
Technische Universität München
Department of Informatics

Master’s Thesis in Informatics

iLab Exchange Platform

Julius Polar

Technische Universität München
Department of Informatics

Master’s Thesis in Informatics

iLab Exchange Platform

iLab Exchange Platform

Author Julius Polar
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Dr. Marc-Oliver Pahl, Stefan Liebald
Date September 15th 2017

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, September 15th 2017

Signature

Abstract

Lab exercises are an essential part of computer science education. This Master’s thesis
discusses a lab sharing platform where labs, or practical exercises, can be shared between
lecturers. The iLab Exchange Platform is designed to facilitate the exchange of labs
using a community website. To ensure quality of the labs, feedback is gathered from
students, then analyzed and visualized. Integration possibilities with an existing e-
learning software called the labsystem are researched and described. The platform uses
Git as backend to store course materials. GitLab projects and groups are used with
GitLab user roles to control access to the labs and solutions. The GitLab API is used
to deliver information from the GitLab repository to the portal website. The described
system is implemented, deployed and its usability is evaluated.

Zusammenfassung

Laborübungen sind ein wesentlicher Bestandteil der Informatikausbildung. Diese Master-
Arbeit diskutiert eine Lab-Sharing-Plattform, über die praktische Kurse oder Laborauf-
gaben zwischen Lehrernden geteilt werden können. Die iLab Exchange Plattform ist
derart gestaltet, dass sie den Austausch von Laboraufgaben durch das Verwenden einer
Community-Website erleichtert. Um die Qualität der Laboraufgaben zu gewährleisten,
wird Feedback von den Studenten gesammelt, analysiert und visualisiert. Integrations-
möglichkeiten mit einer bestehenden e-Learning Software, dem Labsystem, werden
erforscht und beschrieben. Die Plattform benutzt Git als Backend zum Verwalten von
Kursmaterialien. GitLab-Projekte und -Gruppen werden mit GitLab-Benutzerrollen ver-
wendet, um den Zugri� auf die Laboraufgaben und Lösungen zu beschränken. Über die
GitLab API werden Informationen aus dem GitLab Repository auf die Portal-Website
übertragen. Das beschriebene System wird implementiert, bereitgestellt und seine Nutz-
barkeit wird evaluiert.

I

Contents

1 Introduction 1
1.1 Goals of the thesis . 2
1.2 Outline . 2
1.3 Methodology . 3

2 Analysis 5
2.1 e-Learning Work�ows . 5

2.1.1 Course Information . 6
2.1.2 Course Material . 6
2.1.3 Content Catalog . 7
2.1.4 Communication . 8
2.1.5 Feedback . 8
2.1.6 Learning Analytics . 11

2.2 iLab . 12
2.3 Exchange Platform . 13
2.4 Existing Frameworks . 15

2.4.1 Moodle . 15
2.4.2 Google Analytics . 16
2.4.3 Piwik . 16
2.4.4 Git . 17

2.5 Research Problems and Requirements 18

3 Related Works 19
3.1 MOOC Providers . 19
3.2 YouTube . 23
3.3 Facebook . 25
3.4 Moodle . 27
3.5 IEEE ComSoc Hands-on Lab Exchange 30
3.6 OER Commons . 31
3.7 Summary . 33

4 Design 37

II Contents

4.1 Requirements . 38
4.1.1 Uploading and Sharing Materials 39
4.1.2 Role Based Access Control . 40
4.1.3 Version Control . 41
4.1.4 Listing Materials . 41
4.1.5 Searching Content . 42
4.1.6 Gathering and Analyzing Feedback 43
4.1.7 Displaying Feedback . 46
4.1.8 Gathering, Analyzing, and Visualizing Usage Data 50

4.2 Labsystem Work�ow and Integration 51
4.3 Git . 53

4.3.1 Git Hosting . 53
4.3.2 Git as Backend . 55

4.4 Frontend Portal . 58
4.5 Database . 63

5 Implementation 65
5.1 Work�ow . 65
5.2 GitLab . 65

5.2.1 Setup and Installation . 66
5.2.2 Structure . 66

5.3 Frontend Portal . 68
5.3.1 Setup and Installation . 69
5.3.2 Backend Communication . 71
5.3.3 Portal Components . 72
5.3.4 Portal Catalog . 72
5.3.5 Lab Description . 73
5.3.6 Lab Feedback . 75

5.4 Database . 79
5.4.1 Setup and Installation . 80
5.4.2 Structure . 80

5.5 Labsystem integration . 81
5.6 Example Scenario . 86

6 Evaluation 89
6.1 Work�ow Comparison . 89
6.2 User Evaluation . 91

7 Conclusion 93
7.1 Future Work . 94

A Source Code 95

Contents III

B Survey Evaluation 97

Bibliography 101

V

List of Figures

3.1 edX’s course contents . 20
3.2 Browsing Computer Science courses in Coursera 21
3.3 edX’s pre-course survey . 22
3.4 Searching for Yale University’s courses in YouTube 24
3.5 Moodle.net search . 28
3.6 IEEE ComSoc Lab Exchange Lab Library 30
3.7 OER Commons search feature . 32

4.1 Diverging stacked bar chart . 47
4.2 Annotated bar chart . 48
4.3 Histogram bar chart . 48
4.4 Horizontal stacked bar chart . 49
4.5 Tag cloud . 49
4.6 Sharing content between Moodle instances with Moodle.net 52
4.7 Sharing labs with exchange platform 53
4.8 Exchange Platform work�ow . 64

5.1 Labs, solutions, and feedback as projects, hosted in GitLab 67
5.2 Lab project in GitLab . 69
5.3 Private Token authentication with GitLab API 71
5.4 Exchange Platform Frontend Lab Catalog 72
5.5 Lab page showing lab description, preview, and Git access 74
5.6 Exporting survey data . 76
5.7 Survey result visualization for question 1, 2, 3, and 6 77
5.8 Detailed chart for question number 1, 2, 3, and 6, and histogram for

question number 4 and 5 . 78
5.9 Survey result visualization for question number 7 79
5.10 Lab page showing survey result and comments 80
5.11 Export script �ow chart . 83
5.12 Update script �ow chart . 85
5.13 Sequence diagram of setting up lab for survey 86

B.1 Evaluation survey result, part 1 . 97

VI List of Figures

B.2 Evaluation survey result, part 2 . 98
B.3 Evaluation survey result, part 3 . 98
B.4 Evaluation survey result, part 4 . 99
B.5 Evaluation survey result, part 5 . 99
B.6 Evaluation survey result, part 6 . 100
B.7 Evaluation survey result, part 7 . 100

VII

List of Tables

3.1 Comparison table of e-learning platforms 35

1

Chapter 1

Introduction

Education has a large and important role for people around the world. People with
higher education have a better chance of receiving better paying jobs, therefore better
possibilities to improve their lives. We live in a knowledge society that processes
information and knowledge in ways that maximize learning [1]. Traditionally, education
system has students and teachers physically interacts in the classroom. Recent advances
in technology has resulted in changes in traditional media.

More and more �elds are adapting technology, including education. This trend has
improved teaching and learning activities in higher learning institutions, especially in
developed country [2]. In recent years, due to the growth of the Internet, has changed
our view of education [3]. e-learning as a concept emerged around 20 years ago, when
institutions started to use technology to deliver learning materials, such as CD based
training programs and distance learning using computer networking. Various learning
technologies have been developed to integrate technology into traditional learning
methods. e-learning mainly takes the form of online courses, with learning management
systems organizing and delivering online courses [4].

A popular trend in e-learning are MOOCs (Massive Online Open Courses). Popular
MOOC platforms, such as Coursera and edX, are o�ering their courses to the general
public for free. Students around the world can join the courses they are interested in
and learn at their own pace. There are plenty of courses available, covering di�erent
topics. Some MOOCs o�ering similar subjects can cover di�erent topics. Choosing the
course that covers the topics they are interested in is a commitment for the student,
while choosing what topic to cover in a course a challenge for the teacher. Courses
o�ered by di�erent platforms can have intersecting topics covered by another platform.

Instead of creating the course content from scratch, some contents can be reused from
another platform. By exchanging course materials already made, a course manager can
create a better course by selecting relevant contents. We see that sharing course content
can help both the student and teacher. With an exchange platform, materials from other

2 Chapter 1. Introduction

courses can be used for another, saving time to create a modules for similar topic. A
course can consist of lectures, quizzes, practical exercises, and materials. In this thesis
we de�ne labs as a set of practical exercises.

The Chair of Network Architectures and Services of Technical University of Munich
has developed an e-learning tool to support courses, the labsystem. This labsystem is
based on iLab concept. The iLab is a didactical concept that delivers course in three
parts: lecture, pre-lab, and lab exercises. The lecture is given every week to introduce
the necessary materials and knowledge for the week’s lab exercise. Then a pre-lab is
given and must be completed to unlock the lab exercise. The pre-lab consists of brief
introduction to the materials and multiple choice questions, to give a feel of what the
lab would look like. The pre-lab and lab exercise is delivered using the labsystem. In
the Technical University of Munich, it is available in two courses, iLab and iLab2. In
iLab2, students create their own lab exercise and uploads it to a pool of lab exercises.
This creates a platform of sharing course materials.

This concept can be extended to other courses, o�ering a platform of course exchange.
The goal of this thesis is to construct a community website that presents current labs
(learning modules) as an exchange platform. An important module to be developed
for this platform is gathering and visualizing lab feedback such as tracked times, or
qualitative feedback. Our implementation goal is to make a lab exchange, but the same
concept applies to courses too. Throughout this thesis, we analyze a course exchange,
and design and implement a lab exchange speci�cally for the labsystem.

1.1 Goals of the thesis

The goal of this thesis is to construct a community website that presents current labs
(learning modules) as an exchange platform. An important module to be developed
for this platform is gathering and visualizing lab feedback such as lab di�culty and
satisfaction, which is used to help instructors to improve their labs.

1.2 Outline

The thesis is structured as follows. In Chapter 2 e-learning and its components are brie�y
described. Then the current labsystem and iLab concept and how it can be expanded
to a course exchange platform are described. We describe the exchange platform, and
elements necessary to construct one. Then available frameworks are discussed to assess
its advantages and disadvantages for the exchange platform.

In Chapter 3 platforms with e-learning and sharing components - MOOC, YouTube,
Facebook, and Moodle are examined. We consider how they o�er solutions for our

1.3. Methodology 3

requirements and review them.

In Chapter 4 we describe each requirement in more detail, discussing how to create
the exchange platform based on what we have learned so far. We describe the current
labsystem work�ow and what features it already o�ers. Possible work�ow from other
platform, most notably Moodle, are discussed. We then describe how Git can be used to
construct the backend to store contents for the exchange platform, and how a frontend
portal can be constructed based on such Git architecture.

In Chapter 5 the implementation of the exchange platform are described, including the
work�ow of the exchange platform, how to setup and implement the GitLab backend
and frontend portal, and how to integrate them with the current labsystem.

In Chapter 6 the exchange platform is evaluated by comparing its features with similar
works. Features related to feedback and lab sharing is compared, and their advantages
or disadvantages discussed.

In Chapter 7 we conclude by summarizing the exchange platform concept and its
implementation. Possible future development for this works is presented.

1.3 Methodology

The thesis is conducted as follows. Since the exchange platform is an e-learning platform,
we discuss e-learning and its components. After we breakdown e-learning components,
we discuss which parts are relevant for the exchange platform. We then discuss the cur-
rent state of labsystem and iLab work�ow. Based on those, we describe the requirements
of the exchange platform.

Similar e-learning platforms are discussed and compared. We compare their features and
how they provide solutions for the exchange platform. Having de�ned the necessary
requirements, we then describe the required components in more detail, and how they
can be constructed.

A working implementation of the described system is developed. The prototype sys-
tem is hosted in a virtual machine during development, and made available for public
access. The prototype environment is isolated from the currently running system, but
integration with currently running system is described and documented.

5

Chapter 2

Analysis

To give context for describing the problem domain, we brie�y discuss e-Learning. The
components of e-learning are listed, and the necessary ones identi�ed and discussed.
Then the current state of the iLab system is described. Next, a course exchange platform
is described. Finally, based on current system and requirements, we de�ned research
questions and propose the requirements of the exchange platform.

2.1 e-Learning Work�ows

The labsystem described in this thesis is an e-learning platform, built to support web-
based learning in courses. In order to get an understanding of what components are
needed for the exchange platform, e-learning work�ow is brie�y discussed. We break
down necessary components for creating an e-learning platform and discuss compo-
nents necessary for the exchange platform.

An e-learning platform has many work�ows [5]. Here only components relevant to the
thesis are discussed. The components listed are the possible building blocks to build the
exchange platform with. Those components are:

• Course information and syllabus (Section 2.1.1)

• Content Catalog (Section 2.1.3)

• Material (Section 2.1.2)

• Communication (Section 2.1.4)

• Feedback (Section 2.1.5)

• Learning analytics (Section 2.1.6)

6 Chapter 2. Analysis

2.1.1 Course Information

Since the exchange platform hosts many courses, it is important to show the information
of the course to the users. The course information is the �rst information shown when
a student or a teacher search or browse through the course list.

The main page or landing page of a course o�ers general information of the course. In
the page, the student can expect to �nd information such as [6]:

• Course syllabus

• Prerequisite courses (if needed)

• Grades or scoring information

• Credits given upon completion

• Course schedule

• Course registration (if needed)

• Payment or cost (if needed)

• Reviews and comments

In the exchange platform, the course information page should inform the student about
what topics are covered in the course, whether the topics interest them, time commit-
ments, and general impression from previous students.

2.1.2 Course Material

Since the platform is meant to share course material, it is relevant to know how the
course materials look like. In this section we discuss how the materials can be presented.
These materials are shared in the platform, so a format is needed to store the materials.

Course materials can be viewed directly from the course website without using non-web
based media, like reading an article in the web. Multiple medias such as images or videos
can be added to augment the materials to improve learning [7].

The course materials are uploaded online for the students. They can be in several forms:

• text: pdf documents, presentation slides

• video: lecture recordings

• audio: lecture recordings (audio only)

• interactive form: embedded questions

2.1. e-Learning Work�ows 7

The materials can be delivered via multimedia to help with the learning experience.
YouTube, for example, hosts plenty of recorded lectures and educational materials, but
only delivers them in video format. Most Massively Open Online Courses (MOOC)
providers delivers their materials in multiple medias (Section 3.1).

Additional materials can also be added, such as extra readings and external links to
references. For topics that refers to another course, here is an opportunity to promote
the external course for further interests.

The embedded medias in the course materials (videos, images) can be stored in the
platform’s content management system (and the exported course links to it), or included
in the exported format, or hosted in another platform like YouTube for videos.

The shared contents need to be saved in a digital format. Moodle, for example, o�ers an
export feature for quizzes in xml format. The xml �le contains the quiz metadata and
content. It can also be stored as rows in a database and exported as an sql �le.

These materials can then be shared into the exchange platform. The exchange plat-
form requires an uploading feature to upload these materials in order to share
them[R01].

2.1.3 Content Catalog

Once stored in a format, the material can then be shared in a public list of resources.
The exchange platform need to store this material, and let the users locate the resource
they want. Now we discuss how to store the shared materials, how to present the list
of materials to the user, and how to help them �nd materials they want.

The shared contents can be stored in multiple ways:

• Content management system. The shared contents are stored in a CMS that also
hosted the exchange platform.

• Database entries. The content can be broken down into database column entries,
and the whole shared item as a row in the database. It can also be stored as a
binary �le in the database.

• Public repository. This method uses a storage provider like Google Drive or
Dropbox to store the exported course materials. A public SVN or Git repository
can be used to provide versioning as well.

These shared contents need to be listed for interested users to browse through
[R04]. For example, Moodle.net [8] provides a list of community uploaded courses and
exercises. Here, a brief explanation of the item is shown, along with the metadata of
the course, such as the creator, subject, or language. In some items, a link is provided to
join the course on the university’s Moodle.

8 Chapter 2. Analysis

To make �nding contents easier, a search or grouping feature are usually o�ered. A
search feature is crucial to help users �nd the content they want [R05]. Moo-
dle.net provides a search text �eld and courses that can be joined or downloaded. MOOCs
like Coursera or EdX group their courses by either universities or subject. Coursera
also provides a set of related course called specializations, and the list can be �ltered as
such.

