overall result of that statistic is that
the more layers a MLP has, the better the accuracy. However, the number of neurons has
also an influence on the accuracy, as you can see at MLP 5. The second proposition [72]
used a SAE to detect features in the dataset. Afterwards the thus filtered features were
used to train a MK-SVM. The evaluation was conducted on three different classification
tasks. Next, various learning algorithms were used for a domain-adaption task [76]. A
simple SVM was used as a baseline for comparison. The other algorithms used either
a MLP with a SR classifier stacked upon of it or a SVM stacked upon a SDAE. The
SDAE-SVM 3 with a larger size of hidden layers had the best accuracy among the four
proposed methods. Subsequently, an approach to classify hyperspectral data well was
analyzed [14]. Thereby, a SVM with a RBF as kernel was compared to a SAE with a LR
classifier stacked upon it on two different datasets. Here, the SAE was again used to
extract important features from the hyperspectral data. The last proposal was applied
in cancer diagnosis [77]. A SpAE was compared to a SAE, a SAE with fine-tuning and
either a SR classifier or a SVM stacked upon it. All theses approaches use PCA-based



3.3. Summary 85

data as input.

There is a variety of different neural network approaches, which are applied in smart
spaces, available. Moreover, they achieve good results. As we can further see, each
approach uses different parameters and hyperparameters to train a neural network
or a classifier. Hence, trying several network configurations is necessary in order to
obtain an good performance. That is one reason why a simple way to change the
parameters and hyperparameters is needed. However, to implement different neural
network configurations knowledge in both machine learning and the respective machine
learning library is required. Hence, an easy-to-use machine learning functionality is
needed. That means a service has to be provided which can be called and trained by
the user. Therefore, no detailed knowledge in the area of machine learning and the
respective framework has to be necessary since the service has to provide both the
whole structure of the neural network and the corresponding learning algorithm.

As recognized in Section 3.2, deeper neural networks often perform better. Deeper
networks can be achieved by, for instance, using more hidden layers or stacking several
unsupervised approaches together. This is why the user of a machine learning service
has to be able to adapt the respective neural network to his preferences. Due to that
reason it is important that the service allows for good usability and reusability.

From Section 3.1 it can be seen that following three neural networks and deep neural
networks, respectively, showed a good performance in smart spaces: FFNNs, DBNs and
RNNs. That is why the machine learning service should provide these algorithms.
Further design ideas and detailed information of our approach are presented in the next
chapter (see Chapter 4).



86 Chapter 3. Related Work
Evaluation of Different Approaches in Smart Environments
Approach Method Accuracy Remark
Ache [68] FENN & RL — No evaluation con-
ducted
Kernel-SVM | 96.0 % & 97.2% | 2.6 % & 8.3 % (%)
DBN-R 950% & 93.9% | 17.0 % & 51.8 % ()
Human-Behaviour Prediction [34] | DBN-SVM 95.0% & 953 % | 17.0 % & 34.7 % (%)

DBN-ANN | 937 % & 92.8% | 20.4 % & 37.3 % ()

k-means 78.8 % & 69.6% 19.1 % & 32.7% (%)

SHIP 94.4% On real world data

MavHome [69] 53.4%

ALZ 87% Actions of week-
days and weekends
for 30 days

T™MM 74% Seperated actions
of weekdays and
weekends for 30
days

ED 47% & 100% Simple sequence
based predic-
tion algorithm &
enhanced with ED

Reinforcement Learning [65] Q-learning — No evaluation con-
ducted

Recognizing Human Activity [33] | DBN 86.8876% Average over all ac-
curacies of each ac-
tivity recognition

FFNN 95% Alarm system

Smart Home [63] RNN 80% Human behaviour
prediction

Smart Home with ANN [61] FFNN & RNN | 96.97% & 65.52% | Accuracy based on
Sensitivity & Speci-
ficity

Table 3.3: Evaluation of the different approaches mentioned in the related works according to
smart environments. (*) These networks were evaluated on both datasets MIT1 & MIT2. These

#correctlypredictednewlyactivatedsensors

percentages show the REA =

which sensors will be newly activated.

#of newlyactivtedsensors

, meaning to predict




3.3. Summary

87

Evaluation of Different Approaches in Classification Tasks

Approach Method Accuracy Remark
MLP 1 99.51% 1000, 500, 10
MLP 2 99.54% 1500, 1000, 500, 10

MLPs MNIST [71] MLP 3 99.59% 2000, 1500, 1000, 500, 10
MLP 4 99.65% 2500, 2000, 1500, 1000, 500, 10
MLP 5 99.56% 9 x 1000, 10
MK-SVM 1 95.90% AD vs. HC @

AD/MCI Classification [72] | MK-SVM 2 85.00% MCI vs. HC
MK-SVM 3 75.80% MCI-C vs. MCI-NC
SVM 14.50% ©) Baseline SVM ()

. ) MLP 13.90% 5000 hidden units (tanh) + SR

Domain-Adaption [76] SDAE-SVM 1 | 11.50% 5000 units + SVM
SDAE-SVM 3 10.90% 3 X 5000 units + SVM
RBF-SVM 97.69% KSC dataset
SAE-LR 97.90% 176, 20, 13

Hyperspectral Data [14] RBE-SVM 96.20% Pavia dataset
SAE-LR 97.82% 103, 60, 60, 60, 60, 9
SpAE 74.36% & 73.33% | 1 hidden layer

Cancer diagnosis [77] SAE 51.35% & 73.33% | 2 hidden layers
SAE 95.12% & 73.33% | 2 hidden layers + fine-tuning
PCA + SR/SVM | 94.04% & 94.167% | ©

Table 3.4: Evaluation of the different approaches mentioned in the related works according to
classification tasks. (V) The size of the different hidden layers in the MLP. The output layer has 10
units, each for one digit (0 - 9). ?) The classification task which was used. ®) The generalization
error. 4 The used architecture. ® The pair of RBF-SVM and SAE-LR was evaluated using the
corresponding data set. The number of units in the input layer, hidden layer(s) and output layer
is given for both SAE-LR. () The better average accuracy of both was choosen.







89

Chapter 4

Design

This chapter makes use of the deep learning algorithms described in Section 2 and
captures essential design ideas for the subsequent implementation. We aim at providing
three machine learning services, each one providing a different kind of neural network
(Feedforward Neural Network (FFNN), Deep Belief Network (DBN), Recurrent Neural
Network (RNN)). Since the user decides on his own whether to use a shallow or a deep
neural network, we refer to our services as machine learning services. Subsequently,
two main aspects of the services are explained. These are reusability and usability.
This is due to the reason that the services shall be easily portable and easy-to-use.
To achieve both issues each service contains its own configuration file which can be
changed by the user. Therefore, all configurable parameters and hyperparameters of
the respective machine learning algorithm are illustrated. Finally, the design of each
service is described in detail.

4.1 Reusability & Usability

The design approach is constrained by means of two terms, reusability and usability. The
user has to be provided with a easy-to-use machine learning functionality. Thus, even
users with little or no pre-knowledge in the area of machine learning and the respective
machine learning library is able to train, evaluate and deploy a neural network.
Usability is ensured by means of a configuration file which contains all parameters and
hyperparameters necessary to use the respective neural network. The file is provided
after calling the service. Furthermore, the configuration file contains default values.
Hence, the user does not have to change every value but has the possibility to do so.
Additionally, the data used for training and deploying the neural network has to be of a
certain shape. A functionality is therefore provided to the user which prepares the data
to be suitable for the respective neural network.

The machine learning service ensures reusability through seperating the state of the



90 Chapter 4. Design

neural network from the learning algorithm. This is due to the fact that the above-
mentioned configuration file contains all parameters and hyperparameters necessary
to train and restore a neural network. This further facilitates portability. Moreover,
the user is able to experimentally find the right configuration of the neural network
by simply changing the configuration file and starting training anew. Since no other
actions have to be made, this does not take much time.

4.2 Parameters and Hyperparameters used in Neural Networks

As it can be seen in Tables 2.1, 2.2 in Section 2.5 there exists are large number of
parameters which can be changed in different ways in order to fit to a certain problem.
We want to facilitate the user to configure all parameters and hyperparameters necessary

to train and deploy a neural network on his own. Below the common parameters and
hyperparameters of a FFNN, DBN and a RNN are listed.

« Size of the input
+ Size of the output
 Type of activation function a (see Section 2.1.1.1)

« Type of bias / weights initialization (see Section 2.1.3.14)

Size of the mini-batch (see Section 2.1.3.7)

« Number of training epochs (see Section 2.1.3.7)

Learning rate 7 (see Section 2.1.3.10)

As a DBN in our case consists of stacked Restricted Boltzmann Machines (RBMs) fol-
lowing additional parameters and hyperparameters are needed.

« Number of stacked RBMs
« Number of hidden units for each RBM

A FFNN as well as a RNN learns by backpropagating an error and updating the weights
and biases. The error is computed using a cost function. The weights as well as the
biases are updated by applying an optimization algorithm. The additional parameters
and hyperparameters for both a FFNN and a RNN are the following.

+ Type of optimization algorithm (see Section 2.1.3.7)
« Type of cost function (see Section 2.1.3.6)

« If regularization is applied, the type of regularization and the contribution of
the parameter norm penalty to the objective function measured with « (see Sec-
tion 2.1.3.13)



4.3. Machine Learning Algorithm as VSL-Service 91

+ If momentum is applied, the momentum rate ¢ (see Section 2.1.3.7)

« If decaying learning rate is used, a value for both the decay rate and the decay
steps (see Section 2.1.3.10)

« If early stopping is applied, the metric to use, meaning comparing either the loss
or the accuracy at every training step and a threshold value representing the
number of rounds (see Figure 2.28)

« If k-fold cross validation is used, a value for the parameter k (see Section 2.1.3.11)

By stacking several hidden layers we are able to construct a deeper FENN. Thus, follow-
ing additonal parameters and hyperparameters are needed in the respective configura-
tion file.

« Number of hidden layers
« Number of hidden units for each hidden layer

A RNN uses additional parameters and hyperparameters as it gets sequential data as
input. Due to that reason, an error is backpropagated a certain number of steps through
time. This number can be fixed in the beginning or alternating for every sequence. Our
RNN implementation consists of Long Short-Term Memory (LSTM) cells which can be
stacked.

« Number of steps the error gets propagated back if fixed

« Activation function of a LSTM cell

» Size of the LSTM cell

« Forget bias applied in the forget gate

« If stacking several LSTM cells, the number of stacked LSTM cells

According to Section 2.1.3.11 every parameter and hyperparameter might have to be
adjusted in order to obtain a better performance, and thus a better accuracy. These
adjustments can be easily made by only changing the parameters and hyperparameters
in the respective configuration file. Table 4.1 shows a summary of all parameters and
hyperparameters mentioned above.

4.3 Machine Learning Algorithm as VSL-Service

We aim at implementing three machine learning components to apply in Distributed
Smart Space Orchestration System (DS20S). The easiest way to do so, is by implement-
ing each algorithm as a Virtual State Layer (VSL) service. Therefore, a context model is
needed for each neural network first. The context model is almost the same for each



92 Chapter 4. Design

Parameter and Hyperparameter ‘ FFNN ‘ DBN ‘ RNN
Input size X X X
Output size X X X
Type of activation function X X X
Type of weight and bias initialization X X X
Mini-batch size X X X
Number of training epochs X X X
Learning rate 5 X X X
Type of optimization algorithm X X
Type of cost function X X
Type of regularization technique and parameter norm penalty X X
Momentum rate X X
Learning rate decay rate and decay steps X X
Early stopping rounds and metric X X
K-fold cross validation X X
Number of stacked RBMs X
Number of hidden units in each RBM X
Number of hidden layers X

Number of hidden units in each layer

Number of time steps X
Activation function of a LSTM cell X
Type of optimization algorithm X
Forget bias X
Number of stacked LSTM cells X

Table 4.1: Enumeration of the parameters and hyperparameters used in a FFNN, a DBN and a
RNN.