Other platforms, not necessarily educational, also hosts contents and provides a way to
�nd speci�c items. YouTube for example, provides a search text �eld, a trending page,
and group by category. It also provides recommendations based on watch history. Some
platform provides tags to �nd similar content, such as Imgur (image tags) and Steam
(genre tags).

2.1.4 Communication

A communication platform, student to student and student to lecturer, is essential to
any e-learning platform. Great communication channel can help content creators to
improve their creation. However, developing these is out of the scope of the exchange
platform, since each courses usually o�ers their own communication platforms, making
it redundant. There is also a problem to encourage students to use these in order to
generate discussions. To help improving created content, a feedback system is discussed
in the next section.

2.1.5 Feedback

One of the main focus of the exchange platform is gathering and analyzing feedback.
The exchange platform requires feedback for content sharers to improve their materials.
Feedback needs to be gathered, and then analyzed to improve sharedmaterials
[R07].

Constructing meaningful content requires meaningful feedback, in this context, from
the students. Feedback using online formats can provide more and lengthier open-
ended comments, with more qualitative detail than is likely to be found in traditional
evaluations [9].

Feedbacks can be personally or anonymously gathered, qualitatively or quantitatively.
Results from quantitative feedback can be aggregated and processed to provide a numer-
ical score, which can be used to compare an item against another. Qualitative feedback
is used to gather comments or opinions that cannot be represented in numbers. These
two are often used alongside each other, for example, a star rating with a short review.

Feedback can be gathered with many methods [10]. Here we only discuss the feedback
gathering via the Internet, since the exchange platform is built as a website. The feedback

2.1. e-Learning Work�ows 9

methods considered are:

• Survey or questionnaires

• Email questionnaires or forms

• Customer reviews or comments

• Ratings

• Social media

Below, these methods of gathering feedback and their usage in the exchange platform
are described in more detail.

2.1.5.1 Survey

A survey is brief, voluntary, and can be asked after learning activities. Surveys can
ask for students’ satisfaction with the shared materials. Since it can be done quickly,
survey can be used to quickly gather inputs after �nishing activities. Online survey
have several advantages [11], such as access to unique population, and saving time and
money. However, it also su�ers from sample problems, incomplete or unacceptable
responses, and multiple submissions [12].

Survey can give teacher a general idea of their audience regarding their knowledge of
the topic and general satisfaction of the course. Some metrics from the survey are also
quantitative, average satisfaction for example, and can be used for statistical analysis of
the course.

A survey assessing satisfaction on a course can ask the following questions:

• general satisfaction: are you satis�ed with the course? did you learn something
new? how much time did you spent on this course?

• materials: are given materials su�cient? how are the quality of the materials?

• di�culty: do you think the material is easy/hard?

• general rating: can be a 10 or 5 star rating, like/dislike, review

The materials can then be revised based on the result of the survey. For example, if the
survey comments on a lack of medias, the teacher can include more informative images
or videos. Or if a lot of students English level is basic, and the materials is written in a
more advanced english, an abridged or simpli�ed version can be supplied.

Some results of the survey can be displayed in the exchange platform. For example,
course di�culty survey result can be useful for potential students.

10 Chapter 2. Analysis

2.1.5.2 Email questionnaires

Email questionnaires are a form of survey conducted by sending email containing survey
forms to recipients. Compared to survey mentioned last section, which is conducted in
the platform itself. A study found that a Web survey application achieved a comparable
response rate to a mail questionnaire when both were preceded by an advance mail
noti�cation [13]. Another motivation to use email surveys is that it can be done outside
a time constraint, for example a course survey might be closed after the end of that
course. However, the survey mail might get lost in the recipient’s mailbox or spam �lter.

2.1.5.3 Reviews

Reviews constitute evaluations by customer of the product or service on a website,
and are displayed next to the product description in order to enhance perception and
improve the perceived communication characteristics of the medium [14].

For the exchange platform, reviews are important to potential new students, telling them
experiences of previous students, overall satisfaction, and help them decide whether to
take the course. It is also helpful for the course creator to have a qualitative feedback
on their course. Written reviews can reveal more personal experience relevant to the
potential student. They can point out good or bad aspects they experience, such as
whether the course is time consuming, the instructions are clear and helpful, etc.

The accumulated student rating and review can be displayed in the course page to
provide future student a brief overview of the course, from fellow students. In several
platforms, reviews are rateable to help �lter lazy reviews and promote accurate and
well written reviews, with the best rated and latest of the reviews displayed on top of
others to make it most visible. Encouraging users to rate reviews can have a positive
e�ect on controlling the overall number of resources in the system [15].

2.1.5.4 Ratings

Ratings are a score given to a content; in this case, a course, lab exercise, or its material.
A rating, such as like/dislike (YouTube, Facebook) or �ve star rating (Coursera) serves
as a quantitative feedback that can be averaged and displayed to show the average
consensus or satisfaction from previous students.

The exchange platform can show a numerical score to shared materials to provide a
quick overview to interested users, compared to reading comments or reviews. Ratings
are often used in conjunction with written reviews, with the reviews justifying or
explaining the given score.

2.1. e-Learning Work�ows 11

Di�erent platforms uses di�erent systems for user ratings. Youtube uses a like/dislike
system to their videos. Similarly, Steam uses recommended/not recommended for their
user reviews. A �ve star rating is also commonly used, for example, by Coursera. The
like/dislike method o�ers a much simpler rating, while lacking a moderate opinion
o�ered by �ve star system.

Rating system can also be used to rate reviews, similar to Facebook’s liking a reply to a
post. This allows users to mark or approve reviews that they agree with.

2.1.5.5 Social Media

With the rising popularity of social media, it has become a platform to gather feedback.
Social media platforms provide tools for the exchange platform to ask and gather feed-
back from its users. For example, a Facebook fan page can be made as a hub for its
users to share comments and experiences. Hashtags can be used to �lter feeds or posts
related to their experience.

Using social media to gather feedback has advantages, for example, the users might
already have social media accounts and use them regularly. Some feedback tools listed
before are also already implemented as a part of the social media platform, such as
comments, ratings, and surveys. However, although the infrastructure to support social
media already exists in most universities, instructors have been slow to adopt the tool
as an educational one [16].

2.1.6 Learning Analytics

So far, the feedback gathered is voluntary, based on student’s experience. This feedback
is meant to help curate contents of the exchange platform. Now we want to gather
data from the student’s usage of the labsystem to help with learning, using
learning analytics [R08].

Learning analytics is the measurement, collection, analysis, and reporting of data about
learners and their contexts, for purposes of understanding and optimising learning and
the environments in which it occurs. Learning content can be delivered in modular
packages, providing learners with materials relevant to his or her analyzed pro�le, goals,
and knowledge [17].

An example of learning analytics usage in e-learning is a recommendation system. The
e-learning system gathers data about the learner and creates a pro�le, then suggest
courses or lessons based on the student’s interests or recently taken courses. Another
use of learning analytics for teachers is to see how the students performs on courses.
For example, time to solve questions can be tracked to gauge di�culty of the questions.

12 Chapter 2. Analysis

The gathered data is then visualized to help teachers understand the data. For students
and teachers, it can be useful to have a visual overview of their activities and how they
relate to those of their peers or other actors in the learning experience [18]. Analyzing
and visualizing usage data is important to provide better understanding about
the data [R05].

Gathering feedback via learning analytics is not a focus of this thesis, but its imple-
mentation possibilities are examined further in Section 4.1.8. The labsystem has some
learning analytics function that should be considered. A fellow colleague writes a thesis
regarding improving e-learning through statistical feedback [19]. She noted time needed
on exercises, worst answered questions, and emotion feedback as artifacts to gather.

2.2 iLab

In the previous section, e-learning and its work�ows are described. Before we describe
the exchange platform, we must �rst discuss its foundation, the iLab.

iLab (Internet lab) is a lab course where students work in an controlled environment
and solve networking related exercises. An example lab session would be a �rewall
exercise, where students connect the proper cabling to di�erent computers, con�gure
and test �rewall rules, and answer �rewall related questions. It is o�ered in 2 courses,
iLab and iLab2.

iLab is done in a team of two students. The materials are delivered in a weekly basis,
one lab topic in a given week. A lab is made of two parts, a prelab and a lab. The prelab
provides a brief overview and reading materials for the week’s topic. In the lab session,
students perform tasks and experiments on a specially made laboratory. The students
then answer the given questions. An optional feedback form is presented after the end
of each lab.

iLab2 o�ers the same lab structure, but students can choose lab modules made by
previous iLab2 students. After �nishing with theirs, they make a lab module of their
own, and that lab module is submitted to the pool of available labs. These lab modules
are curated based on student’s feedbacks.

The labsystem used by iLab has components necessary to serve as a basis of an e-learning
platform: module creation features, basic feedback form, course evaluation, and module
reviews.

The concept of sharing premade lab exercises is the idea of the exchange platform,
described in the next section.

2.3. Exchange Platform 13

2.3 Exchange Platform

The exchange platform is a platform where users can share educational contents. Here
we analyze possible aspects of the exchange platform.

The exchange platform is about sharing educational contents. Di�erent courses have
overlapping topic of interests, and share common materials, for example, a formula
sheet used by Mathematics and Physics students. By sharing materials, similar courses
or exercises can be constructed faster by using the shared contents. Students can also
�nd interesting contents shared in the platform.

First of all, what does the exchange platform shares? Educational contents are varied,
and there are bene�ts in sharing larger or smaller contents at a time, depending on the
needs. Here are the possible contents that can be shared in the platform:

• Course media. For example, a document �le, an image, or a binary �le. Since this
is the most basic building block of a content, this is the smallest unit that can be
shared. Sometimes a �le need to be shared without sharing the whole course or
exercise, for example, an annotated pdf, a documentation �le, or a presentation
�le.

• Lectures. Can be composed of multiple media like text, images, or videos.

• Exercises or lab modules. This is based on the concept from course iLab2 men-
tioned earlier. Lab exercises can be shared to other courses that shares a similar
topic.

• Quizzes. Similar to previous point. By sharing quizzes, it provides quali�ed set of
questions to evaluations of the same topic.

• Courses. Share the entire course, including its materials, lectures, quizzes, and
exercises.

• Tools. Share tools used by a course or lab, for example a script or executable �le.

The format of these shared contents also need to be de�ned. The labsystem provides a
lab creation tool to let students create their lab module, where the lab exercise is de�ned
by the labsystem. The labsystem then shows the contents of the lab exercise, along
with instructions for the students to follow. The exchange platform needs to de�ne the
format and procedures of creating a course or lab exercise. For example, the shared lab
exercise can use the iLab’s labsystem similar to iLab2. Another way is to submit the
instructions and materials without using the labsystem.

Since there are materials being shared, the next point is, who shares the contents? As
a part of the syllabus, students of iLab2 create their own lab modules and contribute
them to the available lab modules for the next set of students. However in the exchange
platform, who can share the contents must be de�ned.

14 Chapter 2. Analysis

There are multiple possibilities to do this. ARole Based Access-Control (RBAC) can
be used to restrict access to the sharing feature and access to the shared mate-
rials[R02]. The attending students can share materials like iLab2 students. Material
sharing can also be restricted to teachers only. This ensures materials are created by
quali�ed personnel. Further roles can also be created, where a role can only create
material, but not share it to the platform, and another role to review the material, and
then sharing it. This allows a clearer reviewing process before the material is shared
to the platform. Access to solutions must also be considered. Some online exercises
in MOOCs also o�ers access for the solutions for its participants, but restricted access
should be handled as well.

Another goal of this thesis is feedback. Feedback is gathered and used to curate and
review materials so they are up to standards and ensure their quality. For example, a
lab module needs to make sure that the instructions actually work. Possible methods of
gathering feedback are discussed in Section 2.1.5. These feedback can be displayed
with the materials to show opinion regarding that material [R06].

Another point to consider in gathering feedback is whose feedback is to be gathered.
For example, everybody that uses the platform can give comments on every shared
materials, regardless of whether they have experience that course or lab module. This
can be useful in the early phases of the exchange platform, where every user is new,
and the former students of the course (before it is shared in the platform) can give their
feedback. However, this can also be misused to give irrelevant reviews of the contents.
The platform can also allows only students who is taking or complete the course to
give their reviews. Another way review material is to only let teachers or instructors to
review the content.

After being given feedback, the materials can be revised. The changes made to these
materials need to be tracked via a versioning system [R03]. A manual log can be
created for each changes, but it can be cumbersome to manage. A versioning system
can be used instead. An advantage to keeping track of the version is older version of
the material can be accessed as necessary. Versioning tools also allows forking, where
an item can be forked or duplicated and modi�ed separately like a shared template
to quickly branch out a material. The content creator can also learn from looking
at the change history to identify mistakes. Versioning provides a powerful way to
track and compare versions, retrace errors and explore new approaches in a structured
manner [20].

The exchange platform should also consider which shared contents to be versioned.
Courses, lab exercises, lectures can be versioned to keep track of their changes, and
can be forked to start another courses or lab exercises. The media contents can also be
versioned, but it is not necessary, since the feedback is gathered from courses and lab
exercises, not their composing medias.

2.4. Existing Frameworks 15

So far we have discussed the possible building blocks for the exchange platform and
possible aspects to build it. The exchange platform is about sharing educational material,
and curate those materials with gathered feedback. These two points, sharing contents
and curating contents are important goals of this thesis.

2.4 Existing Frameworks

Now that we have a description of the exchange platform, we look at other frameworks
and look for possible building blocks. Some of them implements some requirements of
the exchange platform.

Here are a list of similar frameworks, o�ering solutions to the exchange platform. Not
all of the features are necessary for the exchange platform. These platforms are chosen
due to their partial solutions to exchange platform’s requirement.

2.4.1 Moodle

Moodle, Modular Object-Oriented Dynamic Learning Environment, is a course manage-
ment system for online learning. Moodle has become a term of its own synonymous
with a software package designed to help educators create quality online instruction [21].
Moodle provides framework for some necessary feature for the exchange platform.

Moodle o�ers a variety of content creation tool. The lesson module allows creation of
lessons embedded with multimedia, attached with assessments. Moodle keeps track of
student activity to inform the teacher when the students complete their assignments or
quizzes. The teacher can also set timeframe and deadline for each content and restrict
access afterwards. In whole, Moodle provides an excellent array of tool for learning
management.

Moodle saves created question from quizzes and lessons into question bank. The ques-
tions in the bank can be reused for another quizzes and lessons. The quizzes and
questions can be exported to a �le, which then can be imported. However, the question
database is only available for the teachers. Whole courses can also be exported using the
backup feature. The advantage of this system is that quizzes, questions, and courses are
exportable and importable. The disadvantage is that students cannot freely browse the
question bank, and they are not rateable. The backup feature also saves many aspects of
the course, that are not exchanged in the exchange platform, such as enrolled students,
forum posts, course progress, and calendar events.

Some of this course backups can be found in Moodle.net, a place where Moodle users
share their courses. Various contents are available ranging from database template,
books, and glossary entries. The site must be registered in moodle.org for the course in

16 Chapter 2. Analysis

it to be publishable to moodle.net. The course should also satisfy moodle.net’s course
approval criteria [22]:

• The course must contain at least one useful, interactive activity

• The course must not contain any illegal, insecure, or copyrighted content

• If the course is for download, the course backup �le should be be less than 250MB

• Visitors must be able to actually enrol in the course, with no enrolment key

The advantage of this system is that there is a clear guideline for content submission.
The course needs to be approved before appearing in the content list in moodle.net. The
disadvantage is there is no user rating without installing an external plugin.

In the Moodle ecosystem, each institution or university can host their own Moodle
server, then export their courses and share it in Moodle.net to the public. These shared
courses can then be imported and run on other Moodle installation. A more detailed
discussion on Moodle can be found in Chapter 3

2.4.2 Google Analytics

As discussed in section 2.1.6, usage statistics are useful for analyzing course performance.
To identify what metrics to gather and analyze, two web analytics provider: Google
Analytics and Piwik are examined. Here the metrics are listed and discussed, to �nd
which are useful for the exchange platform.