4.3. Machine Learning Algorithm as VSL-Service 93

network. The user can interact with the service itself by changing its nodes. The context
model of a FFNN is given in Listing 4.1. The machine learning services have two modes.
One for training including testing, and one for applying the trained algorithm itself.
If a service is in training mode, it creates a configuration file which is provided to the
user. The user can change it to his preferences. The respective neural network is created
by means of the configuration file and trained afterwards. While in application mode,
the machine learning service will only compute a new output if the input data changes.
This is due to performance and efficiency issues. Therefore, the service subscribes to its
input node. After a notification callback, meaning the input has changed, a new output
is computed and saved in its output node.

Listing 4.1: Context model of a FFNN. The trainMode is set to 1 by default.

<feedForward type="/basic/composed">
<trainMode type="/derived/boolean">1</trainMode>
<input type="/basic/text"></input>
<output type="/basic/text"></output>
<configFile type="/basic/text"></configFile>
<trainingData type="/basic/text"></trainingData>
</feedForward>

Figure 4.1 shows the desired design principle of the machine learning services. The
user starts by calling the respective service. A configuration file is provided which can
be modified by the user. When the configuration file is saved, the service creates a
neural network by taking the different configurations contained in the file into account.
The network is trained with the provided data set. After the training step the learned
network configuration is saved in the configuration file and the service is ready to
predict new outputs which are provided to its context model. This is done by restoring
the trained configuration contained in the respective configuration file.

As mentioned above, three machine learning algorithms are implemented as a service.
These include a FFNN (Section 2.1.3.1), a DBN (Section 2.1.3.3) and a RNN (Section 2.1.3.4).
According to the occurrence in the related works (see Chapter 3) and the application
in various use cases (see Tables 2.1, 2.2 in Section 2.5) we identifiy these three machine
learning algorithms as most relevant (see Section 3.3). This is why we do not make
use of a Convolutional Neural Network (CNN) (Section 2.1.3.2) or a Deep Q-Network
(Section 2.1.3.5) which is difficult to parameterize and generalize. Furthermore, the DBN
consists of several stacked RBMs and not of Autoencoders (AEs). This is due to the reason
that RBMs are more often applied to smart spaces in the related works. Moreover, it is
important to provide the ability to make the respective networks deeper. As shown in
Section 3.2, increasing the number of processing layers results more often in a better
accuracy. This can be achieved, for instance, by increasing the number of hidden layers
(see Section 3.2.1).

Data provided to train, validate or test a neural network needs to be of a certain shape.



94 Chapter 4. Design

Config-File

Generate Read from
config-file config-file

Call service MaChine M)
Learning | _rovenewinpu
Service | < Cluatenewoutput
User Neural Network

Subscribe Receive
to l\jnput notification
node callbacks

—O
Context Model

Figure 4.1: Functionality of a machine learning service.

Therefore, each network has its own conditions on the data sets. This is why a further
functionality is implemented which prepares the data sets. Each section below involves
brief information about the structure of the respective data set. The methods to prepare
the data sets are described in Section 5.2.3 in more detail.

4.3.1 Feedforward Neural Network

When applying a FFNN, the user can decide on his own whether it should be deep or
not by providing the appropriate number of hidden layers. This can be done by adding
more hidden layers to the respective section of the configuration file. The user further
has to provide values for the input size and the output size. Both sizes are needed to
create the respective neural network. These values have to exactly match the sizes of
the training data input and the training data labels. Moreover, a path has to be provided
where the model is saved after training.

Since the number of hidden layers is not fixed in advance, a recursive method is applied
in order to predict an output. That is why the predicted output y is computed by going
backward all the way to the input x. See Figure 4.3 for an illustration of this method.
The output of the last hidden layer h, is computed using the output of the h,_; — th
hidden layer as input. This hidden layer then uses again the h,_, — th hidden layer’s
output as input. This process is continued until the first hidden layer is reached. The
output y is then computed by using the resulting outputs of the lower layers to compute
the outputs of the higher layers until the last hidden layer is reached. Its output is used
to get the output y by applying the output activation function to it.



4.3. Machine Learning Algorithm as VSL-Service 95

Data Set—A FFNN needs its data as (data, label)-pairs. Since the size of the input and
the output is determined in the beginning via the configuration file, every data example
needs to have exactly that size.

4.3.2 Deep Belief Network

A DBN is illustrated in Figure 2.18. A deeper representation of a DBN can be achieved
by adding more RBMs to the respective section in the configuration file. Moreover, the
user has to provide a value for the feature size and a path to save the model has to be
provided. The configuration file belonging to a DBN is shown in Figure A.1.

As mentioned in Section 2.1.3.3, the output of DBNs can be processed in two ways. On
the one hand it can be directly used. On the other hand, the output can be fed into a
supervised learning algorithm, e.g. a FENN, stacked on top of the last RBM. The latter
requires an additional parameter setting in the configuration file. The output size has
to be provided, which matches the size of the training data labels.

Data Set—A DBN needs its data solely unlabeled, meaning no label is required. As the
input size is provided in the beginning via the configuration file, the data size has to

match exactly this size.

4.3.3 Recurrent Neural Network

In order to train a RNN the user has to provide a feature size and an output size. Both
have to match the training data sizes. If using the same sequence lengths, this value has
to be changed, too. A definition of the sequence length is given below. The configuration
file belonging to a RNN is shown in Figure A.2. Moreover, the path to save the model
needs to be changed.

Training a RNN is slightly different from the two above-mentioned networks. The
design idea is shown in Figure 4.4. It shows a RNN, which consists of three stacked
LSTM cells. It is further unfolded n times. Thereby, n is depending on the length of the
input sequence x. This sequence consists of n vectors x;. Since each input x; entails an
output y;, an output sequence of size n is obtained in the end. Depending on the task,
we are either interested in the whole output sequence or in the last output y,_; and
thus discard the previous outputs. This subdivided procedure is due to the two differ-
ent approaches in the related works (see Section 3), where human behaviour is either
predicted or recognized. Consider, for instance, an input sequence disclosing that the
user first lays in bed, then turns on the lights and stands up. The RNN either classifies
the activity into standing up or concludes that the user has woken up and opens the
shutters. In both cases, however, the last output contains the appropriate information.
As mentioned above, the whole output sequence can be used, too. The network can be



96 Chapter 4. Design

[Neural Network]

type = Feed Forward Neural Network
save_model_in = /path/to/save/model
[Input Layer]

feature_size = -1

[Hidden Layers]

hidden_layer_1 = 500

hidden_layer_2 = 300
hidden_layer_3 = 100
number_of_hidden_layers = 3
[Output Layer]

output_size = -1

softmax_unit = True
no_activation = False

[Weight]

mean = 0.0

standard_deviation = 0.1

seed = 123

[Bias]

constant = 0.0

[Cost Function]

cross_entropy = True
squared_errors = False
[Optimization Technique]
gradient_descent = True
momentum = False
adagrad_optimizer = False
[Regularization Technique]
dropout = False

weight_decay = False
[Additional Methods]
learning_rate_decay = False
early_stopping = True
k_cross_validation = False
[Hyperparameters]
activation_fct_tanh = True
activation_fct_sigmoid = False
activation_fct_relu = False
learning_rate = 0.08
number_of_training_epochs = 100
mini-batch = 300

momentum_rate = 0.8

p_keep = 0.75
wc_factor = 0
1r_decay_step = 100000

1r_decay_rate = 0.96
early_stopping_rounds = 100
early_stopping_metric_loss = True
early_stopping_metric_accuracy = False
validation_k = 10

[Parameters]

display step = 10

nmno

Figure 4.2: An example of a configuration file used to initiate a FFNN. The file contains the default
values. It is necessary to change the feature size and the output size accordingly. Furthermore,
one has to provide a path to save the model. To create a deeper model the number of hidden
layers can be extended in the respective section.



4.3. Machine Learning Algorithm as VSL-Service 97

Y = @ou (hy)Wout + bou)
> () Wa + by)
> a (B Was + bra)

<

<—>a (@Wl + b1 )

Figure 4.3: An unfolded representation of the recursive method used to compute the predicted
output of a FFNN. As the output activation function might differ from the activation functions
of the hidden layers, the last step, i.e. to compute the outcome of the output layer, is excluded
from the recursion.

trained to predict a vector after each input. Thus, the predicted output y; of input x;
has to be equal to the next input x;41, as x;4; is the vector which comes chronological
after x;. To explain this princple, an example from character-based prediction is used in
the following. Suppose the input word x is [n e t w o r] and the output y has to be [e t w
o r k]. The RNN is thus unfolded six times. The output y, (letter €) is based on the input
xo (letter n) and so on. We are of course interested in the whole output sequence in this
example. For our needs, however, this approach might be computational expensive and
to fussy.

Figure 4.4 further shows following additional configurable parameters and hyperparam-
eters of a RNN: initial state H;,, number of stacked LSTM cells and the sequence length
n.

In real world applications, however, not all sequences have the same length n. This
is why a possibility to pad sequences of shorter length to match a certain length n is
required. This is done by adding vectors consisting of solely zeroes to the sequence.
Why this does not affect the training of a RNN is explained in Section 5.2.3.

Data Set—The data provided for a RNN needs further preparing as it uses a 3D-tensor as
input. Therefore, a method to create such a tensor is required. It has to stack sequences of
data together. If the sequence lengths are not of the same size, the respective sequences
have to be padded with zero vectors. Moreover, the input has to contain consecutive
sequence vectors. This is due to the reason that RNNs take previous predictions into
account. Hence, with the help of chronological ordered sequences, RNNs predict new
outputs.



98

Chapter 4. Design

Sequence of Inputs x;

| X, X, Xn—1|
H., l l H,..
O/ LSTM}—>H,—{LSTM}—>H,—>-»—>H ;—>[LSTM}-~H,,
OF—{LSTM}—>H) —{LSTM—>H, —> ---—>H] ;>[LSTM}|—~>|H] |
OF—~[LSTM|—~H) —[LSTM}|—>H} —> -+~ H]; ~[LSTM|-—~H],

Yo iﬁ o @

Last Output

Figure 4.4: Design of a RNN consisting of three stacked LSTM cells.



99

Chapter 5

Implementation

This chapter summarizes the most important details about the implementation of the
machine learning services mentioned in the previous chapter (see Chapter 4). Every
service includes another learning algorithm: a Feedforward Neural Network (FFNN)
(see Section 4.3.1), a Deep Belief Network (DBN) (see Section 4.3.2) or a Recurrent Neural
Network (RNN) (see Section 4.3.3). First, the applied programming language and both
additional tools and libraries are introduced. Afterwards, we show specific details about
the implementation. An explanation of how to use the different files of the implemented
services is given. It further mentions parts of the code where problems might arise if
wrong parameters are provieded. Finally, a machine learning Hello World! example is
described. Using the MNIST data set [16] we explain how to use the three machine
learning services to train a FFNN, a DBN and a RNN step by step. Additionally, we want
to show how both the accuracy and the loss change while training progresses. Hence,
graphs are provided to illustrate their behaviour.

5.1 Tools

The three learning algorithms of the respective services are implemented using Python'
as programming language. This is due to the reason that Google’s TensorFlow* machine
and deep learning library is applied (see Section 2.1.5.2). Furthermore, a python inter-
face [79] is employed in order to access the Virtual State Layer (VSL) of the Distributed
Smart Space Orchestration System (DS20S) (see Section 2.2) or more specifically the
data stored in the context models (see Section 2.2.1).

Thttps://www.python.org/
thtps://www.tensorflow.org/


https://www.python.org/
https://www.tensorflow.org/

100 Chapter 5. Implementation
5.2 Implementation Details

As mentioned previously, each learning algorithm possesses its own context model and
thus is independent from each other. Figure 4.1 shows the general functionalitiy of our
implemented service approaches. In the following the structure of the implemented
machine learning services is given. Two helper libraries are described afterwards. The
first one is used to read values from the configuration file easily. The other one is applied
to prepare the provided training data. Brought into the right shape it can be fed into a
learning algorithm. Subsequently, details about each neural network are described.