Google Analytics is a web analytics service o�ered by Google that tracks and reports
website tra�c. According to Web Analytics Association, “Web Analytics is the measure-
ment, collection, analysis and reporting of internet data for the purposes of understand-
ing and optimizing Web usage.” Web Analytics Association also de�nes metrics for web
analytics de�nitions:

It is important to note that Google Analytics is a tool for web analytics, meant to improve
the usage of websites [23]. However, some of its collected metrics are still relevant for
the exchange platform, noted below.

2.4.3 Piwik

Unlike Google Analytics, Piwik is an open-source web analytics platform. Due to its
open-source nature, the user has complete control of its code, the server it runs on, and
the privacy settings of its tracking [24]. It tracks keywords, top page URLs, page titles,
user countries, internet provider, operating system, browser, screen resolution, time on
site, pages per visit, returning visit, and many more.

2.4. Existing Frameworks 17

Among Google Analytics and Piwik’s metrics, here are the ones that can be used by the
exchange platform:

• Average visit duration: to track average time spent on each pages on lab modules.
It can then be summed up to provide an estimate of time spent on a course.

• Pageviews: along with average visit duration, it can be used to estimate average
time spent on each pages on lab modules.

• Visits over time: to estimate how many sessions are needed to �nish a lab module.

Both Google Analytics and Piwik also present some of their analysis as charts or graphs,
in order to help visualize the analyzed data. For example, a line or bar chart that
visualizes the growth of visitors of the website, or a pie chart showing the ratio of
mobile devices. In the exchange platform, these data can be visualized as charts or
graphs as needed.

2.4.4 Git

Git is a version control system (VCS) to track changes in computer �les and coordinate
work for multiple people on those �les. It is primarily used to manage source code
in software development, but can also be used to keep track of changes to any set of
�les. Every Git repository on every computer is a full-�edged repository with complete
history, full version tracking, and independent of network access or a central server [25].
With disciplined use of Git, individual scientists and labs can ensure that the entire
timeline of events that occur over the development of a research project are securely
logged in a system that provides security against data loss and encourages risk-free
exploration of new ideas and approaches [20]. By creating branches, small incremental
changes can be developed independent of the primary "master" branch, encouraging
experimentation [26].

Websites such as GitHub and GitLab hosted open-source project controlled by Git,
enabling people from around the world to contribute to the project. GitHub is the single
largest host for Git repositories, and is the central point of collaboration for millions of
developers and projects. A large percentage of all Git repositories are hosted on GitHub,
and many open-source projects use it for Git hosting, issue tracking, code review, and
other things [25]. GitLab is a web-based Git repository manager with wiki and issue
tracking features, using an open source license, developed by GitLab Inc [27]. It is
o�ered in Community Edition (CE) and Enterprise Edition (EE).

In the exchange platform, Git can be used to keep track of versions of lab modules. Each
courses or labs can be arranged in either separate projects or branches or directories.
Changes made to the lab contents can be viewed via Git commit history. Contents can
be reverted to previous versions via rollback. Git repositories like GitHub and GitLab

18 Chapter 2. Analysis

also comes with a user access control to manage user privileges, which can be used
to keep unauthorized sta�s to make changes to the repository. RESTful APIs are also
o�ered by GitHub [28] and GitLab [29] to access their functions without using their
web interfaces. This allows a creation of a customizable application or frontend that
access these Git repositories.

2.5 Research Problems and Requirements

In the previous sections, we described the exchange platform and its components, and
how similar features are implemented in other platforms.

Given the description of the exchange platform, the main research question of this thesis
is How do we create an exchange platform to share and distribute course contents? So far
components necessary to build such platform are presented. Given the description of
those components, more questions can be raised: How do we ensure quality of the course
contents? How do we collect input and feedback of the course from students? How do we
help users �nd related course materials?

In order to construct such exchange platform, it must have several qualities. These re-
quirements are grouped based their purpose: building the exchange platform, presenting
contents, and analysis.

The exchange platform should have the following requirements:

R01 Upload materials for sharing (see Section 2.1.2)

R02 Role based access control for sharing materials (see Section 2.3)

R03 Materials versioning (see Section 2.3)

In order to e�ectively present its content, the requirements are:

R04 List available materials (see Section 2.1.3)

R05 Search shared materials (see Section 2.1.3)

R06 Display processed feedback (see Section 2.3)

And �nally, to improve its contents, the analysis related requirements are:

R07 Gather and analyze feedback about the materials (see Section 2.1.5)

R08 Analyze and visualize usage data of the labs (see Section 2.1.6)

In the next chapter, we discuss similar platforms, and examine how they implement
solutions for these problems, and how they can be used as blueprints to construct the
exchange platform.

19

Chapter 3

Related Works

In this chapter, several related platforms is discussed. These platforms o�ers some
solutions to the requirements of the exchange platform. Not all of these listed platforms
are educational or e-learning platforms. A brief overview of these platforms is discussed,
then their implementations of the requirements of the exchange platform is discussed
to look for possible blueprints to build the exchange platform.

3.1 MOOC Providers

MOOC, Massively Open Online Course, is an online course aimed at unlimited participa-
tion and open access via the web. Today, MOOC is the main form of online courses [4].
MOOC also has a problem with high student dropout, with the often cited 90% rate [30].
A study review on massive e-learning design, delivery, and assessment [31] suggest
agents to improve and personalize management, delivery, and assessment of MOOC.
Such agents helps deliver content with content customization and tutor assistance,
assessment based on educational level, and learning analytics.

There are many MOOC providers available in the market o�ering di�erent courses, with
slightly di�erent methods. A more general comparison of Coursera, edX, and Udacity
can be found in this survey [32]. Here only implementations of exchange platform
features are discussed.

Di�erent MOOC providers present their course material di�erently. Di�erent courses
also present their content di�erently, for example, some course split a topic into multiple
pages containing a presentation video each, while other displays multiple videos in one
page. The current iLab system presents materials split into subtopics, with medias as
necessary.

Coursera delivers its content mostly via lecture videos. These videos are typically 5-10
minutes long, divided by subtopics. Clicking on these videos take students to a separate

20 Chapter 3. Related Works

page showing only the video. Coursera also provides a pop quiz occasionally during
each videos.

Figure 3.1: edX’s course contents

EdX also divides its topic by subtopics. Unlike Coursera, edX shows their course material
directly from the course site. EdX also utilizes questions directly from the course page.
After answering the questions, answers from other students are shown to compare each
other’s answer and promote discussion.

The contents delivered by MOOC platforms are not exchangeable, a new course with a
similar topic must create their content from scratch.

Coursera, edX, Stanford and other MOOCs combined o�ers plenty of available courses.
The courses are arranged by topics, with other available sorting options. There is
also a recommendation system that suggests similar course based on taken course and
specialization. The recommendation system is great to look for similar course, or to
pursue further topics after �nishing a course.

MOOC platforms uses several method to gain course feedback, mainly via course survey
and review.

3.1. MOOC Providers 21

Figure 3.2: Browsing Computer Science courses in Coursera

MOOC platforms o�ers optional survey before registering to the course and after �n-
ishing the course, but does not have per-module survey or feedback. The surveys are
brief, and can be completed within �ve minutes. The user reviews are not rateable by
fellow students. The list of reviews can also be �ltered by everybody, or just course
completers.

Surveys at the beginning of the course generally ask for student’s motivation, back-
ground knowledge, and prior experience. The survey can also ask for the student’s
predicted course engagement, such as predicted time spent on course, whether they
will do the assignments, or whether they intend to complete the course.

Surveys at the end of the course generally asks for student satisfaction, lessons learned,
and time spent. The survey can also ask a more speci�c question about the course
material, such as which part is the most di�cult, which one interests the student the
most, and whether the materials are interesting.

MOOCs also gathers information about its user, some anonymous while others are
personal [33] [34]. MOOCs use these information to analyze its user base, behaviour
on the system, improving its services, and advertisements. Some information collected
are personal, such as username, email address, and birthdate. These are mostly used to
communicate with the user, for example, email noti�cations, assignment deadlines, pro-
motions, and updates. They are also used to keep track of student progress throughout
the course.

In summary, here are the requirements of the exchange platform (Section 2.5) and how

22 Chapter 3. Related Works

Figure 3.3: edX’s pre-course survey

these MOOC platforms implement them.

R01 The materials in MOOC platforms are not shared, and a student cannot upload
their materials.

R02 Roles are divided to teachers and students.

R03 We could not �nd any information on this, and assumed there is no material
versioning.

R04 MOOC platforms shows their available courses via a course catalog, and group
them by universities, �elds or specializations.

R05 A search feature is available to search through the courses.

R06 Recent reviews are shown in the course homepage, along with a �ve-star rating.

3.2. YouTube 23

R07 Feedback is gathered via survey (pre and post course), written review after �n-
ishing a course and a �ve-star rating.

R08 Data is gathered anonymously and concerning the use of the system, for the
purpose of improving its services. The analyzed usage data is not shown to the
users.

3.2 YouTube

YouTube, in e-learning, is used mostly to host videos, which is then embedded into
the material page. Some university o�ers full recording of its courses, such as Yale
University [35]. However, �nding these videos can be di�cult. YouTube’s channel
browsing does not have a dedicated education channel. YouTube’s search can be used
to �nd educational videos, but results may vary depends on the topic. The search also
prioritizes popular videos, so videos by not very popular uploader or topic might not
get any highlight.

YouTube o�ers feedback in user comments and like/dislike system. Comments can be
posted after logging in to YouTube using a Google account. YouTube shows the video’s
total view and its total like and dislike as a measure of the video’s popularity. The
like/dislike and comments on the video can be disabled by the owner of the video.

The user comments can be liked or disliked to show approval of the comment. The
comments can also be further commented, creating a top level comment on the video,
and a second level comment of those top level comments. Only top level comments are
comment-able. Both top level and second level comments are rateable by the like or
dislike button. By default, YouTube sorts top level comment with the most second level
comments, regardless of like/dislike ratio. This is meant to show the most discussed
comments or opinion on the video.

According to Google’s Privacy Policy [36], Google collects the information the user
give when using Google’s services, and information the user gave. Google uses the
information "to provide, maintain, protect and improve them, to develop new ones, and
to protect Google and our users". Google also provides a dashboard where its users can
adjust privacy related settings.

In summary, here are the requirements of the exchange platform (Section 2.5) and how
YouTube implement them.

R01 Users can upload videos and share them.

R02 Each registered user can post their videos without restriction. A user can assign a
channel moderator to moderate comments on the channel’s videos. The moderator
can only �ag comments for removal, but not uploading new videos.

24 Chapter 3. Related Works

Figure 3.4: Searching for Yale University’s courses in YouTube

R03 The videos are not versioned, and if a newer version of a video is uploaded, it
replaces the old one. These modi�cations are also not indicated in the video page.

R04 The home page shows most recent and trending videos. Recommendations and
popular genres are also shown.

R05 A search feature is available to search videos. The results are sorted based on
relevance and popularity, while other sorting categories are also available.

R06 A like/dislike ratio is shown along with total number of views for each video. The
view number is shown in the search result and homepage, but not the like/dislike
ratio.

3.3. Facebook 25

R07 Users can post their comments on each video. A like/dislike rating is also available
to rate the video. Each comments can be further commented and given a like
rating.

R08 Google collects information to improve its services. These can be adjusted in
Google’s privacy setting in their dashboard.

3.3 Facebook

Facebook is an example of a social networking site, with great e-learning potential
despite not designed to do so. When Mark Zuckerberg launched Facebook in 2004, it
started as a small social networking circle within Harvard. Now it is a multi million
user social networking site with users all over the globe.

A study measures Facebook’s potential as e-learning platform [37]. It noted Facebook’s
strength for collaborative work as follows:

• Simplicity and speed of creating and administering a work group

• Simplicity of use of native tools

• A high degree of external connectivity

• Internal expansion capacity

• Microblogging and lifestreaming features

• Mobile platform support

The study also points out Facebook’s shortcomings for e-learning:

• Presence of ‘noise’ and distracting elements

• The drop-down comments system on walls tends to make it hard to see informa-
tion

• Lacks a true system for tagging, �ltering, searching and organising information

• Group discussion boards are too basic

• Lacks functions that are native to environments speci�cally oriented towards
work groups

• No native synchronous bidirectional audio and video

Facebook’s social networking tools can be used as e-learning tools. The fan page can be
used as a course page, keeping all course related materials in the fan page. A multimedia
post can be used to present course materials.

26 Chapter 3. Related Works

Facebook o�ers plenty of native socializing tools useful for gathering feedback. Com-
ments can be posted to give qualitative feedback of the material. Those comments can
be further liked or disliked to show general agreement with the comments. Posts can be
liked or disliked to indicate its quality. Facebook also o�ers a poll tool to quickly gather
majority votes. While lacking on native survey tool, many third-party developers o�ers
Facebook integration to quickly use their service with Facebook credentials.

Facebook also gathers data from its user, and these information is not made available to
the user. According to Facebook’s privacy policy [38], Facebook collects:

• Content and other information provided when using Facebook, including: sign
up for an account, create or share and message or communicate with others.

• Information about the people and group connected to the user and how the user
interacted with them

• Information about purchases and transaction made when using Facebook’s ser-
vices

• Device information from and about the computers, phones or other devices where
the user install or access Facebook’s services

• Information when the user visit or use third-party websites or apps that uses
Facebook’s services

In summary, here are the requirements of the exchange platform (Section 2.5) and how
Facebook implement them.

R01 Medias can be uploaded and shared via posts.

R02 A fan page can be created where access is restricted to their roles [39]. Each �ve
roles, Admin, Editor, Moderator, Advertiser, and Analyst has di�erent access to
the page. For example, a moderator can send a message as the Page, while an
analyst cannot.

R03 There is no content versioning.

R04 There is no speci�c list for shared contents. Older posts can be looked up by
scrolling down the Facebook timeline.

R05 There is no feature for searching for a speci�c post or content in a fan or personal
page.

R06 The number of likes are shown in each posts indicating how many person liked
that post.

R07 Feedback can be gathered using Facebook’s comment and like feature. Comments
on post can be commented and liked too.

3.4. Moodle 27

R08 Usage data when using Facebook is gathered, such as user interaction and device
information. Analyzed data is not made available to the public.

3.4 Moodle

Moodle, Modular Object-Oriented Dynamic Learning Environment, is a course manage-
ment system for online learning. Moodle has become a term of its own synonymous
with a software package designed to help educators create quality online instruction.
Moodle is based on socio-constructivist pedagogy design, meaning, its goal is to pro-
vide a set of tools that support an inquiry- and discovery-based approach to online
learning [21].

Moodle is an open-source project, so its source code can be modi�ed according to
di�erent needs. A Moodle server can host many courses, and can invite students from
di�erent universities to join its courses.

Moodle delivers its course material primarily by the lesson tool. The lesson activity
module enables a teacher to deliver content and/or practice activities in interesting and
�exible ways. A teacher can use the lesson to create a linear set of content pages or
instructional activities that o�er a variety of paths or options for the learner. Teachers
can include a variety of questions, such as multiple choice, matching and short answer.
Students can be directed to di�erent pages depending on the lesson develops. A lesson
may also be graded, with the grade recorded in the gradebook.

Moodle also has a feature that saves list of used questions in a quiz or lesson. The
questions are saved in a question database so they can be reused. Questions, quizzes,
and even whole courses can be exported. By using the backup feature, course related
information can be saved, including comments, forum posts, lesson progress, and grades.

Moodle’s question bank are not available for students. Moodle also has an extra steps
to share questions to another course. Here is an example from Moodle’s documentation
about sharing questions to another course [40].

A Moodle site has three courses, Math, Physics, and Biology, all under Miscellaneous
category. Fred, a teacher of Maths and Biology, creates some questions in his maths
course and adds them to the quiz. This works since by default, questions are created in
the question bank in a category of that course. Fred is a teacher in the course so he can
create and add questions to the quiz. Now, Fred wants to reuse his math questions to his
biology course. However, the biology quiz is not in the maths course, so the questions are
not available. The Moodle admin then moves the questions into Miscellaneous category.
Now Fred can’t see his questions since he has no permission outside his courses. The
Moodle admin creates a new role with permission to access the question bank, then
assign it to Fred. Now Fred can see his questions and use them for his courses.

28 Chapter 3. Related Works

The disadvantage of this approach is the question sharing requires some setup before-
hand, and each questions needs to be put to the right category. This could lead to some
confusion. However, an extra layer of user can be an advantage if one is looking for a
more �ne-grained user access control. For example, a teacher with question sharing
access and another without.

The Moodle community also has a website that allows Moodle users to share their
courses and course contents, Moodle.net. Moodle.net serves as a place to �nd free to
join Moodle courses from universities around the world.

Figure 3.5: Moodle.net search

Moodle provides many tools to gather student feedback. The choice activity module
lets teachers ask a single question and o�er a selection of possible responses. It can be
used to facilitate student decision-making, for example allowing students to vote on
a direction for the course. The feedback activity module lets teachers create a custom
survey to collect feedback from students using a variety of question types including
multiple choice, yes/no or text input. It can be used for course evaluations, helping
improve the content for later participants.

Moodle comes with standard roles that can be assigned to its users. These roles have
di�erent access and permissions to the system. Those roles are [41]:

• Site administrator: can "do everything" on the site

• Manager: a lesser administrator role

• Course creator: can create courses

3.4. Moodle 29

• Teacher: can manage and add content to courses

• Non-editing teacher: can grade in courses but not edit them

• Student: can access and participate in courses

• Guest: can view courses but not participate

• Authenticated user: the role all logged in users has

• Authenticated user on the front page role: a logged in user role for the front page
only

Moodle is also extendable. Many Moodle plugins are available in Moodle’s plugin
directory that expands on Moodle functionality, for example, rating a course with a �ve
star rating, or creating custom surveys, or a more detailed student statistics.

In summary, here are the requirements of the exchange platform (Section 2.5) and how
Moodle implement them.

R01 Courses, exercises or quizzes are exported into an xml or archived format, which
can then be uploaded to another course.

R02 Moodle allows speci�c roles to be able to change other speci�c role capabilities
based on the context. For example, a teacher in a course may want all students
(users with a student role) to be able to edit all forums in that course [42]. Custom
roles can be added via admin interface. These roles can have di�erent permissions
and di�erent access of the system.

R03 Courses and its contents are not versioned in Moodle.

R04 Moodle dashboard shows lists of available courses. Each course shows their
materials grouped by either topic or week.

R05 Moodle provides a global search [43] to search everywhere on the Moodle site
that you have access to. A student can search their courses for particular lecture
notes, for example, or a teacher could search for subject-related activities.

R06 The result of surveys are shown only to the teachers and not to the student.

R07 Feedback can be gathered via choice and feedback activity. Further feedback
methods can be implemented by installing plugins.

R08 Moodle analytics generates report for website use such as user logins, preferred
language and comments. Engagement Analytics block provides information about
student progress against a range of indicators and student activities which has
been identi�ed by current research to have an impact on student success in an
online course [44]. Using Overview Statistics [45] plugin a report can be generated
that produces various site and course report charts.

30 Chapter 3. Related Works

3.5 IEEE ComSoc Hands-on Lab Exchange

The ComSoc Hands-On Lab Exchange is designed to provide a mechanism for sharing
course materials, projects, and best practices relevant to lab-based communications
education [46]. The assignments shared in the ComSoc are published in two stages.
First, they are available to the user base so that they can be peer reviewed. Second, once
they are peer reviewed, they are marked as peer reviewed.

The ComSoc divides materials into two categories, lab experiments and lab courses.
Lab experiments are similar to iLab lab modules, and lab courses are a collection of lab
experiments. It also has a minimum submission (lab experiment), and must prove that
the experiment has been used in a course, and a description of how the materials are
improved based on the experience.

The available courses are accessible in their website [47]. It provides a search �lter to
help search the available courses. One course is also displayed on their main landing
page as featured course to promote the course. When viewing the course, a description of
the course is given. Available materials are divided into open access �les that everybody
can access, and instructor only �les.

Figure 3.6: IEEE ComSoc Lab Exchange Lab Library

Feedback or review in ComSoc is twofold. The �rst is a checklist review to ensure that
all of the requested materials are supplied. The second is an anonymous peer review.
After the materials have ful�lled the two process, it is approved for publication and
marked with an "IEEE ComSoc peer-reviewed" badge. An advantage to this process is
that a submission is always checked for correctness, and has all materials needed. The

3.6. OER Commons 31

explicit peer review badge also shows that the material is trustworthy and of a good
quality. The author of the material also receives feedback from the reviewer.

In summary, here are the requirements of the exchange platform (Section 2.5) and how
IEEE ComSoc implement them.

R01 Course or labs are submitted via a web form in ComSoc’s website. The materials
for the labs are then uploaded.

R02 The roles are divided into instructors and students. Students cannot access in-
structor only �les and cannot upload labs.

R03 Materials are not versioned.

R04 The list of available labs can be accessed in ComSoc’s website [47].

R05 A speci�c lab exercise can be searched from a search feature.

R06 After being peer-reviewed, a peer-reviewed badge is displayed on the course
information.

R07 Feedback for lab exercises are gained from peer review.

R08 We could not �nd any information relating to learning analytics in their website,
so we assumed they do not implement this feature.

3.6 OER Commons

Open Educational Resources (OER) are teaching and learning materials that may be
freely used and reused at no cost, and without needing to ask permission. Unlike copy-
righted resources, OER has been authored or created by an individual or organization
that chooses to retain few ownership rights. Resources can be downloaded and shared,
or modi�ed before reposting them as remixed work [48].

OER Commons o�ers many grouping categories to group its contents, such as subject
areas, grade levels, and material types. Unlike IEEE ComSoc, OER Commons allows
uploading the media �les of the labs or courses without sharing the said labs or courses.
The advantage of this approach is that materials can be shared in smaller units.

The materials can be accessed in OER Commons website [49]. The website provides
keyword search, tags, group �lters, and collections to help users �nd the materials they
need.

OER Commons gathers feedback via comments and �ve star rating. An account is
needed to post these feedbacks. Averaged rating of the material can be seen in the
material list and their content page. The material speci�c page also shows comments
on that material.

32 Chapter 3. Related Works

Figure 3.7: OER Commons search feature

In summary, here are the requirements of the exchange platform (2.5) and how OER
Commons implement them.

R01 Materials can be uploaded after logging in with an account. Di�erent material
types can be uploaded, such as labs, assessments, quizzes, lecture notes, or text-
books.

R02 Materials can be freely downloaded without a credential. An account is required
to upload materials.

R03 Materials are not versioned.

R04 Available materials can be accessed from their website [49]. Grouping by multiple
categories are available.

R05 Keyword search, tags, media types, and subject �lters are available.

R06 Averaged star rating shown in entries in material list. Comments shown in
material page.

3.7. Summary 33

R07 Feedback is gathered via comments and �ve star rating. An account is required
to either comment or give a rating.

R08 Not mentioned in the website.

3.7 Summary

So far, multiple platforms are presented to discuss how they can provide solutions
for the exchange platform requirements (Section 2.5). Here is a brief summary of the
comparison and some interesting remarks about their implementation.

In terms of course materials, MOOCs provides the most structured materials by arrang-
ing them into courses, then topics, then materials for the topics. MOOCs also present
their materials by combining them in one page, unlike YouTube that can only show
videos. MOOCs also give a more guided approach to delivering the content, compared
to ComSoc that only provides instructions and materials.

In terms of course catalog: these platforms each has a di�erent implementation. Cours-
era o�ers a specialization (a group of related courses) to quickly �nd similar topic.
MOOCs also o�er group by academic �elds. Some do not provide grouping, like Moo-
dle.net that only show list of available materials. In all of them however, a search
function is always provided. In social media like Facebook, it is harder to search for
courses or any materials, since it is not originally meant as an e-learning platform.

Feedback is gathered using di�erent means across these platforms. Quantitative feed-
backs are gathered via ratings, while qualitative feedbacks are gathered via reviews,
comments, or survey questions. Social media provide the necessary tools to gather
these feedback, but not to process and aggregate them for quantitative analysis. In these
platforms, feedback is gathered for the course (for e-learning platforms) and its mate-
rials. MOOCs always give a pre-course survey to gather some info of its participants,
and another after �nishing the course to gather feedback for the course experience.
For a more speci�c feedback, for example for a lab exercise, ComSoc uses peer review,
while other platform only gather feedback for entire courses. ComSoc is also the only
platform mentioned here that does not use user review, but rather a peer review.

So how does the exchange platform compare with these platforms? Creating and
uploading courses, lab exercises and questions, are the main features of this platform.
Compared to MOOCs for example, this creates a community driven platform, where
course materials are available for use.

Another de�ning feature of the exchange platform is versioning. By using versioning,
di�erent versions of materials can be tracked and o�ered. Lab exercises or questions
can be forked to quickly create a new one using the original as template.

34 Chapter 3. Related Works

A feature lacking in the exchange platform is communication platform. Other platforms
such as YouTube provides a better social media integration and communication with
fellow students.

As a brief summary, here is a comparison table of di�erent platforms with features
relevant to this thesis. In all the listed platforms, no versioning is available.

3.7.
Sum

m
ary

35

Platform Uploading
materials

Material list Material
search

Feedback
gathering

Usage
data
gath-
ering

RBAC Displaying
feedback

MOOC text, images,
videos

course cata-
log

course
search

survey,
review,
rating

site
usage

teachers and
students

latest review
and rating

Youtube videos catalog and
recommen-
dations

keyword
search,
recommen-
dations

comments
and like /
dislike

site
usage

comment
moderators

like / dislike
ratio

Facebook posts, events,
comments,
fan page

fan page not available comments,
like / dislike,
survey

site
usage

Page roles
with dif-
ferent
permissions

like count,
comments

Moodle xml or zip course and
materials

global search survey, com-
ments

site
usage
and
activ-
ity

custom
roles with
di�erent
permissions

not shown

IEEE Com-
Soc

lab exercises list of labs lab search peer-review not
men-
tioned

instructors
and students

peer-
reviewed
badge

OER Com-
mons

multiple me-
dias

multiple me-
dias

keyword
search,
groupings,
tags

comments,
ratings

not
men-
tioned

credentials
required

comments,
ratings

Table 3.1: Comparison table of e-learning platforms

37

Chapter 4

Design

Based on what we discussed so far in Chapter 2 and 3, possible components to construct
an exchange platform are de�ned. Here the exchange platform is described in more
detail.

As mentioned in the previous section, the exchange platform is based on the idea of
sharing lab exercises. In the exchange platform, this idea is expanded to include course
materials and quizzes.

The idea of the exchange platform platform, the iLab, only includes iLab courses (iLab
and iLab 2). The exchange platform also includes other courses, not only iLab courses.
These courses can then build upon uploaded materials from other courses in the ex-
change platform.

This concept can also be expanded to multiple universities or institutions. Each uni-
versities hosts their courses in the exchange platform, and share their course contents.
By using a versioning system, a master version is kept, and a branch made for each
universities. This way, each universities can have di�erent version from the master
template, and can modify it based on their requirements.

In order to provide a course sharing platform, the exchange platform needs a course
creating tool to let the users create their courses, labs, and materials. Then these created
materials needs to be uploaded into a common pool. Furthermore, these materials needs
to be stored in a digital format. A format needs to be speci�ed, and how they can be
shared across the platform.

Since there are multiple courses, labs, and materials in the labsystem, the users need
a way to �nd the one they are looking for. This can be done by having a catalog of
available contents. A search or �lter functionality can be made to look for a speci�c
content.

One issue when hosting user created materials are quality control. The uploaded mate-

38 Chapter 4. Design

rials needs to be rated or reviewed to be appropriate or up to standards. A curation or
review system is required to ensure quality of the uploaded materials. The exchange
platform needs a feedback system from its user to rate its contents. Therefore in the
exchange platform, students can rate and review the materials they did. This is discussed
further in Section 4.1.6.

Course materials can change over time, from student feedback, updated information, or
corrections. Therefore the system also keep tracks of changes of these materials. This
can be done by using a versioning system. This is discussed further in Section 4.1.3.

Another important point to consider is integration with the current labsystem. The
labsystem already provides some features (e.g. creating lab exercises) and is used by
the Chair of Network Architectures and Services for the iLab courses, this is discussed
further in Section 4.2.

In this chapter, more details of these requirements is discussed. Based on those dis-
cussion, possible implementation of the exchange platform is described, and how to
integrate it with the labsystem.

4.1 Requirements

In Chapter 2 the following requirements for the exchange platform are de�ned:

R01 Upload materials for sharing (Section 4.1.1)

R02 Role based access control for sharing materials (Section 4.1.2):

R03 Materials versioning (Section 4.1.3)

R04 List available materials (Section 4.1.4)

R05 Search shared materials (Section 4.1.5)

R06 Display processed feedback (Section 4.1.7)

R07 Gather and analyze feedback about the materials (Section 4.1.6)

R08 Analyze and visualize usage data of the labs (Section 4.1.8)

In this section the requirements are discussed in more detail. Implementations from re-
lated platforms is discussed and compared with. Possible solutions can then be identi�ed,
compared, and chosen based on our requirements.

4.1. Requirements 39

4.1.1 Uploading and Sharing Materials

In this section, we describe the requirements related to content management in more
detail, look at other implementation from other platforms, and choose which to imple-
ment.

In the exchange platform, a lab is de�ned as a set of exercises in a course. A lab
can have course materials given in the labsystem via text, images, or videos. A lab
works as an assessment or exercise module. A lab can have multiple questions asked in
multiple forms, for example, multiple choice questions, text, or number. A lab module
or exercise can be imported into multiple courses. The lab module can be uploaded into
the community website, making it available to the community.

Some platform packaged the shared material in a format, while other does not. Moodle
export courses to an xml or archived �le. ComSoc does not export the lab exercise into
a format, but instead only o�ers its instructions and required materials, accessed from
the lab website.

Exporting or downloading materials can be done similar to Moodle course export, by
exporting them to an xml or archive �le, which the current labsystem already has
implemented. Another way is to let users download individual �les of a lab, without
downloading or exporting the whole lab. This also lets the versioning system keeps
track of each individual �les instead of the whole lab.

An upload feature is required to share the material to the platform. Moodle can import
the exported courses or exercises to quickly use those in the Moodle server. Creating a
new lab or course can be done via web forms: post a text instructions and attach the
necessary �les (like Facebook), or by also uploading the instructions (like ComSoc).

As previously described, the exchange platform is made to support multiple courses
and universities. Each course can be made based on existing courses. Users should be
able to choose a course and create a new course based on it. Di�erent universities can
also host di�erent versions of courses.

Based on these points, and for other reasons from other requirements described below,
we decide to use Git to host the �les for the exchange platform. Lab materials can be
uploaded to and downloaded from the Git repository as projects. Uploading contents
can be implemented as commits or creating new project, and downloading as a simple
download. Some Git implementation also provides downloading repository or folder as
a zip �le. Di�erent versions of courses for universities can be done by Git branches. Labs
can be downloaded as a template to create a new lab by forking the repository. Some
Git implementations also provides APIs to construct a frontend website that access Git
repository, separating presentation of the exchange platform from the Git repository.

Using Git repository to host lab �les has disadvantages, such as limited �le size [50].

40 Chapter 4. Design

Some Git providers also provides Git Large File Systems (Git LFS) to store large �les
by using reference pointers within small text �les to point to large �les stored on the
GitLab servers [51]. However, this should not be a problem considering the expected
�le size of the labs.

4.1.2 Role Based Access Control

In this section, we discuss requirements for Role Based Access Control, and how they
can be implemented.

The purpose of having a role based access control in the exchange platform is to de�ne
permissions of roles and assign users to speci�ed roles. An RBAC is needed to prevent
user from misusing the system by using features he or she is not meant to access, such
as distributing solutions. Another advantage of having RBAC is to have a preset roles
that have clearly de�ned permissions (for example, Youtube’s moderator moderates
comment section, but not video content) that are easy to understand and manage.

Looking at other platforms discussed so far, they have a preset of roles that have a
speci�c permissions. For example, YouTube moderator only has access to the comment
section. Moodle extends this further by allowing the creation of custom roles.

From Section 4.1.1, the exchange platform also hosts multiple courses from di�erent
universities. Therefore, the role access for each labs should be de�nable for each uni-
versity. The labs feedback access should also be limited by participants of those courses,
so each students should have di�erent access or roles according to the courses. The site
should also be accessible without logging in, with restricted access otherwise. Contents
such as solutions should not be accessible without having su�cient permissions.