5.2.1 Structure of the Services

Each service is implemented using a the python interface mentioned in Section 5.1. The
structure of each service is the same as the underlying context model is almost identical
(see Listing 4.1).

In general, when calling a service it subscribes to its input node first. A configuration file
is provided to the user afterwards. When this file is changed and saved, a build-method
is called. It builds the general structure of the respective neural network and initializes
the parameters and hyperparameters. Subsequently, a train-method is called which
starts training the neural network with the provided training data. When training is
finished the train-mode is set to 0. Afterwards, the service is ready to predict new
outputs from inputs. This is done by restoring the trained neural network with the help
of the configuration file.

5.2.2 Read Configuration File

This library applies functions which read a configuration file and return a specified value.
As it can be seen in Figure 4.2, each configuration file contains almost all parameters
used to create a neural network. This makes reading the specific values easy, since only
a particular function needs to be applied. The library returns the value in the required
data type. The code snippet represented in Listing 5.1 shows one getter-function which
returns the number of hidden layers set in a configuration file.

Listing 5.1: Configuration File Reader

rr

""'A code snippet of the configuration file reader library

# return int
def get_number_of_hidden_layers(self):
return int(self.config_reader['Hidden Layers’][’'number_of_hidden_layers’])




5.2. Implementation Details 101

5.2.3 Prepare Data Sets

As the data sets fed into the learning algorithms need to be of a certain shape another
library is implemented. On the one hand, it provides a function to read data from one
or more csv>-files. On the other hand, this library is used to create mini-batches while
training.

The user has to provide the training data in terms of csv-files to the respective node of
the context model (see Listing 4.1).

Listing 5.2 shows a method to read data from csv-files using tf-TextLineReader() from
the TensorFlow framework. The input parameter filename_queue is initalized by the
method displayed in Listing 5.3. First, default values, used for columns of the csv-file
which are not occupied, need to be provided. Their data type has to be identically equal
to the data type given in the csv-file. For example, the parameter col1 is of type int and
the remaining columns of type float. In this case the data has six columns, of which one
represents the corresponding label. Thus, 5 input values are stacked together to form
one tensor. Finally, the label column is converted into a one-hot vector. A one-hot vector
consists of only 0 and one 1. The single I indicates the corresponding label.

Listing 5.3 shows how a mini-batch is created. First, the above-mentioned filename_queue
is created using a filename_list which contains the paths to every csv-file the user pro-
vides. The variables min_after_dequeue and capacity are choosen according to the notes
in the documentation®. Both an example_batch and a label_batch of size batch_size are
created using tf.train.shuffle_batch(). This method shuffles the training data. If a RNN is
applied, this method must not shuffle the data. This is due to the fact that RNNs make

use of sequential data (see Section 4.3.3).

Listing 5.2: Prepare Data Set Library - read data method

rr

""'A code snippet of the prepare data set library

def get_data_example(filename_queue):
reader = tf.TextLineReader()
_, value = reader.read(filename_queue)

record_defaults = [[0], [0.], [0.], [0.], [0.], [0.]1]

coll, col2, col3, col4, col5, colé = tf.decode_csv(value,
record_defaults=record_defaults)

features = tf.stack([col2, col3, col4, col5, col6])

label = tf.one_hot(coll, 5, 1., 0.)

return features, label

3comma separated values

4https://www.tensorflow.org/programmers_guide/reading_data#feeding


https://www.tensorflow.org/programmers_guide/reading_data#feeding

102 Chapter 5. Implementation

Listing 5.3: Prepare Data Set Library - create batch method

""'A code snippet of the prepare data set library. This method is derived from

rr

https://www.tensorflow.org/programmers_guide/reading_data#feeding

def create_batch(batch_size, num_epochs=None):
filename_queue = tf.train.string_input_producer(
filename_list, num_epochs=num_epochs, shuffle=True)
example, label = get_data_example(filename_queue)

min_after_dequeue = 100

capacity = min_after_dequeue + 3 * batch_size

example_batch, label_batch = tf.train.shuffle_batch(
[example, label], batch_size=batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue)

return example_batch, label_batch

Another method creates a 3D-tensor which can be fed into a RNN. Figure 4.4 indicates
why a simple mini-batch created with the methods above is not sufficient. This is due to
the reason that three dimensions are required. They arise from following three parame-
ters: batch_size, num_steps, length(example). Compared to Figure 4.4 length(example) is
the length of x;,i = 0,...,n — 1, num_steps is n, specifically the length of the sequence,
and batch_size represents the size of the mini-batch. The length of each x; has to be
identical in every batch. On the other hand, the sequences can be of different lengths,
meaning they can hold different num_steps values. However, if different sequence
lengths occur, they have to be padded with zero-vectors. Hence, several data examples
with different sequence lengths can be stacked together to form one mini-batch.

The training data has to be given either in different csv-files or in one csv-file with
extra labels for the begin and the end of a sequence. When working with different
csv-files, each of them has to contain one sequence, meaning each row contains one
vector of the sequence. The last element of the sequence is equipped with a label. First,
the length of each sequence has to be checked. Sequences with different lengths get
padded with zero-vectors. Afterwards, all tensors created are stacked together to one
3D-tensor. However, there is one problem concerning the label tensor. As the label is
only existing in the last row, we do not want all default values listed in the label tensor.
Hence, only the last value is used. When using one csv-file which contains all sequences,
each sequence has to be extracted separately. This is done by looking for begin and end
statements. The next steps are equal to the one described above.

Padding with zero-vectors does not affect the training step. The training algorithm
can be provided with the real sequence lengths, meaning the lengths without padded
zero-vectors. Thus, there is no influence of the zero-vectors on the training outcome.



5.2. Implementation Details 103

5.2.4 Feedforward Neural Network

The data used to train a FFNN needs to be a tuple of (input data, corresponding label)
(see Section 2.1.3.1). That is why two variables are required, one for the input data and
one for the label.

Algorithm 1 shows the corresponding pseudocode to Figure 4.3. This recursive algorithm
requires a weight W; and a bias B;. Both are elements of their corresponding lists W
and B which contain all weights and biases of the neural network, respectively. The
activation function is denoted with a, x represents the input data. This method works
recursively. It starts at the output of the last hidden layer of the neural network and
ends at the input nodes. Consider Figure 2.9 to visualize this principle. The computation
starts from the last hidden layer at the right side and ends at the input layer on the left
side. Recursively, the method decrements the index i until it reaches 0, which ends the
recursion and starts the computation. The output is then fed into an output activation
to obtain the predicted output of the nerual network.

Algorithm 1 Compute the output of the last hidden layer recursively.

function coMPUTE_HIDDEN_ouTPUT(W;, B;)
if i == 0 then
return a(x - W; + B;)
else
return a(CoMPUTE_HIDDEN_oUTPUT(W;_1, Bi_1) -W; + B;)
end if
end function

5.2.5 Deep Belief Network

Since a DBN consists of several stacked Restricted Boltzmann Machines (RBMs) (com-
pare Section 4.3.2) a training procedure for both the whole DBN and a single RBM is
required.

To initialize a DBN the input size and the number of hidden layers are obtained from the
configuration file. Then, a list which contains every RBM in the right order is created
and the RBMs are trained. The first one with the input data, the next one with the
output of the first one and so on.

Since a DBN is often used as a pre-training step for a classifier which is stacked on top
of the last RBM, possibility to do so is provided. Thereby, the input size to the classifier
corresponds to the number of units in the hidden layer of the last RBM.



104 Chapter 5. Implementation

5.2.6 Recurrent Neural Network

A RNN is implemented using Long Short-Term Memory (LSTM) cells (see Figures 2.21, 2.22).
There is also the opportunity to stack several LSTM cells. The data fed into a RNN needs
to be of a 3D-structure of shape [size_mini_batch, num_steps, feature_size] (see Sec-
tion 5.2.3). The implementation is straightforward using the functions provided by
the TensorFlow library. Nevertheless, there is one important aspect to mention. An
unfolded RNN produces one output every time step i, i = 0,...,num_steps — 1 (see
Figure 2.19). We are, however, only interested in the output of the last step (compare
Figure 4.4). This is due to the reason, that we want to predict the next step or classify
the input sequence. Listing 5.4 shows the two lines of code needed to get the last out-
put. The first part transposes the output tensor of the LSTM cell called state_series, the

second part takes the last element of it.

Listing 5.4: Get the last output

""'A code snippet of the RNN class used to get the last output’’’

# from [size _mini_batch, num_steps, cell_size] to [num_steps, size_mini_batch,
cell_size]
transformed_output = tf.transpose(states_series, [1,0,2])

# take the last element of the transformed states_ output
last_output = transformed_output[-1]

5.3 Example: MNIST Data Set

When starting with machine learning, MNIST is the counterpart to a Hello World!
program when starting programming. The MNIST data set consists of 70.000 data
points which are split into a training set (55.000), a validation set (5.000) and a test
set (10.000) [16]. As explained in Section 2.1.3.12 the training set is used to train the
weights and biases of a model, the validation set is used to change its hyperparameters
accordingly and the test set is used on the trained model to get the overall accuracy.
Each data example is composed of an 28 X 28 image containing the handwritten digit
and a corresponding label. Figure 5.1 shows four different digits from the data set. The
corresponding labels are 5, 0,4 and 1. These labels tell the learning algorithm which
digit the corresponding image contains.

In the following, all three machine learning services are trained on the MNIST data set.
Thereby, information on how the respective neural network is trained is provided in
order to show the usability. Moreover, a figure is provided for every machine learning
service to illustrate the development of both the loss function and the accuracy, or the
development of the reconstruction error, while training progresses. Additionally, the



5.3. Example: MNIST Data Set 105

accuracy of a FFNN and a RNN on the test set is given. This is done to demonstrate the
varying range of accuracies of neural networks trained on the MNIST data set.

S0/

Figure 5.1: Example images from the MNIST data set of handwritten digits [15] [16].

5.3.1 Feedforward Neural Network

As mentioned in Section 2.1.3.1 a FFNN takes only vectors as input. This is why an
image can not be fed directly to the network. Yet, to continue, we need to flatten the
images to a vector of size 784 (= 28 X 28). This way, information about the 2D-structure
of the image is dropped. To keep the 2D-structure while training, a Convolutional
Neural Network (CNN) has to be used (see Section 2.1.3.2). However, this is out of scope
here since we do not implement such a neural network.

Training our FFNN service as designed in Section 4.3.1 works the following way. List-
ing 5.5 shows the training loop of the FFNN implementation which consists of two
nested loops. The outer loop iterates over the training epochs and the inner loop it-
erates over the whole data set with step size being the size of the mini-batch. In each
iteration, mini-batches of both the input data and the corresponding labels are provided
to the feed-dictionary (feed-dict). After calling sess.run() the algorithm executes one
training step (train_step), which is determined in advance according to the configuration
file.

Listing 5.5: Training loops

rr

""" A code snippet of the training loops
for epoch in range(training_epochs):
for start, end in zip(range(0, len(train_data), size_mini_batch),

range(size_mini_batch, len(train_data), size_mini_batch)):

batch_xs = train_data[start:end]
batch_ys = train_labels[start:end]

sess.run(train_step, feed_dict={self._input_x: batch_xs, y_: batch_ys})

When using one’s own training data, the data needs to be prepared first in order to be
feedable to the feed-dictionary using the helper library described in Section 5.2.3.

The service trains the model using the code, more specifically the methods, shown
in Listing 5.6. The first line initializes the neural network class. Afterwards the con-



106 Chapter 5. Implementation

figuration file is built. Next, a question which requires an answer is directed to the
user (see Listing 5.7). This is due to the fact that he needs time to change the created
configuration file. Additionally, the path to the configuration file is displayed. The name
of the configuration file can be changed before starting training. Every hyperparameter
and parameter listed in this file contains a default value but there are parameters which
need to be changed. In this case, these are the input size and the output size. Thus,
we choose an input size of 784 which corresponds to the length of the input vector
described above. The output size is set to 10, which represents the classes 0, . . ., 9.