First we need to de�ne the functions or features the roles can have access to:

• Administration: creating new user, assigning roles to user, creating new universi-
ties, courses and labs. For site administration.

• Uploading content: adding or modifying materials of labs or courses. For adding
content to the platform.

• Downloading content: accessing materials of labs or courses.

• Feedback: for giving feedback to labs.

With these points in mind, we decided to use Git for RBAC of the exchange platform. Git
can assign permissions to users in a project or repository. An advantage to this approach
is projects containing restricted contents (such as solutions) can be restricted to certain
users. Access to these contents should require authentication. Another advantage to
using Git is that every project’s access can be speci�ed: it can be made public, or private,

4.1. Requirements 41

or to assigned members. This allows a more �ne tuned access to labs hosted in the
repository.

4.1.3 Version Control

As discussed previously, a version control system is needed to keep track of the changes
in the exchange platform. In this section, we discuss the functionality needed from the
versioning system and how it can be implemented.

The most basic functionality needed from the versioning system is keeping track of
changes of contents in the exchange platform. For example, updates on course materials
in a course for di�erent semesters. The system should note the �les being changed and
its changes.

From Section 4.1.2, it should also keep track of changes between courses of di�erent
universities. For example, a university creates a new course (a same course) based on
materials from another university. The system should note the di�erences between the
two courses.

Another functionality needed is accessing previous versions of a course. For example,
accessing an old version from a lab last year. The system should list available version
from a version history and provides download or branching tool from that version.

Based on these descriptions, we decide to version the exchange platform with Git. The
Git repository stores the questions, and keep track of the changes to the lab questions.
Git branches can be used to separate the master lab �les with questions from other
universities or courses.

An advantage of using Git to version the labs is that changes to the lab contents can be
tracked by Git. Each �le in the Git project can be tracked separately, and each version
from di�erent commits can be accessed anytime. A disadvantage of using Git is since it
stores every version of every �le, Git requires every repository to have as much free
space on a hard drive as consumed space at all times [50].

4.1.4 Listing Materials

In this section we describe the requirements for listing materials, how other platform
implements these requirements, and choose which to implement.

The lab catalog shows courses available in the labsystem, and lab questions available
in the lab pool. The catalog shows the ratings of each lab module, along with a brief
description for potential student. Shown information should be helpful for potential
students to help decide taking up the lab, such as, total time to complete, review, pre-
requisite lab, etc. Teachers can also use the course catalog to search for interesting labs

42 Chapter 4. Design

when they want to make a similar course.The labs should be sorted by their rating, with
the best rated �rst, then by their date, most recent �rst.

MOOCs like Coursera hosts many courses from universities, and display these courses
grouped by universities. The exchange platform hosts courses from multiple universities,
but displaying these grouping is not necessary, since we would like to promote the
courses regardless of their university a�liation.

Some MOOCs also provides grouping by specialization and areas. Since this enables
users to quickly �nd courses of similar topic, this should be implemented in the exchange
platform.

Open Educational Resources Commons (OER Commons) provides a list of publicly
available resources. In addition to courses and labs, individual materials are also listed,
such as lecture notes, charts, or textbook. This allows users to �nd materials from
courses or labs or areas without downloading the whole courses or labs. While this is
a great concept, this is not implemented in the exchange platform, since we focus on
courses and labs, instead of their individual contents.

Based on previous discussions and analysis of other platforms, here are the points we
choose to implement.

• List of lab modules. Shows all lab modules available.

• List of solutions. Only accessible if authenticated and have access to the solutions.

A search and sort feature are provided to help users search through the catalog. Similar
to MOOCs, a brief description of each labs is shown in the catalog to provide a quick
overview.

4.1.5 Searching Content

In this section, we discuss the requirements for searching content, how other platforms
implements these requirements, and which one to implement.

To help users �nd content they want, a search feature is often given. This can be a
simple search by keyword, grouping content, tags, etc. The exchange platform should
provide search features to help �nding a speci�c content and a more broad search to
�nd related content.

A speci�c search is typically done with keyword search. A keyword search is done by
typing a keyword into a text�eld. An autocomplete is sometimes available to provide
suggestions. An example of this is YouTube’s search feature. A keyword search can
immediately give the result the user wanted given the user knows what he or she is
looking for.

4.1. Requirements 43

A more broad searching or browsing feature is done in di�erent ways, such as grouping,
recommendations, tags, etc. Many platforms group their list of content, such as MOOCs
(by universities or areas) and YouTube (by genre). Combined with recommendations,
this can help users �nd related content. However, recommendations are outside the
scope of this thesis, and is not implemented.

Based on these requirements, the methods we choose for the exchange platform’s search
function are simple keyword search and tag �lter.

4.1.6 Gathering and Analyzing Feedback

From what we have discussed in the previous chapters, there are many di�erent ways of
implementing a feedback gathering system. Here are the feedback methods we choose
not to implement and why:

• Peer-review. We choose not to implement peer-review procedure like ComSoc
since we want to focus more on gathering student feedback.

• Interviews. Interviewing each student requires a lot of time and a survey can be
used instead.

• Email survey. We want to get the feedback as quickly as possible and implement
survey in the labsystem instead of using emails.

Here are the feedback methods we choose to implement and the reasoning behind it:

• Survey (Section 4.1.6.1). Survey or questionnaires is brief, and can get both
qualitative and quantitative data before and after taking the course, and after
�nishing a lab module.

• Rating (Section 4.1.6.2). Ratings can be given to a shared material to give a quick
score at a glance.

• Review (Section 4.1.6.3). Review is also implemented alongside ratings to give
comments or opinions about the material to other students.

4.1.6.1 Survey

The exchange platform conducts survey for the same reason MOOCs does, to gather
feedback about course content. MOOCs gather course survey multiple times, after
enrolling and after �nishing the course. The former is to gather data about the enrolled
audience, and the latter is to gather course feedback.The exchange platform could do a
similar method, but since we only want to gather lab feedback, only lab feedback survey
is conducted. The survey should be done as soon as the student �nish the academic
activity [52].

44 Chapter 4. Design

Here are possible questions to ask for survey after �nishing a lab course. The questions
should be brief, and the whole survey should be �nished in less than �ve minutes. The
question should rate the lab module and general satisfaction of the module.

How would you rate the module/lab? [1-5 star]

Would you recommend this lab to other students? [yes/no]

Are the contents of this lab interesting to you? [very boring - very interest-
ing]

What do you think about the time to �nish this lab? [too little - too much]

What do you think about the di�culty of this lab? [too easy - too hard]

How much time did you spend on this lab? [n hours]

Do you have any speci�c things you would like to cover ?

4.1.6.2 Rating

A �ve star rating is used to rate contents in the exchange platform. Other rating system
considered include: ten star rating, like/dislike (YouTube, Facebook) or recommended/not-
recommended (Steam). A like or dislike rating lacks a moderate option, and does not
express how much the student like or dislike the rated item. A ten star rating is not
used since a �ve star scale is simpler and easier to understand.

The �ve star rating system is chosen for its simplicity and its ease to be analyzed and
produce an aggregated or average score. It can also be used to express indi�erence to
the course (with score three). However, a study �nds that in online reviews, moderate
ratings are considered less useful than extreme ratings [53], which should be considered.

4.1.6.3 Review

A written review lets the student give qualitative comments on the content. It can show
a more personal experience from fellow students that are otherwise only expressed in
numerical ratings.

The review can be implemented like YouTube’s comment system: simple comment to
course or lab content. However, a comment box might encourage a shorter comments
without much points. This is why review is implemented alongside ratings, to let
students rate the lab, and write a review to justify their scoring.

Later the reviews can be displayed on the course landing page to provide useful infor-
mation for potential students.

4.1. Requirements 45

The whole feedback process and all three elements can be given in one survey. The
question How would you rate the lab? [1-5 star] is a question that asks student to give
their rating about the lab. A more general question like Give a short review of your lab
experience today can be used to prompt a written review from the student. The rest of
the questions are for survey or questionnaire purposes.

Here is the feedback form we choose to implement. Considering that we would like to
integrate this with the labsystem and the ilab courses, an additional question is added
for the pre-lab.

• How di�cult was the lab for you? (1) Easy - (5) Di�cult

• How interesting was the lab for you? (1) Boring - (5) Interesting

• How long was the lab for you? (1) Short - (5) Long

• How much time did you spend on the pre-lab?

• How much time did you spend on the lab?

• How would you rate this lab? (1 - 5 star)

• Do you have any particular feedback? Give us your comments

The student access to the survey needs to be de�ned. Only one submission is permitted
to each student, for each lab exercise they participate. This requires a veri�cation
process before submitting a survey. There are a couple of ways to implement this.

• Require authentication before proceeding. This method requires an account made
for each student, and the authentication might turn some people o�.

• Token system. A token is generated for each student in each lab. The token is
given to the student so that they can give lab survey. The tokens can also be
associated with a lab, making it only usable for that lab.

For its advantages, we decide to use the token system for submitting feedback. Since
the token is also associated with a lab, this also makes sure that the token cannot be
used for another lab the student has not done.

The next point is the analysis of these survey result. Since question 1, 2, 3, and 6 are
similar, they can be analyzed with the same method. Question 7 is not analyzed since
we would like to read the comments as is.

For all the questions, descriptive statistics is used to describe and summarize quantitative
information [54]. The statistics displays information such as mean, median, frequency,
and standard deviation.

Once the feedback is collected, it must be stored before being processed. Similarly, the
tokens for the feedback also needs to be stored and associated with their respective lab

46 Chapter 4. Design

exercise. In the previous section, we decided to use Git to store the lab contents. The
feedback result can also be stored in Git: it can be stored in a �le and versioned using
Git. An advantage of this approach is that no additional storage scheme like a database
is required. However, as the result piles, this �le gets larger and requires more overhead
on Git. For example, adding a new survey result on a thousand line �le requires Git to
scan the whole �le, which creates a performance issue as the �le gets larger. Git API
also requires the whole �le to be sent, instead of just the text modi�cation, which takes
a lot of bandwidth.

For this reason, a database is made to store the survey result and tokens. Performance-
wise it is more e�cient than using Git, for both adding and retrieving entries. It also
has an advantage of modifying the query to get a speci�c survey result. This database
is described further in Section 4.5.

4.1.7 Displaying Feedback

In this section we discuss requirements for displaying feedback in the exchange platform
website, how other platform implements it, and choose which to implement.

The processed feedback is displayed for each courses and labs. The feedback gathered
by the exchange platform is discussed in the Section 4.1.6.

A simple score or star rating can be displayed in the catalog. Open Educational Resources
Commons displayed star rating of the item in their content catalog. On the other hand,
some platform like Moodle and YouTube does not show the item ratings or score in
the content catalog. We choose to show the ratings in the catalog to give users a quick
summary of the item’s quality.

A more detailed rating can be shown when viewing the item, for example in a video page
in YouTube or material page in OER Commons. These individual pages should show
the summary from processed feedbacks. From Section 4.1.6, we use surveys, ratings,
and reviews to gather feedback. Some metric from learning analysis can also be shown.

The metric gathered from surveys are meant to help improve the content, and not
relevant to interested users viewing the content. The average score from ratings should
be shown prominently as the primary score of the item. Reviews should also be shown,
with the latest shown �rst.

From the previous section, we described survey as the primary method of gathering
feedback in the exchange platform. Since the survey questions ask di�erent questions
with di�erent types of inputs, these questions are analyzed and visualized di�erently.

The �rst three questions of the survey asks opinion regarding the lab, presented in a
likert scale. There are several methods of visualizing data from a likert scale, such as a
simple table, bar chart, diverging stacked bar chart, grouped bar chart, or divided bar

4.1. Requirements 47

chart [55]. There are also many variants for diverging stacked bar charts [56]. A divided
bar chart is also replaceable with a pie chart.

Figure 4.1: Diverging stacked bar chart

However, a diverging stacked bar charts is meant for questions with the same answer
scale. In our survey, the questions, while being expressed in a likert scale, is presented
with di�erent scales. Question one is easy-di�cult, question two is boring-interesting,
and question three is short-long. Unlike in a diverging stacked bar charts where the all
the questions have the same answer options. Therefore a diverging stacked bar chart is
not be used.

Another alternative is to use a divided bar chart to visualize the proportion of each
answer compared to all submissions. A pie chart can also be used in this case. However,
divided bar charts can be grouped together into a single chart, which saves space and
provides an overview to all questions. For this reason, a combined divided bar chart is
used as the primary visualization of the �rst three questions.

The combined divided bar chart however, does not show detailed information like mean,
median, or standard deviation in the chart. A bar chart can be used to show these
detailed information as annotations in the chart. Since we want the main chart to

48 Chapter 4. Design

Figure 4.2: Annotated bar chart

give an overview of the answers, while also providing a more detailed visualization, a
separate chart for each of these questions is also provided. This is made in a bar chart,
and it visualize a breakdown of the answers of the respective question with means,
median, and standard deviation annotated in the chart.

This visualization cannot be used on the next two questions however. These questions
ask the amount of time spent on pre-lab and lab, with a number (of hours) as an answer.
Here a histogram is used instead, where x-axis shows the number of hours submitted,
and y-axis shows the frequency of that answer.

Figure 4.3: Histogram bar chart

Question number six asks a rating for the lab, given in scale one to �ve. Similar to
the �rst three questions, this question can be visualized in the same manner. The
visualization of this question is combined with the visualization of the �rst three chart.

4.1. Requirements 49

Figure 4.4: Horizontal stacked bar chart

Finally, the last question asks for a comment or review of the lab. One method of
visualizing comment is tag cloud or word cloud. A word cloud displays a list of words,
keywords, or tags in a cluster. A tag’s popularity is expressed by its font size, and its
other properties like color can also be manipulated to further make it stand out [57]. It
can be used to identify trends and patterns in the comments.

Figure 4.5: Tag cloud

However, tag cloud only emphasizes frequency of words, not necessarily its importance.
The context of the word is also lost in the visualization. A research introduces a visual-
ization method that preserves its context by using a two-level visualization with a trend
chart [58]. Since the comments are not analyzed, they are displayed as they are without
analysis. Further works in the portal may include this visualization.

50 Chapter 4. Design

4.1.8 Gathering, Analyzing, and Visualizing Usage Data

The exchange platform shows analytics of the labs. The usage and analytics is gathered
by the labsystem as the students use the system to do lab exercises. The gathering
method and metrics gathered by the labsystem is outside the scope of this thesis. It is
assumed that analysis data of each labs are already provided. These are then analyzed
and visualized in the portal.

At the time of writing, the labsystem gathers usage data when students perform lab
exercises. An example of this is tracking grades of each questions to show the pitfall
questions where most students lose credits. Another example is tracking lab completion
time during exercises.

These analysis are gathered and performed in the labsystem. The results of these analysis
can be stored and shown in the portal website. Here are example lab module metrics
for analysis, their required inputs, possible applications, and example visualization.

• Completion time: amount of time to �nish the lab module.
Required input: start and end of the lab exercise. Lab completion can also be
tracked across multiple login sessions, in that case, also requires login and logout
dates.
Purpose: used to show average amount of time required to �nish the lab exercise.
Can be helpful when a student wishes to choose a lab exercise based on time
constraint.
Visualization: a bar chart showing the list of lab exercises, and their completion
time

• Question completion time: amount of time to complete each question in a lab
exercise.
Required input: start and end of the lab question. Page visit duration and
amount of page views can also be used to estimate time on a question, assuming
one question shown in a page.
Purpose: used to show average amount of time required to answer a question in
a lab. Can be used to show time consuming questions
Visualization: a bar chart showing the list of lab questions in a lab, and their
completion time

• Average grade: average grade of students taking the lab exercise.
Required input: scores of every participant. Can be �ltered by di�erent criterias,
such as di�erent academic term, di�erent lab version, or di�erent faculty or
university.
Purpose: track problematic questions, i.e. where most students loses points,
shows average score of participants. Later, this can be shown along the lab, in the
lab list.

4.2. Labsystem Work�ow and Integration 51

Visualization: a bar chart showing average grades of each lab questions

We have now described the requirements of the exchange platform. Before possible
implementation is considered, the currently running labsystem is examined in the next
section.

4.2 Labsystem Work�ow and Integration

The labsystem is an e-learning software used to deliver the iLab courses. The system
running iLab can be accessed in https://ilab.net.in.tum.de. The source code of the
labsystem is available in https://github.com/m-o-p/labsystem

The labsystem o�ers many features, and we only discuss those needed for our require-
ments. Let us see how the labsystem compares to our requirements.

• Uploading materials: labs can be exported and imported using import/export tool.

• Role based access control: students can only perform lab exercises and give
feedback.

• Versioning: there is no versioning.

• Content list: list of labs on the sidebar. Labs from previous semesters are also
accessible. Also o�ers a calendar/schedule feature.

• Content search: not available

• Display feedback: not available or shown to students

• Gather feedback: after each lab, via text comment.

• Analytics: tracks multiple metrics on each lab, such as completion time, credits
earned in each questions, average grade.

Since the lab system o�ers these features already, let us consider how to expand it to
ful�ll our requirements.

• Uploading materials: already su�cient.

• Role based access control: already su�cient.

• Versioning: labs are stored in a database. Since we decided to use Git for version-
ing, this requires either storing multiple entry in the database (and indicate their
Git commit hash), or storing only the commit hashes in the database and access
them from Git.

• Content list: already su�cient.

• Content search: a search feature needed.

https://ilab.net.in.tum.de
https://github.com/m-o-p/labsystem

52 Chapter 4. Design

• Display feedback: not available or shown to students

• Gather feedback: survey and ratings feature needed.

• Analytics: displaying gathered analytics feature needed.

Expanding the labsystem to o�er our requirements is possible, but it has some prob-
lems. First, if each labsystem installation o�ers its own lab catalog, there won’t be any
centralized place to share and obtain labs from. For example, there are three labsystem
installation in three universities, each with their own lab list. If one is looking for labs,
one has to look in three di�erent sites. Processing feedback from the same lab is also
di�cult since it is distributed across multiple sites.

Using the labsystem as the exchange portal is possible but poses many problems. Instead,
a separate portal site should be considered. A great example here is Moodle. The
Moodle ecosystem has similarities to our labsystem and requirements. Each university
or institution can run their own Moodle instances. Each of these instances might o�er
the same course. This course can be shared to Moodle’s content portal: Moodle.net. By
sharing courses from Moodle.net, these multiple instances of Moodle can host the same
course. This also centralizes the content list, with only one place to visit. Feedback can
be given and processed in a centralized site.

Figure 4.6: Sharing content between Moodle instances with Moodle.net

With this inspiration, a separate website can be made to serve as the primary content
portal between labsystem instances. The portal shows available labs created by the
labsystem. Lab feedback is also submitted to, processed, and displayed in the portal.
It is for these reasons that we decide to make a separate exchange portal instead of
expanding the labsystem.

Regardless, the labsystem still has features that we want and should not be disregarded
completely. Instead, an integration with the portal should be considered. Since the
labsystem has lab creation, import, and export tool, the labs should be created in, and
exported to the portal from the labsystem. After a lab is exported to the portal, it is

4.3. Git 53

versioned there using Git (discussed further in Section 4.3). The lab catalog should be
o�ered in the portal, since it hosts the labs from the labsystem instances. Feedback
should be submitted to and processed in the portal to avoid processing from multiple
instances. In the same manner, result of the feedback should be displayed in the portal.
Analytics are gathered in the labsystem as the students perform lab exercises, and result
of the analytics submitted to the portal where it can be displayed and visualized. More
details on the integration can be found in the next chapter.

Figure 4.7: Sharing labs with exchange platform

Now that we have de�ned the work�ow, and the role of the labsystem in it, we discuss
the portal. As discussed in Section 4.1, Git is used to store the labs and version them. In
order to show the contents stored in Git, a frontend website is needed. So the portal has
two elements, the Git backend, and website frontend. We �rst discuss the Git backend.

4.3 Git

As mentioned in the requirements sections, the exchange platform uses Git to store
lab contents and solutions. In this section, we discuss the features of Git that we use
to construct the exchange platform, how to structure Git to store lab contents, de�ne
permissions, and how it communicates with the frontend.

4.3.1 Git Hosting

Before we can discuss about how to use features o�ered from Git, we must �rst decide
which Git service we choose. There are many Git hosting services available. They
provide code hosting and versioning using Git, and o�ers their own services on top of
it to support development, such as issue tracking, merge request rules, or wiki pages.
Here we compare two Git services, GitHub and GitLab.

54 Chapter 4. Design

GitHub is an online code hosting service based on Git, that provides an open develop-
ment environment and visibility of projects through noti�cation and a simple interface.
This transparency promotes increased awareness and reduced communication [59]. In
recent years, GitHub has become the largest code host in the world, with more than 5M
developers collaborating across 10M repositories [60].

GitLab is a web-based Git repository manager with wiki and issue tracking features
developed by GitLab Inc. According to a survey [61], GitLab has two-thirds market
share in the self-hosted Git market [62]. It is one of the 30 highest velocity open source
projects, according to Cloud Native Computing Foundation [63]. GitLab comes in
Community Edition (CE) and Enterprise Edition (EE).

While the two are both web-based Git repositories, they o�er di�erent features. Here
are the key di�erences between the two relevant for this thesis:

• Permissions. In GitLab, permissions are set according to people’s role, rather than
GitHub’s read or write to repository. This allows GitLab to set a more �exible
permissions, such as separating access from issue tracker with the code base.

• Self Hosting. GitLab CE and EE are available for self-hosting via many plat-
form (Omnibus, Docker, Google Cloud Launcher). GitLab CE is available for
self-hosting for free, while GitLab EE and GitHub Enterprise Edition is not [64].

Another point to consider is that the Git repository o�ered by LRZ for TUM is hosted
in GitLab. For future implementation and integration with the LRZ GitLab repository,
it is an obvious advantage to use GitLab at this point, to prevent or avoid compatibility
issues that might rise.

GitLab and GitHub o�ers very similar features for source code hosting, but due to the
ease of self-hosting and later compatibility with LRZ repository, we choose to use GitLab
to serve as our Git repository.

GitLab is o�ered in two edition: Community (CE) and Enterprise (EE) Edition. GitLab
CE is available for free, and GitLab EE cost scales based on the number of users. Projects
hosted on Gitlab.com comes with GitLab Enterprise Edition.

GitLab CE o�ers:

• Unlimited amount of private or public repositories

• Built-in Continuous Integration / Continuous Delivery for free

• Issue tracker and comments

• Activity stream of the repository

• User roles based on permission [65]

• Protected branch. Set rules and permissions speci�c to a branch.

4.3. Git 55

GitLab EE o�ers all the features of GitLab CE and more:

• LDAP and Kerberos integration. Allows authentication using LDAP or Kerberos.

• Merge approvals. Merge requests can be set to require a set number of approvals
before accepted. Members of the project can be assigned as reviewers and merge
approvals can be set to require approvals from these members.

• Contribution analytics. O�ers an overview for activity of issues, merge requests
and push events.

GitLab EE features are o�ered for enterprise needs, to support big organizations or
projects. Considering the scale of the project, and the features o�ered, we choose to use
GitLab Community Edition. If the need arise, the GitLab installation can be upgraded
to Enterprise Edition, in addition to applying an Enterprise license.

4.3.2 Git as Backend

After deciding to use Gitlab, the next question is: how do we use Git to save the lab
�les for the backend? As mentioned earlier in this chapter, we construct the exchange
platform with Git as a backend, and a portal website that accesses that backend.

GitLab provides a RESTful API [29] to access its Git repository without using the
command line interface or its web interface. This allows the creation of applications
that access the Git repository and its functionalities and features. The API lets the
GitLab repository to act as a backend server for the exchange platform website. More
is discussed in Section 4.4.

Now that we can access GitLab contents without using its web interface or command
line interface, we can discuss how to arrange and store the lab contents. Git arranges
its contents into projects. There are a few possibilities to store labs in Git.

The �rst is to place the labs into one project. This one project contains all the labs
and solutions which can be arranged into hierarchical folders. For example we create a
project exchange_platform with the following structure:

[p r o j e c t] e x c h a n g e _ p l a t f o r m
− [f o l d e r] Labs

− [f o l d e r] Lab_1
− [f o l d e r] Lab_2

− [f o l d e r] S o l u t i o n s
− [f o l d e r] L a b _ 1 _ s o l u t i o n s
− [f o l d e r] L a b _ 2 _ s o l u t i o n s

Another alternative would be placing the solutions in the same project of the labs:

56 Chapter 4. Design

[p r o j e c t] e x c h a n g e _ p l a t f o r m
− [f o l d e r] Labs

− [f o l d e r] Lab_1 (with s o l u t i o n s)
− [f o l d e r] Lab_2 (with s o l u t i o n s)

These con�gurations can be bene�cial if there is no access restriction required. However,
if one wants to restrict access to certain labs, it is not possible to do so here. In Git,
once given access to the project, the whole directory can be accessed, i.e. restricting
access to subfolders is not possible. This exposes the solutions to anybody with read
access, which could give students access to the solutions when doing said exercises.
Another disadvantage is version history in the project is combined from all the labs.
Creating branches or forking the project also duplicates the entire project, which can
be undesirable if one only wants to create a di�erent version of one lab.

The second possibility is to arrange them to branches. A branch is created for each
of the labs, and its solutions. The master branch contains a merged content from all
branches. The structure would look like:

[branch : mas te r] e x c h a n g e _ p l a t f o r m
− [f o l d e r] Lab_1
− [f o l d e r] Lab_2
− [f o l d e r] L a b _ 1 _ s o l u t i o n s
− [f o l d e r] L a b _ 2 _ s o l u t i o n s

[branch : l a b _ 1] e x c h a n g e _ p l a t f o r m
− [f o l d e r] Lab_1

[branch : l a b _ 1 _ s o l u t i o n s] e x c h a n g e _ p l a t f o r m
− [f o l d e r] L a b _ 1 _ s o l u t i o n s

[branch : l a b _ 2] e x c h a n g e _ p l a t f o r m
− [f o l d e r] Lab_2 (with s o l u t i o n s)

Using GitLab push rules, the branches can be protected so that only a speci�ed role or
users can push to that branch. This way, it can restrict write access to these branches.
Read access however, is still unrestricted, since a user with a read access to the repository
can still access the content of all the �les in all branches. Versioning is better than the
previous method, since GitLab can �lter commit history by branch. However, this
method also creates a lot of branches to manage.

The third possibility is to arrange each labs and solutions into their own projects. A
project is created for each labs with/without the solutions. The structure would look
like:

4.3. Git 57

[p r o j e c t] Lab_1
[p r o j e c t] L a b _ 1 _ s o l u t i o n s

Since access is given to each project, the access of each user or each project can be
speci�ed individually with this schema. The advantage of using this schema is that
access to each project can be speci�ed individually. Creating a di�erent version of a lab
is also easier this way, by either creating a branch, or forking the project. However, if a
lab depends on a content from another lab (meaning from a di�erent project), one has
to take care to maintain both project. For example, in the previous point two labs can
be committed with one commit, while in this schema, two commits (to two di�erent
projects) are needed. The solutions can be placed either in the same project, or created
as a separate project. When placed in the same project, it is easier to maintain, since
changes to the lab and solutions only need one commit. However, this would mean
that giving access to the project also gives access to the solutions, where if they are in
a separate project, access can be granted separately. Therefore, we decided to use the
third schema, where each labs and solutions are arranged into separate projects.

GitLab also o�ers a namespace system called Groups [66]. It group projects into di-
rectories and give users access to several projects at once. By default, when a project
is created it is assigned a namespace from the GitLab user that creates it. When it is
assigned to a group, it also assign a namespace to that project. For example, when
project portal is assigned to group frontend, it is named frontend/portal. GitLab
9.0 introduces Subgroups, allowing up to 20 levels of nested groups to help organize
larger projects, and manage its users.

A user can be given access to a project by giving the user access to the project, or its
group. When given access to a parent group, the user also has access to its subgroups.
Groups can be used to organize types of lab contents, such as labs and solutions. The
labs projects can be grouped into labs and solutions to solutions. Users can then
be given access to the groups, and have permission to access its projects. This has an
advantage of simplifying access restriction to the parent groups, e.g. student accounts
can only access labs but not solutions. Access for the child projects or subgroups are
inherited from the parent group.

We decided to use the groups to group labs and solutions project, in order to separate
access control. Separate groups are made, a labs group containing the lab �les, and
solutions group containing the solutions of the labs.

Now that we discuss possible arrangements and access control of the lab projects, we
discuss what access the users have in their assigned projects.

GitLab users have di�erent abilities depending on the access level they have in a group
or project [65]. If a user is both in a group’s project and the project itself, the highest
permission level is used. When giving project or group access to a user, its role in that

58 Chapter 4. Design

project or group is also de�ned there. GitLab o�ers �ve non customizable roles:

• Guest. Can create issue in the issue board, leave comments, and see wiki pages.

• Reporter. In addition to having Guest’s permissions: can pull source code, down-
load code, manage issue tracker, and see commit status.

• Developer. In addition to having Reporter’s permissions: can list and create merge
requests, create and push to (non-protected) branches, create and maintain wiki
pages.

• Master. In addition to having Developer’s permissions: can invite new members,
push to and enable protected branches, change project settings.

• Owner. In addition to having Master’s permissions: can switch project’s visibility,
transfer project to another namespace, and remove project.

Accounts requiring access to the labs should be given at least Reporter permission, to
access the �les in the project. Developer access can be given to let the user modify the
content of the project.

4.4 Frontend Portal

Now that we have discussed the possible backend structure with Git, we discuss the
frontend portal. The portal is a website that acts as a portal to access the GitLab
repository. This allows user to access content stored in the Git repository without using
GitLab web-interface, and customize features based on our needs.

The portal shows the contents in the GitLab repository. Detailed description of the
items is shown when needed. Feedback should be available for each lab modules. Users
should be able to give feedback on each labs. Instructions to access the lab �les should
be made available in the portal. When available, solutions should be indicated and made
accessible for authenticated accounts with su�cient permissions.

Based on these descriptions, the portal requires two minimum pages:

• Catalog: lists labs and solutions

• Description: description page for individual lab. Shows metadata and comments
of that lab.

Before any information can be shown in the portal, it needs to communicate with the
GitLab backend. There are a couple of methods to send data between the portal and the
backend.

The content catalog can be implemented with a �le containing a list of items (labs or
solutions) and their information. This �le should be updated after every content update

4.4. Frontend Portal 59

or new content in the repository to keep it up to date. This �le can be either stored
in the web server that hosts the frontend portal, or saved in a Git project. In case of latter,

GET /projects/:id/repository/files/:file_path

can be used to get the �le. An example �le (in JSON) would look like:

[
{

" name " : " i L a b 1 " ,
" d e s c r i p t i o n " : " i L a b 1 l a b s " ,
" awesome " : t r u e

} ,
{

" name " : " example l a b " ,
" d e s c r i p t i o n " : " example l a b " ,
" awesome " : f a l s e

}
]

Another method is to use GitLab APIs. If the lab projects are arranged in projects-per-
labs structure as mentioned in the last section, the endpoint

GET /projects

can be used to get the list of projects, hence the list of labs. In case all labs in one
project structure is used,

GET /projects/:id/repository/tree

can be used instead to get the item list of the project. An example of GET /projects is
as follows (not all attributes are shown):

[
{
" i d " : 1 ,
" d e s c r i p t i o n " : "my p r o j e c t " ,
" d e f a u l t _ b r a n c h " : " mas ter " ,
" v i s i b i l i t y " : " p r i v a t e " ,
" s s h _ u r l _ t o _ r e p o " : " gi t@example . com : myuser / mypro j ec t . g i t " ,
" h t t p _ u r l _ t o _ r e p o " : " h t t p : / / example . com / myuser / mypro jec t . g i t " ,
" web_ur l " : " h t t p : / / example . com / myuser / mypro j ec t " ,
" owner " : {

60 Chapter 4. Design

" i d " : 3 ,
" name " : " myuser " ,
" c r e a t e d _ a t " : "2013−09−30 T13 : 4 6 : 0 2 Z "

} ,
" name " : "My P r o j e c t " ,
" name_with_namespace " : " myuser / mypro j ec t " ,
" pa th " : " mypro j ec t "
. . .
}

]

The advantage of the former is that it can include customized attributes. Since GitLab
APIs return a �xed set of attributes, another method is needed for this. However, this
�le needs to be maintained and updated accordingly. Also, the path or the of the �le
needs to be known beforehand if GitLab API is to be used to fetch it. The advantage of
the latter is that it requires no additional maintenance, since the GitLab APIs return list
of projects (or �les depending on the schema chosen). However, after authentication,
the API also return the lists of all projects available for that user, including his private
projects that is not relevant to the portal. The portal has to handle this accordingly.