Listing 5.6: Train a model

my_first_nn = DeepFeedforwardNeuralNetwork()
my_first_nn.build_ini_file()
change = input(’Have you changed the desired parameters and are ready to train
the neural network? (Y) \n’)
if change == "Y":
my_first_nn.build_model()
my_first_nn.train_model()

Listing 5.7: Console output

Destination of config file at
/home/markus/deepLearningProjects/machine_learning_service/MyFirstNeuralNetwork.ini
Have you changed the desired parameters and are ready to train your first
neural network? (Y)

The hidden layers are further changed to 500, 300 and 100 units and the number of
training epochs to 100. After entering Y, the neural network starts training. Figure 5.2
depicts the graphs showing the development of the loss function and the accuracy
during increasing training epochs. After 10 training epochs, the loss and accuracy
increase and decrease dramatically, respectively. An accuracy of 94.0% on the test data
set is reached which is sufficient but not good. This is due to the reason that we are
using a simple feedforward model. As it can be seen in Section 5.3.3, a RNN can reach
an even better accuracy. Using a CNN increases the accuracy further as it can process
the 2D-structure of an image. The best models reach an accuracy of over 99.7% [80].

5.3.2 Deep Belief Network

As a DBN makes use of unsupervised learning, only the images need to be provided
in order to let the respective service train the model (see Section 2.1.3.3). The training
loop looks almost the same as in Listing 5.5 but with different computation steps. In
Figure 5.3 the decay of the reconstruction error of a DBN with 6 hidden layers with



5.3. Example: MNIST Data Set 107

26
2.4 0.9
2.2
2.0
1.8 4 0.7 q
164
@ 144
124
1.0 0.4 1
0.8 §
0.6
0.4

024 0.1

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Training Epoch Training Epoch

(a) Loss (b) Accuracy

Figure 5.2: The development of the loss function and the accuracy during the training phase of
a FFNN.

600, 500, 400, 300, 200, 100 units trained on the MNIST data set is shown. Pre-training
is applied to train every RBM on its own using the output of the previous RBM as
input (see Figure 2.18). Each RBM is trained for 20 training epochs. The peaks at every
20-th training epoch indicate the training of the next RBM which slightly rises the
reconstruction error. We can further stack a supervised classifier on top of the DBN to
classify the images with the output of the DBN, meaning the output of the last RBM, as
input.

0.05 +

0.02 4

0 10 20 30 40 50 60 70 80 90 100 110
Training Epoch

Figure 5.3: Decaying reconstruction error of a DBN built-up by stacking 6 RBMs.

5.3.3 Recurrent Neural Network

Training a RNN on the MNIST data set is slightly different, since sequences need to be
provided as input. Section 2.1.3.4 describes why the data set has to be transformed. The
RNN can not be fed with a vector of size 784. This is due to the reason that a RNN gets
unfolded over n time steps. Therefore, the original vector is transformed into 28 vectors



108 Chapter 5. Implementation

of size 28, yielding n = 28 time steps. To be consistent with Section 5.2.3 we denote
the time steps with num_steps which is the sequence length and the vector size with
length(example). Figure 5.4 depicts the development of the loss function and the accuracy
when training a RNN built-up by one LSTM cell with a cell size of 200. The accuracy
on the test data set is 98.46% which is better than the accuracy the Deep Feedforward
Neural Network (DFFNN) could achieve. In comparison to Figure 5.2 the graphs shown
in Figure 5.4 are not that smooth. This is due to the fact that the RNN evaluates the loss
function and accuracy at every training iteration, whereas the previous FFNN does the

same at every training epoch.

5!
o
®
Accuracy
e
3

[} 500 1000 1500 2000 2500 [} 500 1000 1500 2000 2500
Training Iterations Training Iterations

(a) Loss (b) Accuracy

Figure 5.4: The development of the loss function and the accuracy during the training phase of
a RNN. Both, loss and accuracy were taken every training iteration.



109

Chapter 6

Evaluation

This chapter focuses on the evaluation of the three different machine learning services
designed in Chapter 4 and implemented in Chapter 5. The evaluatiion starts using two
data sets similar to the data sets mentioned in Section 3 and one additonal data set.
Additionally, we analyze the service approaches using the MNIST data set introduced in
Section 5.3. The results are compared against a regular implementation of the respective
neural network. Afterwards, we conduct a performance analysis of the three neural
network services and their regular counterpart implementation. We focus thereby on
the training time and running time. This produces results for analyzing the usability and
reusability of the machine learning services. We conclude with a qualitative evaluation
including experience with the concept, reusability and usability. This evaluation is
conducted with the knowledge and experince gained from the previous qualitative
evaluations.

6.1 Quantitative Evaluation Results using different Data Sets

This section focuses, on the one hand, on the comparison of our approaches to the
respective neural networks mentioned in the related works (see Section 3). On the other
hand, we consider the time for implementing the particular use case which includes,
for instance, the providing and pre-processing of the respective data set. The time for
creating the neural network measures the time needed to set up the network compu-
tations. Both times are estimated from the viewpoint of a machine learning expert
who is familiar with the respective machine learning library. Hence, the time taken for
unexperienced users is considerably longer. One issue to mention is that we are not able
to compare our approach to the related works directly as we do not get all information
needed to set up the exact neural networks. This section concludes by comparing the
three neural network services to their regular counterpart implementation using the
MNIST data set of handwritten digits. This is due to the fact that we conduct a per-



110 Chapter 6. Evaluation

formance analysis afterwards on the same data set. The MNIST data set is taken as a
ground truth as it is a common data set used in machine learning.

6.1.1 ADL Data Set

The Center of Advanced Studies in Adaptive Systems (CASAS) smart home project
provides several data sets representing Activities of Daily Living (ADL). The following
evaluation is conducted using a data set containing 13 activities performed by two
persons. As we are not able to get the identical data set used in the approach described
in Section 3.1.5 we use a similar one. Furthermore, there is no response to our request
on how they prepare their data. Thus, our results do not compare to the ones in [33].
We use the following features to represent the data (see Section 3.1.5).

« Day of the week (0 - 6)

« Hour of the day (0 - 23)

« Triggering sensor (0 - 9, according to the room the sensor is installed)
« Previous activity (0 - 12)

« Number of sensors activated during the activity

« Duration of the activity in minutes

« Label of the current activity (0 - 12)

Besides, the data is normalized. Further pre-processing is necessary to get better results.
The data consists of 3741 data points.

6.1.1.1 Deep Belief Network

We set up our service approach using a Deep Belief Network (DBN) with the information
available in [33]. Thus, the DBN consists of stacked Restricted Boltzmann Machines
(RBMs) with following sizes of the respective hidden layers: 500, 300, 100. The approach
ends training when a certain threshold, involving the reconstruction error, is reached,
namely 0.001. However, using their set-up we are not able to reach this goal. This is
due to the reason that we do not really know how to pre-process their data, since we
do not receive an answer to our request on this topic.

We try various alterations of a DBN, i.e. different hyperparameters and parameters,
to get a smiliar reconstruction error. The best reconstruction error we obtain is 0.049
which yield an accuracy on our test set of 28.51%.

Both the implementation of the use case (ca. 30 s) and the creating of the neural network
do not take much time (ca. 30 s). This is due to the reason that our service approach



6.1. Quantitative Evaluation Results using different Data Sets 111

provides the respective neural network structure and hence allows us to train various
neural networks with different configurations easily.

6.1.1.2 Feedforward Neural Network

As the DBN does not perform well on this data set, we try a Deep Feedforward Neural
Network (DFFNN). It is composed of three layers with 500, 300 and 100 units, respec-
tively. We set the learning rate to 0.05 and use tanh as activation function. Simple
Gradient Descent (GD) was applied. The size of the mini-batch is 200 and the training
lasts for 100 training epochs.

The total training time was 4434.89 s. However, the DFFNN yields an accuracy of 82.91%
on the test set. The loss of the validation set is reduced to 0.62. On the other hand the
loss on the training set is further reduced to less than 0.40. Both values are not the best
but we can demonstrate that by applying a different Artificial Neural Network (ANN),
a data set which does not fit one network (e.g. DBN) can yield a better performance
on another network (e.g. DFFNN). Figure 6.1 shows both the loss of the training and
validation set and the accuracy of the training and validation set. There, one can notice
the broad distribution of the error and the accuracy while training. Deploying other
configurations of a DFFNN might narrow this broad distribution further.

By using our service approach, it is easy to apply other configurations to the neural
network, and hence training the same network with different configurations does not
take much time. Both implementing the use case and creating the neural network takes
30 s. Moreover, using another neural network takes not much effort since only the
respective machine learning service needs to be called.

T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
Training Iterations Training Iterations

(a) Loss (b) Accuracy

Figure 6.1: Two graphs representing the loss (6.1(a)) and the accuracy (6.1(b)). Both were taken
every training iteration. The blue, continuous line indicates the training set performance and
the red, dashed line denotes the performance on the validation set.



112 Chapter 6. Evaluation

6.1.1.3 Recurrent Neural Network

As the ADL data set consists of sequences of activities it is possible to train a Recurrent
Neural Network (RNN) on it. Every activity consists of several time-series vectors
which describe the particular activity. The number of vectors represents the number of
unfolding steps of the RNN. As every activity does not have the same number of vectors
we have to pad them with zero vectors. There, another problem ocurrs. Each sequence
length varies widely. The smallest has a length of about 10, whereas the largest has a
length of above 9000. Due to the reason that the vast majority does not have such a
large length, we make only use of smaller lengths, i.e. sequences of length smaller than
500.

We do not really make good results on this data set. The training time is 12833.97 s
after applying early stopping after iteration 254. The smallest error we achieve is 1.69
which yield an accuracy on the test set of 34.57%. This is due to the reason that we
might use the wrong features and the sequence lengths vary too much. Several RNN
configurations are considered.

The use case is implemented in 30 s. The creating of a new network takes about 30 s due
to our modularization approach. This helps in considering a various amount of RNNs.

6.1.2 MIT Smart Home Data Set

In order to predict human activity we use the MIT smart home data sets MIT1 and MIT?2.
Both are also available in the CASAS smart home project. We prepare the data set our
own way according to the information available in [34], since again our request about
how they pre-process the data set exactly is not answered.

We used a sliding window size W of size 9, and a time interval T of size 5. If a sensor
is activated in T its value is 1, otherwise its 0. Hence, the prediction of the next sensor
value is based upon the previous 45 minutes (see Section 3.1.6). The data set consists of
20.088 data points.

6.1.2.1 Deep Belief Network

As given in [34] we create a DBN built-up by stacked RBMs, using the respective machine
learning service. The hidden layer sizes are 200 and 100. The outcome of the DBN is fed
into an ANN. During training we encountered following abnormality. When training
the first RBM the reconstruction error is decreased to 0.009. However, training the next
RBM increases the reconstruction error to 0.25. The output of the ANN stacked upon
the DBN yield an accuarcy of 0.31%. This is due to the high reconstruction error of the
second RBM. Figure 5.3 shows the correct decreasing of the reconstruction error of a
DBN approach applied to the MNIST data set of handwritten digits.

Using the knowledge gained from above, we try another approach in order to get better



6.1. Quantitative Evaluation Results using different Data Sets 113

results. Therefore, a single RBM consisting of 300 hidden units is applied. Above, a ANN
is stacked. We receive a test accuracy of 99.74%. The RBM produced a reconstruction
error of 0.004. However, these results are easy to obtain as the data set consists of
only 0 and 1. As [34] already mentioned, if a sensor is activated, it is activate for a
extended period of time. On the other hand, if a sensor is deactivated, it is not active
for a extended period of time. Thus, they introduce the Rising Edge Accuracy (REA)
which represents the prediction of newly activated sensors. Nevertheless, we are not
able to conduct a evaluation using REA due to the reason that we do not know how to
construct the data set for it.

From the two significantly different results obtained using a DBN built-up by stacking
two RBMs and a single RBM we realise that the pre-processing of a data set is highly
influencing the construction of an ANN.

The time which is needed to implement both DBNs is about 30 s as we only need to
pass the data points to the respective machine learning service. Creating the neural
network itself is brief, too. In about 30 s the configuration file is changed to our purpose.
The training time of the DBN with the two hidden layers (80.29 s) is higher than the
training time of the single RBM - DBN (28.76 s).

6.1.2.2 Recurrent Neural Network

Additionally, we try to train our RNN service on the data set mentioned above. Every
sliding window is used as a sequence, meaning that each sequence is the total number of
sensors and the time steps are fixed to 9. An interesting fact in this case is the following.
We are able to reach 100% at the beginning of the training. While training continues,
the accuracy is decreasing. Moreover, the error was oscillating between a low and a
high error value. Thus, after training, the accuracy yields a poor result. One reason
for that is that the data set consists of almost only zeroes. At training start the labels
consist of only zeroes, too, and hence outputting a zero vector yields an accuracy of
100%. Due to that reason this network is not suited for the respective pre-processed
data.

However, we are able to try and train various RNNs with different configurations due
to the service approach. Hence, the implementation of the use case lasts 30 s and the
changing of the configuration file further 30 s.

6.1.3 Recognition Data Set

As both data sets above do not show satisfactory results, we apply another data set
called Smartphone-Based Recognition of Human Activities and Postural Transitions Data
Set [81]. The data consists of 561 features and labels one out of 12 activities. It is based
upon different sensor values, e.g. accelerometer and gyroscope. Moreover, the features
are normalized between -1 and 1.



114 Chapter 6. Evaluation

6.1.3.1 Feedforward Neural Network

We use the Feedforward Neural Network (FFNN) service with three layers and 500, 300
and 100 hidden units, respectively. Furthermore, tanh is chosen as activation function
and the learning rate is set to 0.08. Figure 6.2 shows the result of the training step. After
50 training epochs we are able to reach a test accuracy of 95.38% and the loss on the
training set is reduced to 0.08.

Again, the implementation of this use case takes 30 s and the configuration file is
changed in another 30 s.

2.6 10
2.4+

2.2
2.0 084
184
164 0.7

1.4+

Loss

124
104 0.5 1
0.8 4
0.6 4
0.4 4
0.2 4

0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750
Training Iterations Training lterations

(a) Loss (b) Accuracy

Figure 6.2: Two graphs representing the loss (6.2(a)) and the accuracy (6.2(b)). Both are taken
every training iteration. The blue, continuous line indicates the training set performance and
the red, dashed line denotes the performance on the validation set.

6.1.4 MNIST Data Set

Since a performance analysis is applied on the MNIST data set of handwritten digits,
we use this data set to obtain a quantitative evaluation in terms of latency, accuracy
or reconstruction error, Lines of Code (LOC) and both time for implementing the use case
and time for creating the neural network. The latter describes the time required to set
up the neural network computations. Each of our three machine learning services is
compared to a regular implementation of the respective neural network. Each neural
network pair is thereby initialized with the same parameters and hyperparameters. The
results are shown in Tables 6.1, 6.2, 6.3.

As expected, the latency of the service is slightly higher than the latency of the regular
implementation of the respective neural network. However, the difference between the
two latencies is not worth mentioning. As the services as well as the regular neural
networks are implemented with the same machine library the accuracy of both is almost
the same. Considering the LOC a major difference between the service implementation
and the respective regular implementation can be recognized. The small number of
LOC of the service approach is due to the reason that the neural network structure and



6.1. Quantitative Evaluation Results using different Data Sets

FFNN Service FFNN
Latency 0.70 s 0.48 s
Accuracy 97.50 % 97.58 %
Lines of code 2 85
Implement use ca.30s ca. 5 min
case
Create ANN ca. 30 s ' ca. 2 min

(change configuration file)

115

Table 6.1: Evaluation of our machine learning service acting as a FFNN compared to a regular

FFNN implementation.

DBN Service DBN
Latency 0.02s 0.0003 s
Reconstruction 0.02 0.02
error
Lines of code 2 148
Implement use ca.30s ca. 8 min
case
Create ANN ca.30s . ca. 3 min

(change configuration file)

Table 6.2: Evaluation of our machine learning service acting as a DBN compared to a regular
DBN implementation.

the learning algorithm are already implemented. The user needs to provide only the
training data which is afterwards prepared for training. The regular neural network,
however, has to be built-up from scratch, meaning all computations of the learning
algorithm have to be implemented. This is why the time for both implementing the use
case and creating the neural network is considerably higher than the particular times of
the respective services. Another point to mention here is that the times of the regular
implementations are estimated from the viewpoint of an expert in the area of machine
learning. That is why users with almost no expert knowledge in both machine learning
and the corresponding machine learning library need exceedingly more time. On the
contrary, our three services do not require expert knowledge in these areas. Hence, the
use case is implemented fast, sometimes one does not even need 30 s. Moreover, the
changing of the configuration file does not take much time as it is structured in a plain
way, i.e. all parameters and hyperparameters are clustered in sections which indicate
the purpose of the respective parameters and hyperparameters.



116 Chapter 6. Evaluation

RNN Service RNN
Latency 2.07 s 1.78 s
Accuracy 98.50 % 98.44 %
Lines of code 2 128
Implement use ca.30s ca. 10 min
case
Create ANN ca. 30 s . ca. 5 min

(change configuration file)

Table 6.3: Evaluation of our machine learning service acting as a RNN compared to a regular
RNN implementation.

6.2 Performance Analysis

A performance evaluation is conducted on all three machine learning services and their
regular counterparts. The evaluation is split up into two part. The first one measures
the training time and the second one analyzes the distribution of the running time. The
running time indicates the time needed to predict a new output after training is finished.
Each net is trained 50 times anew. We ascertain the convergence points of each neural
network before starting the process with the result that we do not train them for too
many training epochs. The training epochs of the FFNNs are set to 25 and the ones
of the RNNs to 4. The training epochs of each RBM are fixed to 10. Moreover, we use
the same configuration in each neural network pair, i.e. the service network has the
same parameter and hyperparameter values as the regular network. The respective
training times are shown in Figure 6.3. We further depicted the mean convergence point
including the corresponding loss value for both the FFNN and the RNN. A comparison
of all the training times is shown in Figure B.1. The longest training time combined with
the least iterations of the RNNss is due to the reason that a RNN has to backpropagate
its error a certain number of time steps which is in our case 28 times. For comparison,
a FFNN backpropagates its error the number of hidden layers which is in our case
three times. A detailed representation of the training times at iteration 500 is given in
Figure 6.4. Each subfigure depicts the training times measured at each of the 50 runs. It
further shows the difference between the times of the service and the respective regular
implementation.

As we presumed in the beginning, our implemented services train slightly slower than
the regular approach. The FFNN service is in the end by an average of 14 s slower and
the DBN service by an average of 6 s. This is due to the reason that our implementation
is parameterized. This is why it needs to handle more requests during training, e.g. IF
... ELSE statements. Moreover, the service implementation involves a slightly higher
latency as the regular implementation. Hence, the performance of our service in terms
of training time is not as good as the one of the regular implementation but negligible as
an enormous amount of time is saved by not having to set up the whole neural network



6.2. Performance Analysis 117

computations from scratch (see Section 6.1.4). Moreover, we figured out that the RNN
service and the regular RNN implementation alternate by an average of above 20 s
regarding the training time. The alternating times are shown in Figure 6.4(c). Figure 6.5
shows the difference of the training times of the respective runs. The figure further
depicts the mean difference. It can be concluded that the training times of the service
approach and the respective regular implementation do not differ much.

B Regular FFNN loss = 0.080689
Wl Service FFNN

Regular DBN
BN Service DBN

800

IS
S
o

w

o

o
3
S
S}

loss = 0.089358

Training Iterations [x10]
N
S
S

Training Iterations [x10]
IS
S
3

-

o

S
N
S
S}

0 100 200 300 400 500 600 700 800 0 25 50 75 100 125 150 175
Training Time [s] Training Time [s]

(a) FENN (b) DBN

175 mmm Regular RNN

B Service RNN loss = 0.086216

150 :E
125 ;-

Training Iterations [x10]
- ©
& 3
l.w
h‘
%
"y
l‘l
-

0 500 1000 1500 2000 2500 3000
Training Time [s]

(c) RNN

Figure 6.3: The training times of our approach and the corresponding regular implementation.
Each training procedure is repeated 50 times. Furthermore, in Figure 6.3(a) and Figure 6.3(c)
the mean convergence point including its corresponding loss value is depicted. Both bends in
Figure 6.3(b) indicate the training of a new RBM. Figure 6.3(c) shows the overlapping training
times of the RNN service and the regular RNN implementation. A more detailed representation
of the training times of iteration 500 is shown in Figure 6.4.

The analysis of the running time is conducted the following way. Each neural network
restores the saved trained model and computes a new output using the MNIST test
set as input. This process is repeated 1000 times for each neural network. The regular
implementations run slightly faster than the service approach. The RNN service, how-
ever, runs faster than the regular implementation. Figure 6.6 shows a comparison of

the service implementation and the respective regular neural network. The individual



118 Chapter 6. Evaluation

16.0 16.2 16.4 16.6 16.8 86 87 88 89 90 91 92

(a) DBN (b) FENN

Figure 6.4: A more detailed representation of training iteration 500 showing the difference in
the training times of the regular implementation and our service approach. Every data point
indicates on run of the respective network.

running time distributions are presented in Figure B.3. A comparison of all the running
times is shown in Figure B.2. The box thereby depicts the area, where the median 50%
of the data points are located. Further, the median value is depicted by a horizontal line
in the box.

In summary, it can be stated out that both the training times and the running times of our
service approach and the regular implementation do not differ that much. Nevertheless,
the service approach provides one huge benefit. It saves an enormous amount of time
as the user does not have to implement the whole neural network and its computations
from scratch. This is due to the reason that the neural network of a service is created by
only using the configuration file. Thus, by changing it, the user is able to train different
neural networks with little effort. This yields a high usability. Moreover, the restoring
of the network by means of the configuration file provides reusability efficiently.

6.3 Qualitative Evaluation Results

Table 6.4 represents a qualitative evaluation of the implemented machine learning ser-
vices independent of a particular data set. We focus on experience with the concept,
usability and reusability. The rating ranges from 0 to + to ++. The first one indicates a
neutral rating whereas the latter expresses a rather easy understanding of the particular
concept. The evaluation is conducted by applying the gained experience and knowledge
from the previous qualitative evaluations.

The experience with the concept is conducted from the perspective of a person who is
not familiar with the matter. Both the handling of the particular services and the under-
standing and changing of the respective configuration files is relatively straightforward.
The first one requires only the modifying of the neural network specific parameters,
e.g. feature size, output size. The source code, on the other hand, is rather hard to
understand as it requires pre-knowledge in machine learning and deep learning, respec-
tively, as well as in TensorFlow library. As we aim at providing a machine learning



6.3. Qualitative Evaluation Results 119

-
~
n

-

N}

-
u
E}

= =
1) o
o o

-

® o

=== mean total execution time === mean total execution time

A}
0

0 10 20 30 40 50 0 1
Run

~
o

4
E

Difference Execution Times [s]
Difference Execution Times [s]
o

N
o
~

4
o
o

(a) FENN (b) DBN

—-=- mean total execution time

=
o
o

@
o

o
o

IS
S

N
o

'I% |'|1}|'j WH[ It ﬁ.‘WH i

o

Difference Execution Times [s]

|
N
o

1
IS
S

(c) RNN

Figure 6.5: The difference in the training time between our approach and the corresponding
regular implementation. Furthermore, the mean value of the difference in the training times is
shown. In Figure 6.5(a) and Figure 6.5(b) our approach is always slightly slower than the regular
implementation. In Figure 6.5(c), however, the difference in the training times alternates. A
negative value indicates that the RNN service is faster than the regular implementation.

service for everybody no matter how much pre-knowledge one possesses, the source
code is annotated as much as possible. This is why it can be followed along by everyone.
However, if you want to modify the source code, which is not necessary since most
functionality is already implemented, some pre-knowledge is required. The creation of a
new neural network is relatively simple. The user only has to call the particular service
and change the configuration file. The training of the created neural network requires
some more action as data sets need to be provided to the respective prepare data set
library (see Section 5.2.3). Due to the reason that the library file in turn requires slight
modifications, it is easy to train a DBN which requires unlabeled input data, relatively
easy to train a FFNN which requires labeled input data and rather hard to train a RNN,
since a 3D-tensor needs to be built (see Section 4.3.3). Nevertheless, we provide useful
methods and annotations which facilitate the preparing of the particular input data. As
a user with no pre-knowledge shall be able to use the machine learning services, the



120 Chapter 6. Evaluation

0.50

0.45

Runtime [s]
°
=
5

Runtime [s]
«

0.35

XXX WK X
IS

% 22—

Regular FFNN Service FFNN Regular DBN Service DBN

(a) FENN (b) DBN

%

o e

Runtime [s]

%

Regular RNN Service RNN

(c) RNN

Figure 6.6: A detailed representation of the run time distribution of each neural network pair.

last evaluation point is important. Regarding this, some pre-knowledge helps but is not
necessarily required.