A solution to this is to use Groups API instead of Projects API. Using

GET /groups

to get list of groups the user has access for, we can then use

GET /groups/:id/projects

to get the projects associated with that group. Now, this still has the previous problem
of also returning list of groups unrelated to the portal, but this can be solved by creating
a whitelist of groups parsed by the frontend. For example, the frontend can ignore every
other group except labs or solutions.

With that in mind, the portal uses the method just described to retrieve the catalog. It
doesn’t require an additional catalog �le to be maintained. The text �le solution also
doesn’t handle authentication well, since it either uses the same �le, or having to handle
di�erent �le for di�erent users.

The portal also need to show information of those labs. First lets look at labsystem lab
�le structure. The generated lab has the following structure:

[f o l d e r] c s s
[f o l d e r] d a t a

− [f o l d e r] w i t h S o l u t i o n s

4.4. Frontend Portal 61

− readme . t x t
[f o l d e r] f i l e s
[f o l d e r] images
prev iew . html

Similar to lab catalog, lab description for each lab can be stored and parsed from a text
�le. In this case, either the readme.txt from the data folder or readme.md from the
project readme can be used. Alternatively, GitLab API provides a description of a given
project via

GET /projects/:id

The advantage of using a �le to store the lab �le is similar to the catalog argument.
The labsystem also already uses this schema. However, the path of the �le containing
the metadata needs to be known beforehand. Using GitLab API removes the need for
maintaining this �le, and in case all given attributes are su�cient (no custom attributes
needed) no further implementations are needed.

The portal uses GitLab API to retrieve the metadata of the lab. The reason is that using a
�le adds to the required maintenance, and the path or id of the �le needs to be speci�ed
to the portal, further adding complexity. Using description attribute of the GitLab GET

/project/:id is su�cient for our need.

The portal can provide a compressed format of the project as a way to export the lab via

GET /projects/:id/repository/archive

Alternatively, the branch name can be speci�ed to get that branch instead of the master
branch. In case the one-project-contains-all-labs schema is used, this downloads all the
labs. There is no API available to selectively download a speci�c folder (speci�c �le is
available), so this download is a disadvantage for that schema.

However, since we want to encourage using Git to access the lab, the frontend portal
does not provide a download feature. Instead, a code instruction to clone the repository
is provided.

GitLab comes with several feedback tools that we can use. Issues can be created for
each project, and comments can be posted on those issues. A star rating is also provided
after authentication to bookmark a project. The number of stars of a project is shown
on its project page.

GitLab issues provides a platform for group members to communicate, share, and discuss
proposals before and while implementing them [67]. Comments are available in GitLab,
but it is implemented on issues, not projects. Users cannot comment directly on projects,
but rather on issues on that project. Therefore an issue is be created for each project

62 Chapter 4. Design

to serve as a comment hub. The frontend then shows the comments of the issue in the
detailed page of that lab content. A simple feedback form can also be provided to submit
comments. However, this method requires authentication.

The portal uses the Issue and Notes API to post comments to the lab projects. Using

GET /projects/:id/issues

the list of issues of that project is obtained, and then comments of that issue can be
obtained via

GET /projects/:id/issues/:iid/notes

New comments can be posted using

POST /projects/:id/issues/:iid/notes

An advantage of using this method is that the comments are also visible in GitLab web
interface, in case it is needed. However, GET /projects/:id/issues also returns other
issues of that project. This can be handled by specifying a �xed name for each issues
that hosted the comments. For example, for lab iLab1, a post�x _comments is used to
create an issue named iLab1_comments to host its comments.

Considering that an GitLab issue might be used in order to track an issue or a problem
for the lab project, creating this comments issue in the same lab project might add an
unnecessary item to the issue list. For this reason, a separate project group is made to
speci�cally host the comments. Each project uploaded to the Git will have a their own
feedback project in this feedback group. This adds up to three projects created in the
GitLab repository for each lab uploaded (labs, solutions, feedback).

There are a couple of issues in the system we describe so far. First, some features requires
authentication. Posting comments on issues requires one, since the comments are posted
as the authenticated account. Second, GitLab enforces a API limit for unauthenticated
request. Requests without authentication are limited to 1000 requests an hour (GitHub
also limits unauthenticated requests, and is lower compared to GitLab’s request limit).
And �nally, GitLab’s access controls are also better controlled for authenticated users.

These problems can be solved by creating a speci�c GitLab account for the frontend
portal. The frontend GitLab account can be assigned to the projects that we would like
to make publicly available in the portal. For example, the frontend can be assigned as
member of lab projects, while making the projects’ access members only. This way, the
frontend can list the project in the portal, while still restricting access to the repository.

Another advantage of this method is that access exposed to the portal can be easily
maintained by granting their access to the frontend portal. For example, we would like

4.5. Database 63

to show Lab 1 in the portal, but not Lab 2. In this case we can set access to these projects
as members only, then include frontend as a member of Lab 1 but not Lab 2.

GitLab also has limitations. As mentioned in Section 4.1.6, storing survey result and
token can create performance problems, since Git is not e�ective in handling large �les.
Instead of storing these in Git, a database is used instead. This database is described in
the next section.

4.5 Database

In Section 4.3, we describe how to use GitLab to store the lab exercises. Due to Git’s
limitation in handling large �les, survey results and tokens are not stored in Git, but in
a separate database.

Since only the survey results and tokens are stored in the database, we keep the database
as simple as possible. The lab information related to the survey is not stored in the
database. One database is required, and two tables are made: one for survey results and
one for survey tokens.

The survey result table only needs to store the answers. Since all the lab survey uses
the same question, the survey question of the survey result does not need to be stored.
The answers are saved in separate columns in the table. To associate the survey data
with the lab exercise, the GitLab project id of the lab exercise is also stored. Since the
lab exercises are versioned, the version of the lab is saved as well. The branch name
and commit id of the lab exercise are used for this purpose. Additionally, the tokens are
given timestamps to indicate their expiration date. This expiration date is also saved in
the database.

The survey token table stores the token for submitting lab survey. The token is randomly
generated, and assigned each to one student, for one lab exercise. Therefore the GitLab
project id of the lab exercise is stored to associate the token with that lab exercise, so
that the token can only be used for that lab. The version of the lab, however, does not
need to be stored, since the token is valid regardless of the branch or version of the
lab exercise. In order to clear unused token, each token is given expiration date. In
the portal, the token is rejected once it passed its expiration date. This table should be
periodically checked to clear expired tokens.

The database is the last component of the exchange platform. To summarize, the
exchange platforms consists of the labsystem, a GitLab repository, a database, and
a portal website. The labsystem imports and exports labs to the GitLab repository. The
GitLab repository stores labs and solutions. The database stores survey token and data.
The portal shows the list of labs and acts as a feedback hub for the labs.

64 Chapter 4. Design

Figure 4.8: Exchange Platform work�ow

So far, we have described all the requirements, how to create an exchange ecosystem
based on labs created by the labsystem, how to use GitLab to store labs, and how to
construct a website to serve as a content portal. In the next chapter, we describe the
implementation of the exchange platform.

65

Chapter 5

Implementation

In the previous chapter, we discussed the elements of the exchange platform, described
the possible implementations, considered their advantages and disadvantages, and
picked a solution. Here we describe the implementation of the exchange platform.

5.1 Work�ow

Here the intended work�ow of the exchange platform is described, from creating the lab
exercise, creating its Git project, to portal access. The current implementation is made
with labsystem integration in mind. Due to time and scope constraints, some labsystem
integration are only discussed but not fully implemented.

The labsystem’s role in the system is to create and perform lab exercises. After a lab
exercise is created in the labsystem, a script is run to push the lab contents to the Git
repository. Three projects are created: lab project containing lab �les, solutions project
containing its solutions, and feedback project to store feedback result. Once it is stored
in the Git repository, it is accessible from the frontend portal. There, user can use the
portal website to view the lab information and give feedback.

The script to create and update lab from the labsystem and GitLab is discussed separately
in Section 5.5. The portal features are discussed in Section 5.3. Before we discuss them,
we describe the GitLab implementation as discussed in previous chapter.

5.2 GitLab

As mentioned in Section 4.3, we use GitLab to serve as the backend of the exchange
platform. In this section we describe the GitLab implementation discussed in Chapter 4.

66 Chapter 5. Implementation

5.2.1 Setup and Installation

For our implementation, a virtual machine is created to serve as deliverable artifact.
The specs of the virtual machine are:

OS : Debian GNU/ Linux 9 . 0 (s t r e t c h) x86_64
K e r n e l : 4 .9 .0 −3 − amd64
CPU : I n t e l Xeon E5−1650 v3 (2) @ 3 . 5 GHz
Memory : 2356MB / 4004MB

GitLab can be installed via multiple installation methods [68]. On the virtual machine,
the installation is done with Omnibus package installation via the following commands.

I n s t a l l and c o n f i g u r e t h e n e c e s s a r y d e p e n d e n c i e s
sudo apt−g e t i n s t a l l c u r l openssh− s e r v e r ca− c e r t i f i c a t e s

p o s t f i x

#Add t h e G i tLab package s e r v e r and i n s t a l l t h e package
c u r l −sS h t t p s : / / packages . g i t l a b . com / i n s t a l l / r e p o s i t o r i e s /

g i t l a b / g i t l a b −ce / s c r i p t . deb . sh | sudo bash
sudo apt−g e t i n s t a l l g i t l a b −ce

C on f i g u r e and s t a r t G i tLab
sudo g i t l a b − c t l r e c o n f i g u r e

GitLab con�gurations can be found in /etc/gitlab/gitlab.rb [69]. In our setup, we
use the default settings. The GitLab installation can be reached (via web interface) in
ilabxp2.net.in.tum.de:9080.

For our implementation, we use the latest (at the time of writing) version of GitLab, 9.3.
We use GitLab Community Edition since their available features are su�cient for our
requirements. GitLab Enterprise Edition could be considered for its LDAP integration
features.

5.2.2 Structure

In this setup, we assume that a GitLab account is available for each institution or
department, which is responsible for administration purposes. The rest of the writing
also assumes that this account creates, edits, and administers the Git projects.

Groups are made to separate labs, solutions, and feedback. In this implementation, they
are named ilab_labs for labs, ilab_solutions for solutions, and ilab_feedback for feedback.
GitLab version 9.3 o�ers subgroups to further divide them. For our purposes, this is not
necessary. The access control of these groups are set to members only. Later, accounts

ilabxp2.net.in.tum.de:9080

5.2. GitLab 67

requesting access to the labs or its solutions should be granted access to the groups,
rather than the individual projects.

Figure 5.1: Labs, solutions, and feedback as projects, hosted in GitLab

Each labs and their solutions are created as separate Git projects. Each of these projects
contains all the �les of that lab. Lab �les created by the labsystem creates a subfolder
containing the solutions. This must be handled separately, and is discussed further in
Section 5.5. The main project containing the lab is named labname, while the project
containing the solutions is named labname_solutions

A feedback project is also created to store feedback, named labname_feedback. The
primary storage of survey data is a database, and this Git project is not updated each
time a survey is submitted. The database implementation is described in Section 5.4.
The main purpose of this approach is to store comments and backup of survey data.

GitLab issue is created to host the lab’s comments. Each comments from the frontend por-
tal are posted as comments to this project’s issue. The issue is named labname_comments

in project labname_feedback.

While the survey data is stored in a separate database, an additional backup is stored in
the Git repository as well. This is made in case the survey data needs to be analyzed
separately outside the exchange platform. The survey data in the Git project is stored
in json format, in a �le named survey.json.

Listing 5.1: Survey data stored in JSON format

[
{

" i d " : 2 0 1 ,
" s1 " : 4 ,

68 Chapter 5. Implementation

" s2 " : 4 ,
" s3 " : 3 ,
" s4 " : 8 ,
" s5 " : 1 9 ,
" r a t i n g " : 5 ,
" comment " : " I am a comment " ,
" sha " : " 3 4 c c a 7 3 a " ,
" branch " : " mas ter " ,
" p r o j e c t _ i d " : 1 ,
" d a t e " : "2017−01−01 0 0 : 0 0 : 0 0 "

} ,
]

This json �le is only updated when the export function is used from the frontend
portal. To save space, this json is also mini�ed (not shown above). In the current
implementation, only the master branch is used. In case of storing multiple data (for
example from multiple institution), it is not su�cient. However, this is not a concern
for our current implementation and this is left for future improvements.

As mentioned in Chapter 4, the metadata of the lab can be stored in multiple ways. Here
the description that we want to show in the portal is saved in the project’s description.
Additionally, label(s) can be added to the project to serve as �lter tags in the frontend.
These description and labels can be added in either the import script or from GitLab
web interface.

A GitLab account is made for the portal, in order to specify what the portal has access
to. This account is given access to the ilab_labs and ilab_feedback group. The level of
access is Guest, since it does not need access to repository �les. In case of integration
with already existing repository, this account is still needed, and need to be given access
to the lab groups with at least Guest permissions.

For the sake of demonstration, a teacher account is also made. This account has access
to all groups mentioned above, therefore having access to the solutions. The level of
access is Developer, since it requires access to the project �les. In case of integration
with already existing repository, anyone requiring access to the solutions should be
given at least Developer permissions.

5.3 Frontend Portal

Now that we have our GitLab setup and installed, let’s look at the portal.

5.3. Frontend Portal 69

Figure 5.2: Lab project in GitLab

5.3.1 Setup and Installation

The frontend is written in HTML, CSS, and Javascript, using AngularJS framework. The
frontend source code is available in

https://gitlab.com/JulianElda/Exchange_Platform_Frontend

The frontend can be installed by pulling the code from the repository and serving the
directory with a web server. Apache2 is used as webserver to host the frontend. The
portal is accessible via ilabxp2.net.in.tum.de. In the virtual machine, the frontend
can be enabled/disabled by a2ensite frontend.conf.

Listing 5.2: Frontend site con�guration �le for apache2

< V i r t u a l H o s t ∗ : 8 0 >
DocumentRoot / var /www/ E x c h a n g e _ P l a t fo r m _ F r o n t e n d
ServerName i l a b x p 2 . ne t . i n . tum . de

< D i r e c t o r y / >

https://gitlab.com/JulianElda/Exchange_Platform_Frontend
ilabxp2.net.in.tum.de

70 Chapter 5. Implementation

Allow from a l l
A l lowOver r ide A l l
Opt ions Fo l l owSyml inks
R e q u i r e a l l g r a n t e d

</ D i r e c t o r y >
</ V i r t u a l H o s t >

Frontend con�gurations are speci�ed in config.json.

Listing 5.3: Frontend con�guration �le

{
" g i t _ h o s t " : " h t t p : / / i l a b x p 2 . ne t . i n . tum . de : 9 0 8 0 " ,
" g i t _ a p i " : " a p i / v4 " ,
" db_hos t " : " h t t p : / / i l a b x p 2 . ne t . i n . tum . de " ,
" p o r t a l _ t o k e n " : " 3 kQUqRuDGfmrr51JqYj8 " ,
" l a b _ p r e v i e w _ p a t h _ p r e f i x " : " prev iew " ,
" l a b s _ g r o u p _ i d " : 3 ,
" s o l u t i o n s _ g r o u p _ i d " : 4 ,
" f e e d b a c k _ g r o u p _ i d " : 6

}

The con�guration attributes are (some options are omitted):

• git_host: hostname or address of the GitLab repository, with port number as
needed

• git_api: GitLab api version.

• db_host: hostname or address of the survey database.

• portal_token: private token of the frontend GitLab account.

• lab_preview_path_prefix: directory containing the labs in the server. Needed
for lab preview.

• labs_group_id: GitLab group id of ilab_labs group containing lab �les.

• solutions_group_id: GitLab group id of ilab_solutions group containing lab
solutions.

• feedback_group_id: GitLab group id of ilab_feedback group containing lab feed-
back.