Usability and reusability are evaluated according to Section 4.1. Both the FFNN service
and the DBN service are easier to use as they are simple straightforward approaches.
On the other hand, the RNN service is not as easy to use as the other two, since it
has a recurrent loop and makes use of 3D-tensors as input, which requires both some
understanding and further preprocessing of the data (see Section 5.2.3). Besides, the
user only has to change a configuration file in order start training. Hence, the machine
learning services are easy-to-use. Regarding reusability the FFNN service as well as
the DBN service work well. This is due to the reason that state of the trained model
is saved in a particular configuration file. The trained state of the model of the RNN
service can also be saved after training. Due to an inital state vector which is applied
in our implementation in order to improve usability, however, one is only able to feed
data of exactly the size of the mini-batch. A good reusability is achieved since the state
of the neural network is separated from the learning algorithm. This allows for efficient
portability.




6.4. Summary 121

FFNN | DBN | RNN
Easy - Hard to handle the service ++ ++ ++
Easy - Hard to understand the code + 0 0
. . Easy - Hard to understand the service +
Experience with .
Easy - Hard to understand the configuration file ++ ++ ++
the concept . .
Easy - Hard to modify the configuration file ++ ++ ++
Easy - Hard to create a new ANN + + +
Easy - Hard to train the ANN + ++ 0
Easy - Hard without in-depth ML/DL knowledge + + +
Usability ++ . +
Reusability ++ ++ +

Table 6.4: Qualitative evaluation of the three implemented machine learning services. ML/DL
represents thereby the terms machine learning and deep learning, respectively.

6.4 Summary

This chapter started with a quantitative evaluation in Section 6.1. Different data sets
were thereby applied to analyze our machine learning service approaches. Two data
sets were similar to the ones presented in the related works (see Sections 6.1.1, 6.1.2).
However, we were not able to reach the same results as we got no answer to our request
on how the authors of the corresponding related works have pre-processed their data.
From there we could see that pre-processing of the available data set is very important.
Furthermore, we tried one or another of our services with different parameters on these
data sets. This did not take much time as only the configuration file of the respective
service has to be changed in order to start training anew. The third data set applied was
trained using the FENN service and was without further pre-processing able to reach a
good accuracy.

As the MNIST data set of handwritten digits is a well-known and often-used data set
in machine learning we defined it as ground truth. Hence, a more detailed quantitative
evaluation in terms of latency, accuracy or reconstruction error, LOC and time for both
implementing the use case and creating the neural network was conducted. It showed
that although the latency of the service implementations is slightly higher than the
latency of the respective regular counterpart, this is negligible. This is due to the rea-
son that the service approaches required much less LOC as the whole neural network
structure is already implemented and only the data set needs to be provided in order
to prepare it for training. Furthermore, the differences between the machine learning
services and their regular counterpart in both the time for implementing the use case
and the time for creating the neural network showed that each service requires a very
small amount of time until it can start training. The times presented in the regular
implementation are estimated from the view of a machine learning and deep learning
expert, however. Hence, exceedingly more time is required if the user is not familiar



122 Chapter 6. Evaluation

with the matter. Moreover, this evaluation demonstrated that the accuracies reached
are almost identical. This is due to the fact that the same machine learning libraries are
used.

A performance analysis was conducted afterwards in Section 6.2. It was split up into
two part. The first part evaluated the training time. Each machine learning service
was thereby trained 50 times anew. Although in case of the FFNNs and DBNs our
service approach trained and ran slightly slower than the regular implementation, this
difference in time is negligible. This is due to the reason that using our approach does
not require implementing the whole neural network structure from scratch, and hence
saves an enormous amount of time. The training times of the RNNs alternated, i.e.
sometimes our approach was faster, sometimes it was slower. The second part mea-
sured the running time, meaning the time required to predict a new output after the
network was already trained. It showed that the FFNN service and the DBN service
are slightly slower than their respective regular implementations. On the other hand,
the RNN service is considerably faster than its regular implementation. The compared
results of both performance analysis are illustrated in Figures B.1, B.2.

To summarize, the three machine learning services showed a comparable performance
in terms of training time and running time to regular implementations of the respective
neural network (see Figures 6.3, 6.6). The slight deficit in both times is compensated
by the time required to create a particular use case and the time needed to create a
neural network. Moreover, the machine learning services can be used by users who
are unexperienced in the area of machine learning. Furthermore, there is no need to be
an expert in the respective machine learning library as the services provide the whole
structure of the neural network and the learning algorithm. This can, for instance, be
seen in the LOC mentioned in Tables 6.1, 6.2, 6.3. Only a few LOC are required in order
to set up and train our approach. Additionally, reusability is enhanced since the state of
the neural network, meaning its configuration, is separated from the respective learning
algorithm. This allows for efficient portability. Since the configuration file contains
all parameters and hyperparameters necessary to set up a neural network, the user
can experimentally determine the appropriate configuration of the particular neural
network yielding a high usability.



123

Chapter 7

Conclusion

The outcome of this thesis are three machine learning services. These services are easy-
to-use since no pre-knowledge in machine learning and deep learning, respectively,
is required. This is due to the reason that the learning algorithms were modularized
into suitable building blocks. Each service provides another neural network. These
networks were chosen according to both their occurrence in the related works and the
capability to parameterize them. Hence, three services were implemented, each one
using respectively a Feedforward Neural Network (FFNN), a Deep Belief Network (DBN)
and a Recurrent Neural Network (RNN) (see Sections 3.3, 4.3). They further allow for
efficient application in smart spaces.

The usability of the services is ensured by means of a configuration file. This file contains
all hyperparameters and parameters necessary to set up and train a neural network (see
Section 4.2). The user is able to adjust these values to his preferences. Moreover, due to
this configuration file, the state of the neural network is separated from the learning
algorithm itself. This allows for efficient portability since the neural network can be
restored with the help of the respective configuration file.

The machine learning services are deployed as Virtual State Layer (VSL)-services in the
Distributed Smart Space Orchestration System (DS20S) (see Section 2.2). Each service
is equipped with its own context model which acts as abstact interface to the real world
(see Section 2.2.1). The nodes of a context model can hold different values. Each of the
three services possesses almost the same context model. The most important nodes
contain information about the train-mode, the destination of the configuration file, the
input data, the output and the path to the training data (see Listing 4.1). The services
apply two modes, one is used for training and one for application. By default, training
mode is set. When in training mode, the service provides a configuration file to the
user. The user can modify the file. A neural network is built-up by means of this file.
The particular neural network is trained afterwards by applying the provided training
data set. After successful training the learned parameters and hyperparameters of the
model are saved in its configuration file and the train mode is changed. The parameters



124 Chapter 7. Conclusion

contained in a configuration file were chosen according to Table 4.1.

The machine learning services were designed and implemented with respect to usability
and reusability (see Section 4.1). The conducted evaluation showed that our service
approaches consider both terms. The services were analyzed in terms of training time
and running time against a regular implementation of the respective neural network
(see Section 6.2). Comparable results were achieved. However, our service approach
facilitates the experimental training of different neural network configurations since
only the configuration file needs to be changed. Hence, no implementation of the
respective neural network computations from scratch is required. We also showed
that applying the configuration file ensures portability. Hence, the services are able to
restore a model by using the respective configuration file.

In conclusion, the requirements specified in Chapter 2, designed in Chapter 4 and
implemented in Chapter 5 were met. We realized three machine learning services
which yield a good performance in terms of usability and reusability. Moreover, due
to the modularization of the learning algorithms, these services allow users, which are
unexperienced in the area of machine learning and deep learning, to train, evaluate
and deploy a neural network. Furthermore, the three machine learning services are

applicable in smart spaces.

7.1 Future work

The machine learning services make use of different Artificial Neural Networks (ANNs).
Due to an abundance of possibilities to construct neural networks following ideas can

be implemented in the future.
« Define different classifiers to stack upon the DBN
+ Implement a DBN of stacked Autoencoders (AEs).
+ Implement further machine learning services

« Implement additional training techniques, e.g. other cost functions, other weight
initialization techniques, batch normalization

« Pre-train several neural networks
Furthermore, the service functionality can be extended.

« Implement the configuration file as a service, i.e. create a context model containing
every parameter and hyperparameter of the corresponding neural network

« Implement an additional service which finds the optimal neural network configu-

ration automatically



125

Appendix A

Further Configuration Files

We introduced the configuration file of a Feedforward Neural Network (FFNN) in Chap-
ter 4. As we implemented two more Artificial Neural Networks (ANNs) the configuration
files belonging to a Deep Belief Network (DBN) (see Figure A.1) and a Recurrent Neural
Network (RNN) (see Figure A.2) are provided below.



126 Appendix A. Further Configuration Files

[Neural Network]

type = Deep Belief Network
stacked_units = Restricted Boltzmann Machines
save_model_in = /path/to/save/model
[Input Layer]

feature_size = -1

[Output Layer]

output_size = -1

[Weight]

mean = 0.0

standard_deviation = 0.1

seed = 123

[Bias]

constant = 0.0

[Stacked RBMs]

out_units_rbm_1 = 100
out_units_rbm_2 = 100
out_units_rbm_3 = 100
number_of_stacked_RBMs = 3

[RBM]

learning_rate = 1.0
mini_batch = 200

epoch = 10
activation_fct_tanh = False
activation fct siamoid = True

Figure A.1: An example of a configuration file used to initiate a DBN. The file contains the
default values. It is necessary to change the feature size accordingly. Furthermore, one has to
provide a path to save the model. To create a deeper model the number of RBMs can be extended
in the respective section. If an ANN, e.g. a FFNN, is stacked on top of the DBN an output size is
required.



127

[Neural Network]

type = Recurrent Neural Network
gated_recurrent_unit = Long Short-Term Memory
save_model_in = /path/to/save/model
[Input Layer]

feature_size = -1

[Output Layer]

output_size = -1

softmax_unit = True

no_activation = False

[LSTM]

activation_fct = tanh

lstm_size = 200

forget_bias = 1.0

stack_cells = False
number_of_stacked_layers = 1
num_steps = -1

[Weight]

mean = 0.0

standard_deviation = 0.1

seed = 123

[Bias]

constant = 0.0

[Cost Function]

cross_entropy = True

squared_errors = False
[Optimization Technique]
gradient_descent = False

momentum = False

adagrad_optimizer = True
[Additional Methods]
learning_rate_decay = False
early_stopping = False
k_cross_validation = False
[Hyperparameters]
activation_fct_tanh = True
activation_fct_sigmoid = False
activation_fct_relu = False
learning_rate = 0.8

mini-batch = 300
number_of_training_epochs = 100
momentum_rate = 0.8

p_keep = 0.75
wc_factor = 0
1r_decay_step = 100000
1r_decay_rate = 0.96
early_stopping_rounds = 100
early_stopping_metric_loss = True
early_stopping_metric_accuracy = False
validation_k = 10
[Parameters]

display step = 10

nmno

Figure A.2: An example of a configuration file used to initiate a RNN. The file contains the
default values. It is necessary to change the feature size, the output size and the number of time
steps accordingly. Furthermore, one has to provide a path to save the model. To create a deeper
model the number of LSTM cells can be extended in the respective section.






129

Appendix B

Compared Training Times and Running
Times

All training times are shown in Figure B.1. It can be seen that the Recurrent Neural
Networks (RNNs) are the slowest and the Deep Belief Networks (DBNs) the fastest
approaches when training. Besides, the DBNs have the most iterations whereas the
RNNs have the fewest of all. Moreover, Figure B.1 shows that in cases of the Feedforward
Neural Networks (FFNNs) and DBNs our service approach is slightly slower than the
regular implementation. On the other hand, comparing our RNN approach to the regular
approach we can see that their training times alternate, i.e. sometimes our approach is
faster, sometimes the regular implementation.

The running times are depicted in B.2. A more detailed representation of the services
and the respective neural networks is shown in B.3. Each running time distribution is
depicted solely.



Appendix B. Compared Training Times and Running Times

130

-} Sururer} 3s98U0[ 9y} pue
SUOTJBIDT 1SB] Y} ARY SNNY U3} SEIISUM SUOTIRIIT }SOW Y} INq dwir) Jururer) 1sea] 9y} aaey SN Y], ‘sowr} Sururer) [[e jo uostreduwrod vy :1°g an3ry

[s] awiy Buiureay

000€ 00SZ 0002 00ST 000T 00S 0
o
00z
.
P
g
2
a
ooy F
g
Z
3
@
X
Y
=
I 009
NNY 921195
NNY Jeinboy
NEQ IS L oog
Nga Jejnbay
[NNEEICRUSELY |
NN4d Jenbay




131

‘uorjejuauredwur Je[n'da1 9y} uey} 193seJ A[qeraprsuod suni yoeoidde NNY 1o
‘ToAdmo}] ‘uorjejuawa[dur rendar oy} uey) omors A3ySI[s uni sayoeordde 901aI0s 10 SNNY 23 10§ 3dooxq ‘sowr} Suruuni [Te Jo uosireduwrod y :z'g 9Insry

NNY 921n13S NNY Jejnbay [NEIERIIVEN NEQ Jenbay NN44 221185 NN44 Jeinbay

—_—
—

o
[s] swnuny

ot

XXX

f49




132 Appendix B. Compared Training Times and Running Times

0.36 M M
0.52
0.34 i 050 g
0.48
032 =
o) x o)
g x g 0.46 §
€ X < 2
5030 2 0.44
028 4 0.42
X
%’ 0.40
0.26
0.38
Regular FFNN Service FFNN
(a) regular FFNN (b) service FFNN

2.201 X
8]
2.15
2,10 7]
o o
:u 2.051 P
£ £6d
52007 5
1.95 5]
1.90
2] 1
Requlér DBN Servicye DBN
(c) regular DBN (d) service DBN
X 9 X
115 x
x
8
11.0
7
£ L
g 2
3 &
10.0 5
4
4
9.5
x i
3
Regular RNN Service RNN
(e) regular RNN (f) service RNN

Figure B.3: A box plot showing the distribution of the running times of each neural network. A
cross marks an outlier, and the horizontal line in a box marks the median running time. Each
running process is repeated 1000 times.



133

Bibliography

[1] N. Jones. (2014) Computer science: The learning machines. [Online]. Available:
http://www.nature.com/news/computer-science-the-learning-machines-1.14481

[2] L J. Goodfellow, D. Warde-farley, M. Mirza, A. Courville, and Y. Bengio, “Max-
out networks,” in Proceedings of the thirtieth International Conference on Machine
Learning, Atlanta, Georgia, USA, 2013.

[3] S. Ray. (2015) Understanding support vector machine algorithm from examples
(along with code). [Online]. Available: https://www.analyticsvidhya.com/blog/
2015/10/understaing-support-vector-machine-example-code/

[4] T. Slaff. (2014) Trading the rsi using a  support vec-
tor machine. [Online]. Available: https://www.linkedin.com/pulse/
20141103165037-172934333-trading-the-rsi-using-a-support-vector-machine

[5] M. Nielsen. (2017) Neural networks and deep learning. [Online]. Available:
http://neuralnetworksanddeeplearning.com/

[6] L Goodfellow, Y. Bengio, and A. Courville, Deep Learning. = MIT Press, 2016,
http://www.deeplearningbook.org.

[7] G. Udacity. (2017) Deep learning classroom. [Online]. Available: https:
//de.udacity.com/course/deep-learning--ud730/

[8] DeepLearning4]. (2016) Restricted boltzmann machine. [Online]. Available:
https://deeplearning4j.org/restrictedboltzmannmachine

[9] WILDML. (2015) Recurrent neural networks tutorial, part 1 - in-
troduction to rnns. [Online]. Available: http://www.wildml.com/2015/09/
recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

[10] J. Guo, “Backpropagation through time,” 2013.

[11] C. Olah. (2015) Understanding Istm networks. [Online]. Available: http:
//colah.github.io/posts/2015-08-Understanding-LSTMs/

[12] T. Matiisen. (2015) Demystifying deep reinforcement learning. [Online]. Available:
http://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/


http://www.nature.com/news/computer-science-the-learning-machines-1.14481
https://www.analyticsvidhya.com/blog/2015/10/understaing-support-vector-machine-example-code/
https://www.analyticsvidhya.com/blog/2015/10/understaing-support-vector-machine-example-code/
https://www.linkedin.com/pulse/20141103165037-172934333-trading-the-rsi-using-a-support-vector-machine
https://www.linkedin.com/pulse/20141103165037-172934333-trading-the-rsi-using-a-support-vector-machine
http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org
https://de.udacity.com/course/deep-learning--ud730/
https://de.udacity.com/course/deep-learning--ud730/
https://deeplearning4j.org/restrictedboltzmannmachine
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/

134

[13]

[22]

(23]

Bibliography

M.-O. Pahl. (2016) Video "smart space orchestration — how to make the
internet of things smart?". Youtube. Sophia Antipolis, France. [Online]. Available:
https://youtu.be/4sxRaubBG4s

Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based classification
of hyperspectral data,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 7, no. 6, pp. 2094-2107, June 2014.

Tensorflow. (2017) Mnist for ml beginners. [Online]. Available: https://www.
tensorflow.org/get_started/mnist/beginners

C. J. B. Yann LeCun, Corinna Cortes. MNIST database. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

W. He, D. Goodkind, and P. Kowal, “An aging world: 2015,” in International Pop-
ulation Reports, P95/16-1. U.S. Government Publishing Office, Washington, DC:
U.S. Census Bureau, 2016.

G. Singla, D. J. Cook, and M. Schmitter-Edgecombe, “Recognizing independent
and joint activities among multiple residents in smart environments.” J. Ambient
Intelligence and Humanized Computing, vol. 1, no. 1, pp. 57-63, 2010.

Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.
436-444, 5 2015.

F. Rosenblatt, The Perceptron, a Perceiving and Recognizing Automaton Project Para,
ser. Report: Cornell Aeronautical Laboratory. Cornell Aeronautical Laboratory,
1957.

A. Ng, J. Ngiam, C. Y. Foo, Y. Mai, and C. Suen. (2013) Unsupervised
feature learning and deep learning - neural networks. [Online]. Available:
http://ufldl.stanford.edu/wiki/index.php/Neural_Networks

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in
Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics (AISTATS-11), G. J. Gordon and D. B. Dunson, Eds., vol. 15. Journal of
Machine Learning Research - Workshop and Conference Proceedings, 2011, pp.
315-323.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Improve Neural
Network Acoustic Models,” in Proceedings of the thirtieth International Conference
on Machine Learning, Atlanta, Georgia, USA, 2013.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” CoRR, vol. abs/1502.01852,
2015.


https://youtu.be/4sxRaubBG4s
https://www.tensorflow.org/get_started/mnist/beginners
https://www.tensorflow.org/get_started/mnist/beginners
http://yann.lecun.com/exdb/mnist/
http://ufldl.stanford.edu/wiki/index.php/Neural_Networks

Bibliography 135

[25]

[26]

[27]

[31]

M. Haloi, “Improved microaneurysm detection using deep neural networks,” CoRR,
vol. abs/1505.04424, 2015.

X. Zhu, A. B. Goldberg, R. Brachman, and T. Dietterich, Introduction to Semi-
Supervised Learning. Morgan and Claypool Publishers, 2009.

A. Ng, J. Ngiam, C. Y. Foo, Y. Mai, C. Suen, A. Coates, A. Maas, A. Hannun,
B. Huval, T. Wang, and S. Tandon. Softmax regression. [Online]. Available:
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/

C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
no. 3, pp. 273-297, 1995.

Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with
gradient-based learning,” in Shape, Contour and Grouping in Computer
Vision. London, UK, UK: Springer-Verlag, 1999, pp. 319-. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646469.691875

Y. Sun, X. Wang, and X. Tang, “Deep learning face representation from predicting
10,000 classes,” in Proceedings of the 2014 IEEE Conference on Computer Vision and
Pattern Recognition, ser. CVPR ’14. Washington, DC, USA: IEEE Computer Society,
2014, pp. 1891-1898.

W. Ouyang and X. Wang, “Joint deep learning for pedestrian detection,” in 2013
IEEE International Conference on Computer Vision, Dec 2013, pp. 2056—2063.

[32] J. Altosaar. (2017) Tutorial - what is a variational autoencoder? [Online]. Available:

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

H. Fang and C. Hu, “Recognizing human activity in smart home using deep learning
algorithm,” in Proceedings of the 33rd Chinese Control Conference, July 2014, pp.
4716-4720.

S. Choi, E. Kim, and S. Oh, “Human behavior prediction for smart homes using
deep learning,” in 2013 IEEE RO-MAN, Aug 2013, pp. 173-179.

D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio, “Why
does unsupervised pre-training help deep learning?” j. Mach. Learn. Res., vol. 11,
pp. 625-660, Mar. 2010.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training
of deep networks,” 2007, pp. 153-160.

D. Learning. (2017) Deep belief networks. [Online]. Available: http://deeplearning.
net/tutorial/ DBN.html


http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/
http://dl.acm.org/citation.cfm?id=646469.691875
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
http://deeplearning.net/tutorial/DBN.html
http://deeplearning.net/tutorial/DBN.html

136

[38]

[41]

[42]

[43]

[44]

(48]

Bibliography

Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” Trans. Neur. Netw., vol. 5, no. 2, pp. 157-166, Mar.
1994. [Online]. Available: http://dx.doi.org/10.1109/72.279181

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient flow in recur-
rent nets: the difficulty of learning long-term dependencies,” 2001.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput.,
vol. 9, no. 8, pp. 1735-1780, Nov. 1997. [Online]. Available: http://dx.doi.org/10.
1162/neco.1997.9.8.1735

K. Cho, B. van Merrienboer, C. Giilcehre, F. Bougares, H. Schwenk, and Y. Ben-
gio, “Learning phrase representations using RNN encoder-decoder for statistical
machine translation,” CoRR, vol. abs/1406.1078, 2014.

J. Chung, C. Gulgehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” CoRR, vol. abs/1412.3555, 2014.

R. Pascanu, C. Gilgehre, K. Cho, and Y. Bengio, “How to construct deep
recurrent neural networks,” CoRR, vol. abs/1312.6026, 2013. [Online]. Available:
http://arxiv.org/abs/1312.6026

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. A. Riedmiller, “Playing atari with deep reinforcement learning,” CoRR, vol.
abs/1312.5602, 2013.

N. Qian, “On the momentum term in gradient descent learning algorithms,’
Neural Networks, vol. 12, no. 1, pp. 145 - 151, 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608098001166

R. Rojas, “Neural networks - a systematic introduction,” Springer-Verlag, vol. 37,
pp. 151 — 184, 1996.

Y. Bengio, “Practical recommendations for gradient-based training of deep archi-
tectures,” CoRR, vol. abs/1206.5533, 2012.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Improving neural networks by preventing co-adaptation of feature detectors,”
CoRR, vol. abs/1207.0580, 2012.

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in In Proceedings of the International Conference on Artificial In-
telligence and Statistics (AISTATS’10). Society for Artificial Intelligence and Statistics,
2010.

S. Toffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015. [Online].
Available: http://arxiv.org/abs/1502.03167


http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1312.6026
http://www.sciencedirect.com/science/article/pii/S0893608098001166
http://arxiv.org/abs/1502.03167

Bibliography 137

[51]

[52]

(53]

(58]

[60]

[61]

J. Kuhn. (2017) Batch normalization. [Online]. Available: https://wiki.tum.de/
display/lfdv/Batch+Normalization

E. Ackerman. (2017) How drive.ai is mastering autonomous driving with deep learn-
ing. [Online]. Available: https://spectrum.ieee.org/cars-that-think/transportation/
self-driving/how-driveai-is-mastering-autonomous-driving-with-deep-learning

S. H. Hsu, M.-H. Wen, H.-C. Lin, C.-C. Lee, and C.-H. Lee, AIMED- A Personalized
TV Recommendation System. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp- 166—-174. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-72559-6_18

H. D. Mehr, H. Polat, and A. Cetin, “Resident activity recognition in smart homes
by using artificial neural networks,” in 2016 4th International Istanbul Smart Grid
Congress and Fair (ICSG), April 2016, pp. 1-5.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, ]J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, ]J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015,
software available from tensorflow.org. [Online]. Available: http://tensorflow.org/

zerOn, dwiel, junjiegian, and bamos. (2016) Evaluation of deep learning toolkits.
[Online]. Available: https://github.com/zerOn/deepframeworks

DeepLearning4]. (2017) Comparing frameworks: Deeplearning4j, torch, theano,
tensorflow, caffe, paddle, mxnet, keras and cntk. [Online]. Available: https:
//deeplearning4j.org/compare-dl4j-torch7-pylearn#caffe

M.-O. Pahl, G. Carle, and G. Klinker, “Distributed smart space orchestration,” in
Network Operations and Management Symposium 2016 (NOMS 2016) - Dissertation
Digest, May 2016.

M.-O. Pahl, G. Carle, and G. Klinker, “Distributed smart space orchestration,” in
NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium, April
2016, pp. 979-984.

M.-O. Pahl, “Distributed smart space orchestration,” Ph.D. dissertation, Technische
Universitiat Miinchen, Miinchen, jun 2014.

A. Badlani and S. Bhanot, “Smart home system design based on artificial neural
networks,” in Proc. of the Word Congress on Engineering and Computer Science, 2011.


https://wiki.tum.de/display/lfdv/Batch+Normalization
https://wiki.tum.de/display/lfdv/Batch+Normalization
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/how-driveai-is-mastering-autonomous-driving-with-deep-learning
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/how-driveai-is-mastering-autonomous-driving-with-deep-learning
http://dx.doi.org/10.1007/978-3-540-72559-6_18
http://tensorflow.org/
https://github.com/zer0n/deepframeworks
https://deeplearning4j.org/compare-dl4j-torch7-pylearn#caffe
https://deeplearning4j.org/compare-dl4j-torch7-pylearn#caffe

138

[62]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

Bibliography

C. A. Hernandez, R. Romero, and D. Giral, “Optimization of the use of residential
lighting with neural network,” in 2010 International Conference on Computational
Intelligence and Software Engineering, Dec 2010, pp. 1-5.

A. Hussein, M. Adda, M. Atieh, and W. Fahs, “Smart home design for disabled
people based on neural networks,” Procedia Computer Science, vol. 37, pp. 117 -
126, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S$1877050914009855

H. Li, Q. Zhang, and P. Duan, “A novel one-pass neural network approach for
activities recognition in intelligent environments,” in 2008 7th World Congress on
Intelligent Control and Automation, June 2008, pp. 50—-54.

D. Li and S. K. Jayaweera, “Reinforcement learning aided smart-home decision-
making in an interactive smart grid,” in 2014 IEEE Green Energy and Systems Con-
ference (IGESC), Nov 2014, pp. 1-6.

H. Fang, L. He, H. Si, P. Liu, and X. Xie, “Human activity recognition based
on feature selection in smart home using back-propagation algorithm,” {ISA}
Transactions, vol. 53, no. 5, pp. 1629 - 1638, 2014, {ICCA} 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0019057814001281

S. T. M. Bourobou and Y. Yoo, “User activity recognition in smart homes using
pattern clustering applied to temporal ann algorithm,” Sensors, vol. 15, no. 5, pp.
11953-11971, 2015. [Online]. Available: http://www.mdpi.com/1424-8220/15/5/
11953

M. C. Mozer, “The neural network house: An environment hat adapts to its inhab-
itants,” in Proc. AAAI Spring Symp. Intelligent Environments, vol. 58, 1998.

D.J. Cook, M. Youngblood, E. O. Heierman, K. Gopalratnam, S. Rao, A. Litvin, and
F. Khawaja, “Mavhome: an agent-based smart home,” in Proceedings of the First
IEEE International Conference on Pervasive Computing and Communications, 2003.
(PerCom 2003)., March 2003, pp. 521-524.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006. [Online]. Available:
http://dx.doi.org/10.1162/neco.2006.18.7.1527

D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep big simple
neural nets excel on handwritten digit recognition,” CoRR, vol. abs/1003.0358, 2010.

H.-I. Suk and D. Shen, Deep Learning-Based Feature Representation for AD/MCI
Classification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 583-590.

Alzheimer’s Disease Neuroimaging Initiative. ADNI database. [Online]. Available:
http://adni.loni.usc.edu/


http://www.sciencedirect.com/science/article/pii/S1877050914009855
http://www.sciencedirect.com/science/article/pii/S1877050914009855
http://www.sciencedirect.com/science/article/pii/S0019057814001281
http://www.mdpi.com/1424-8220/15/5/11953
http://www.mdpi.com/1424-8220/15/5/11953
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://adni.loni.usc.edu/

Bibliography 139

[74]

[75]

[77]

[79]

[80]

(81]

M. Gonen and E. Alpaydin, “Multiple kernel learning algorithms,” . Mach. Learn.
Res., vol. 12, pp. 2211-2268, jul 2011.

D. Zhang and D. Shen, Multi-Modal Multi-Task Learning for Joint Prediction of Clin-
ical Scores in Alzheimer’s Disease. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 60-67.

X. Glorot, A. Bordes, and Y. Bengio, “Domain adaptation for large-scale sentiment
classification: A deep learning approach,” in Proceedings of the 28th International
Conference on Machine Learning (ICML-11), L. Getoor and T. Scheffer, Eds. New
York, NY, USA: ACM, 2011, pp. 513-520.

R. Fakoor, F. Ladhak, A. Nazi, and M. Huber, “Using deep learning to enhance
cancer diagnosis and classification,” in Proceedings of the thirtieth International
Conference on Machine Learning, Atlanta, Georgia, USA, 2013.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught learning: Transfer
learning from unlabeled data,” in Proceedings of the 24th International Conference
on Machine Learning, ser. ICML ’07. New York, NY, USA: ACM, 2007, pp. 759-766.

F. Kuperjans, “Native Service Interfaces for the Virtual State Layer,” Bachelor’s
Thesis, Technische Universitat Miinchen, 2017.

R. Benenson. (2016) Classification datasets results. [Online]. Available: http:
//rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

J.-L. Reyes-Ortiz, L. Oneto, A. Sama, X. Parra, and D. Anguita, “Transition-aware
human activity recognition using smartphones,” Neurocomputing, vol. 171, pp. 754
- 767, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S50925231215010930


http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://www.sciencedirect.com/science/article/pii/S0925231215010930
http://www.sciencedirect.com/science/article/pii/S0925231215010930




Acronyms

ACHE Adaptive Control of Home Environment

AD  Alzheimer’s Disease

ADL Activities of Daily Living

ADAS-Cog Alzheimer’s Disease Assessment Scale-Cognitive Subscale
AE  Autoencoder

ALZ Active LeZi

ANN Artificial Neural Network

BP  Backpropagation

BPTT Backpropagation Through Time

CASAS Center of Advanced Studies in Adaptive Systems
CD Contrastive Divergence

CMR Context Model Repository

CNN Convolutional Neural Network

CSF Cerebrospinal Fluid

DAE Denoising Autoencoder

DBN Deep Belief Network

DFFNN Deep Feedforward Neural Network

DS20S Distributed Smart Space Orchestration System
ED Episode Discovery

FFNN Feedforward Neural Network

GD  Gradient Descent

GRU Gated Recurrent Unit

141



142

HM-MDP Hidden Mode Markov Decision Process
HC Healthy Normal Controls

KA Knowledge Agent

KL  Kullback-Leibler

LOC Lines of Code

LR Logistic Regression

LSTM Long Short-Term Memory

MCI Mild Cognitive Impairment

MCI-C Mild Cognitive Impairment-Converter
MCI-NC Mild Cognitive Impairment-Non-Converter
MK Multi-Kernel

MLP Multilayer Perceptron

MRI Magnetic Resonance Imaging

MMSE Minimum Mental State Examination
PCA Principal Component Analysis

PET Positron Emission Tomography

RAE Regularized Autoencoder

RBF Radial Basis Function

RBM Restricted Boltzmann Machine

REA Rising Edge Accuracy

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SAE Stacked Autoencoder

SDAE Stacked Denoising Autoencoder

SGD Stochastic Gradient Descent

SHIP Smart Home Inhabitant Prediction
SpAE Sparse Autoencoder

SR Softmax Regression

SSE  Sum of Squared Errors

Acronyms



Acronyms

MSE Mean Squared Error

SVM Support Vector Machine
TMM Task-based Markov Model
VAE Variational Autoencoder

VSL Virtual State Layer

143



	Introduction
	Goal of the thesis
	Outline
	Methodology

	Analysis
	Deep Learning
	Background
	Machine Learning Classifier
	Techniques
	Application Scenarios
	Machine Learning & Deep Learning Frameworks

	Smart Space Orchestration with VSL
	Context Models
	Knowledge Graph
	Knowledge Structuring
	Knowledge Vectors

	Using Machine Learning and Deep Learning in Smart Spaces
	Summary
	Overview over Machine / Deep Learning Approaches in Smart Spaces

	Related Work
	Machine Learning and Deep Learning in Smart Environments
	ACHE - A Neural Network House
	Reinforcement Learning aided Smart-Home Decision-Making in an Interactive Smart Grid
	MavHome: An Agent-based Smart Home
	Smart Home Design for Disabled People based on Neural Networks
	Recognizing Human Activity in Smart Home using Deep Learning Algorithm
	Human Behavior Prediction for Smart Homes using Deep Learning
	Smart Home System Design based on Artificial Neural Networks

	Machine Learning and Deep Learning in Classification Tasks
	Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition
	Deep Learning-Based Feature Representation for AD/MCI Classification
	Domain Adaption for Large-Scale Sentiment Classification: A Deep Learning Approach
	Deep Learning-Based Classification of Hyperspectral Data
	Using Deep Learning to enhance Cancer Diagnosis and Classification

	Summary

	Design
	Reusability & Usability
	Parameters and Hyperparameters used in Neural Networks
	Machine Learning Algorithm as VSL-Service
	Feedforward Neural Network
	Deep Belief Network
	Recurrent Neural Network


	Implementation
	Tools
	Implementation Details
	Structure of the Services
	Read Configuration File
	Prepare Data Sets
	Feedforward Neural Network
	Deep Belief Network
	Recurrent Neural Network

	Example: MNIST Data Set
	Feedforward Neural Network
	Deep Belief Network
	Recurrent Neural Network


	Evaluation
	Quantitative Evaluation Results using different Data Sets
	ADL Data Set
	MIT Smart Home Data Set
	Recognition Data Set
	MNIST Data Set

	Performance Analysis
	Qualitative Evaluation Results
	Summary

	Conclusion
	Future work

	Further Configuration Files
	Compared Training Times and Running Times
	Bibliography