5.3. Frontend Portal 71

5.3.2 Backend Communication

As previously discussed, the portal communicates with GitLab repository via GitLab
API. In this section we detail how the implementation is done.

GitLab API endpoints can be accessed by appending api/api_version to GitLab host-
name. In this implementation, api version 4 is used. For example, getting the list of
users can be accessed via GET /users. The full url of the (GET) request is

ilabxp2.net.in.tum.de:9080/api/v4/users

For brevity, the short notation (method and url) i.e. GET /users is used for writing,
without the full hostname and api version.

So far, the projects and groups described are private. Accessing a private resource
without authentication results in 401 Unauthorized. Since a frontend portal account is
created, the requests made by the portal website is made such that the user is authen-
ticated with the portal account. This is done by using Private Token. Private tokens
provide full access to the GitLab API. Anyone with access to them can interact with
GitLab as if they were authenticated as that token owner. The token can be found in
the GitLab account page account page (/profile/account) after logging in to GitLab
web interface. This token can be appended into the request url as a parameter

ilabxp2.net.in.tum.de:9080/api/v4/users?private_token=123abcdef

or passed as header in the request. For example, a request made with curl:

curl -header "PRIVATE-TOKEN: 123abcdef" "ilabxp2.net.in.tum.de:9080/api/v4/users"

The private token of the frontend portal is then added to either the url or the header of
the request. In this implementation it is appended to the headers to keep the request url
short. After attaching the private token, all requests are made as if the frontend portal
is logged in to GitLab.

Figure 5.3: Private Token authentication with GitLab API

In addition, an authentication feature is also implemented in the portal to login with

72 Chapter 5. Implementation

GitLab account (from the same GitLab repository) using GitLab API. All the requests on
the frontend then uses this token instead of portal token. This way the portal can serve
a di�erent content for authenticated user, and provide access of the user’s projects that
the user has access to. After authentication, an account with access to the solutions can
see them in the lab description. The activity feed is also updated with the user’s activity
feed. Lab commenting is also made available.

The main purpose of authentication is to access solutions. After authenticating with
users with solutions access, they are accessible in the lab’s description page. The other
feature a�ected by logging in is activity feed, where it uses the authenticated user’s
activity feed instead of the frontend portal’s.

5.3.3 Portal Components

The portal has three main components: catalog, description, and survey. The cata-
log contains the list of labs, description contains the lab’s description, preview, and
comments, while the survey component contains survey submission, token, and result.

5.3.4 Portal Catalog

The catalog serves as the main page of the website. Its primary function is to show the
list of labs in the repository.

Figure 5.4: Exchange Platform Frontend Lab Catalog

The list of labs can be seen in the middle of the page. The attributes shown are lab title
and description. A search bar and tag �lter is provided on the left side to search for
lab. Below the search bar is an activity feed of the authenticated user (default frontend
portal).

5.3. Frontend Portal 73

As mentioned in Section 4.4, using GET /projects returns all projects, including projects
unrelated to the frontend. The projects we want to show here is under the group
ilab_labs. This is why the id of the lab group is stored in the con�guration �le, so that
we can use GET /groups/:group_id/projects, to get the list of lab projects.

Searching through the catalog is done in two ways: using the search bar and/or tag �lter.
The search bar �lters through the lab’s name and description as the user type in it. The
tag �lter �lters through the lab project’s tag_list. The tags of the project is speci�ed
in the creation of the project, and can later be modi�ed via GitLab web interface in the
project settings. The two can be used in combination, e.g. search keyword iLab under
the tag network.

The activity feed is inspired by activity feed in GitLab. GitLab web interface provides
a list of latest activities in the projects the user has access to. Unfortunately, the func-
tionality o�ered by GitLab API only returns the activities of the authenticated user
(instead of activities from all users), and only on one speci�c project, meaning creating
an activity list of all projects requires looping through the project list and queries their
activity list, which is the current implementation in the portal. Regardless, the API
returns activities such as commits, merge requests, issues, comments, or administra-
tion changes. The frontend only parses new comments, new commit events, and new
projects. The current implementation still leaves a lot for improvements, and might
change on the development of GitLab’s APIs.

5.3.5 Lab Description

Clicking on the title of the lab from the catalog opens up the lab’s description. Shown
in the page is the lab title, description, preview, and comments. The lab information is
obtained via GET /projects/:project_id endpoint. The lab’s title and description is
taken from the project’s name and description respectively.

A feature unique to the portal is lab preview. This is due to the HTML format of labs
generated by the labsystem. An iframe is created to show the generated HTML in the
page. However, this implementation requires the frontend server to have a copy of each
lab for the iframe to work. In the current implementation, the labs are contained in
a folder named preview in the frontend website. This is con�gurable in the frontend
con�guration �le (config.json).

Git repository address of that project is shown as well, in HTTP(S) and SSH. A direct
download-project as archive feature was previously considered but not implemented.
This is to encourage use of Git to contribute to the project, since any interested user has
to request access to the repository and interact with the system, compared to directly
getting the zipped archive where the user does not have to.

If the user is authenticated, and has access to the solutions group (iLab_solutions), a

74 Chapter 5. Implementation

Figure 5.5: Lab page showing lab description, preview, and Git access

button to access the solution is shown in this page as well. Clicking on the button brings
the user to a similar page to the lab description page. The solutions page shows the title
(always named labname_solutions), description, and Git repository access.

So far, the frontend portal shows lab information from GitLab, and information �ows
one way from GitLab to the portal (except authentication). Another major component

5.3. Frontend Portal 75

of the portal is feedback. In the next section we discuss the implementation of feedback
components in the portal.

5.3.6 Lab Feedback

Feedback is another major component on the portal. As discussed in Chapter 4, we
choose to implement reviews, surveys, and ratings. In the portal, these are implemented
in two major features: comments and surveys.

As discussed in Section 4.1.6.1, review and rating are combined in one survey. Here are
the survey question we implement:

• 1. How di�cult was the lab for you? (1) Easy - (5) Di�cult

• 2. How interesting was the lab for you? (1) Boring - (5) Interesting

• 3. How long was the lab for you? (1) Short - (5) Long

• 4. How much time did you spend on the pre-lab?

• 5. How much time did you spend on the lab?

• 6. How would you rate this lab?

• 7. Do you have any particular feedback? Give us your comments

The survey work�ow begins from the labsystem: the student is given a token (one for
each lab) required to submit a survey. The student is given a url to the the survey page
of the lab in the frontend portal, with the token as a GET query parameter (so that the
student doesn’t have to type it in the portal). Additional parameters required are the
(GitLab) project id of the lab, name of the Git branch of the lab, and the commit id of
the lab project. The student then �lls in the survey form and submit it.

Once submitted, the survey data is saved in a database. The database is discussed later in
Section 5.4. In addition to being saved in the database, the survey data can be exported
to the GitLab repository. This feature is accessed from the lab information page in
the portal. Survey export and token generation requires authentication. In the survey
export page, the user can select to export the survey data to that lab’s feedback project
under iLab_feedback group. A speci�c branch and/or commit id of the project (of the
survey data) can be selected, by default this feature exports all survey data of the lab.
Once initiated, the survey data is saved in a json format in labname_feedback project. A
download from browser feature is also provided to download the json �le directly from
the browser. This stored json is not meant to serve as the primary storage of the survey
data, but as secondary backup data. The survey result page obtains the data from the
database, not from backup �le in GitLab.

76 Chapter 5. Implementation

Figure 5.6: Exporting survey data

The result of the survey can be accessed without authentication from the lab information
page. In the survey result page, the survey data is analyzed and visualized. On the top,
Git branch and commit id of the lab can be selected to �lter survey result of that branch.
The resulting visualization is grouped into three parts in the frontend.

The �rst part shows a horizontal stacked bar chart, combined for questions number
1, 2, 3, and 6. The bar chart shows a proportional ratio of each answers compared to
the total number of submitted answers. A more detailed view is provided below: a
select-dropdown is provided to choose a question, and a separate chart is shown. For
this chart, another select-dropdown is provided to view it in either a pie or a bar chart.
Along with the chart, the average, median, minimum and maximum value of the data is
shown.

The second part shows a histogram each for both question number 4 and 5. The x-axis
shows the submitted answers (n amount of hours), while the y-axis shows the number of
occurrence of the x-axis value. Similar to the �rst part, the average, median, minimum,
maximum, and standard deviation of the data is also shown.

The third part shows the submitted answers from question number 7. Since this question
is not mandatory, i.e. the survey can be submitted without answering this question,
empty values are not shown. To prevent excessive scrolling, this list is paginated,
showing 10 answers each.

The survey is the main method of gathering feedback for the lab. There is one more

5.3. Frontend Portal 77

Figure 5.7: Survey result visualization for question 1, 2, 3, and 6

feedback method implemented in the portal: comments. The comment feature is not
combined with the survey mentioned before, but uses GitLab comments. During re-
search and development of this thesis, this GitLab comment was the initial feedback
gathering feature, before it was replaced by survey. However, it still has some advan-
tages and we decided to keep the feature.

This comment feature uses GitLab issue and comment feature. An issue is created for
each lab project to contain the comments. The issue is named labname_comments and
labeled as comments to separate it from other issues (in case the GitLab issue feature
is needed for issue tracking). This issue is not created under the lab project in the lab
group (iLab_labs), but in the feedback project in the feedback group (iLab_feedback).

The list of the project issue is obtained via GET /projects/:project_id/issues. Af-
ter �ltering it to get the issue assigned for comments, the id of the issue is used to get

78 Chapter 5. Implementation

Figure 5.8: Detailed chart for question number 1, 2, 3, and 6, and histogram for question number
4 and 5

the comments of the issue via GET /projects/:project_id/issues/:issue_id/notes.
The results are then parsed and shown in the bottom of the page, sorted latest �rst. A
text�eld is provided to create a comment on the issue via

POST /projects/:project_id/issues/:issue_id/notes

Authentication is required to comment on labs to prevent spam. Once submitted on the
portal, a comment on the issue in GitLab is made, posted by the authenticated user.

This commenting feature has some disadvantages. It requires authentication, so a
student wanting to comment needs to login, and needs a GitLab credentials to be created,
compared to the survey that uses generated token. And since it is a GitLab comment,

5.4. Database 79

Figure 5.9: Survey result visualization for question number 7

it is stored in GitLab, so any export action requires accessing both the database and
GitLab. Regardless, it still have some good use, such as used by teachers to post news or
information about the lab. For example, a teacher can comment about the lab questions
being corrected, and anyone visiting the page can see the comment.

To summarize, the portal shows a catalog list, activity feed, lab description, preview,
survey, and comments. The information shown on the catalog are all obtained via
GitLab APIs. Further improvements is discussed in Chapter 7. In the next section, we
describe the database implementation for storing survey data.

5.4 Database

In the exchange platform, the database is used for two purposes: storing survey token,
and survey data. In this section we describe the structure of the database and its tables.

80 Chapter 5. Implementation

Figure 5.10: Lab page showing survey result and comments

5.4.1 Setup and Installation

For our implementation, MySQL version 15.1 Distrib 10.1.23-MariaDB is used. Ad-
ditionally, phpmyadmin is also installed to access MySQL with a web interface. The two
can be installed via di�erent methods; for this implementation we installed them from
Debian’s package manager. The database is installed in the virtual machine with the
following commands:

I n s t a l l and c o n f i g u r e MySQL and phpmyadmin
sudo a p t i n s t a l l mariadb− s e r v e r phpmyadmin

The database can be accessed (using phpmyadmin) in ilabxp2.net.in.tum.de/phpmyadmin.
Once the database is installed, we can populate them with the survey data and token.
But before that, we need to describe the database and table structure.

5.4.2 Structure

The exchange platform needs one database to store its data. We create a database named
exchange_platform for this purpose. A speci�c user for this database is also created,
named ilabxp.

There are two tables in the exchange_platform database: survey_token and survey_result.
There are no relationship between the two table.
MariaDB [e x c h a n g e _ p l a t f o r m] > d e s c r i b e s u r v e y _ r e s u l t ;
+−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

ilabxp2.net.in.tum.de/phpmyadmin

5.5. Labsystem integration 81

| F i e l d | Type | N u l l | Key | D e f a u l t | E x t r a |
+−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
i d	i n t (1 1)	NO	PRI	NULL	a u t o _ i n c r e m e n t
s1	i n t (1 1)	NO		NULL	
s2	i n t (1 1)	NO		NULL	
s3	i n t (1 1)	NO		NULL	
s4	i n t (1 1)	NO		NULL	
s5	i n t (1 1)	NO		NULL	
r a t i n g	i n t (1 1)	NO		NULL	
comment	v a r c h a r (1 0 2 4)	YES		NULL	
sha	v a r c h a r (1 1)	NO		NULL	
branch	v a r c h a r (6 4)	NO		NULL	
p r o j e c t _ i d	i n t (1 1)	NO		NULL	
d a t e	d a t e t i m e	YES		CURRENT_TIMESTAMP	on update CURRENT_TIMESTAMP
+−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

The table survey_result is used to store survey result. The answer of survey questions
from Section 5.3.6 are stored here. Questions 1 to 5 from the survey are stored in s1 to
s5, while question 6 is stored as rating, and question 7 as comment. The lab identi�er
is stored as project_id since it refers to its GitLab project id. To keep track of the lab
version of the survey, the branch name and commit id are stored as branch and sha

respectively. Additionally, the id is used as unique identi�er of the entry in the database,
while date is used as a timestamp of when the survey is submitted. All �elds other than
id, comment, and date are mandatory.
MariaDB [e x c h a n g e _ p l a t f o r m] > d e s c r i b e s u r v e y _ t o k e n ;
+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+
| F i e l d | Type | N u l l | Key | D e f a u l t | E x t r a |
+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+
i d	i n t (1 1)	NO	PRI	NULL	a u t o _ i n c r e m e n t
token	v a r c h a r (6 4)	NO		NULL	
e x p i r a t i o n _ d a t e	d a t e t i m e	NO		NULL	
p r o j e c t _ i d	i n t (1 1)	NO		NULL	
+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−+

The table survey_token is used to store survey tokens. The id �eld serves as unique
identi�er of the database row, token stores the survey token, expiration_date is the
expiration date of the token, while project_id stores the lab which the token belongs
to.

A library named PHP-CRUD-API is used to send queries to the database from the portal.
The library can be found in https://github.com/mevdschee/php-crud-api.

Now that we have described the GitLab, frontend portal, and database structure and
implementation, we can close by describing how we integrate the labsystem with the
system we have made so far.

5.5 Labsystem integration

The role of the labsystem in this exchange platform is twofold: creating and updating
lab contents (and solutions) to the GitLab, and providing survey link to the portal.

The survey link is very straightforward: the survey component of the portal is accessed
by a url, with some parameters attached as GET query parameters. This request should

https://github.com/mevdschee/php-crud-api

82 Chapter 5. Implementation

point to the survey module in the portal: /survey. The parameters required are as
follows:

• id: GitLab project id of the lab

• token: survey token

• branch: branch name of the GitLab project of the lab

• sha: commit id of the lab version

All of the parameters are required. The URL can be obtained by logging in to the portal
and accessing the tokens page of the lab. The portal parses the given parameters, and
show a con�rmation before starting the survey. An example of a survey url would be:

i l a b x p 2 . ne t . i n . tum . de / # ! / survey ? i d =12&
token =123 a b c d e f&branch = maste r&sha = a b c d e f

The other role of the labsystem is pushing lab contents to the GitLab repository. This
covers two scenarios: pushing new labs, and pushing updates to existing labs. Both are
done with a shell script provided in the source code (new.sh and update.sh). In the
current implementation, these are not directly integrated in the import/export feature
in the labsystem and must be executed manually from a shell. The variables used by the
script can be changed in config.cfg.

The export script (export.sh) requires two parameters: the project name to be created
in GitLab, and path to the lab folder directory. Here is a breakdown of the script to push
a new lab to the GitLab repository:

• change working directory to the lab folder directory.

• create a new project containing the lab �les under iLab_labs group in GitLab
using GitLab API. The API is called using curl.

• initialize a new Git repository in the working directory using git init.

• set the remote url to the url of the newly created git project. The url is parsed
from curl reply from previous step.

• add the solutions directory to .gitignore.

• add all items to git index using git add -all.

• create an initial commit using git commit -m "initial commit".

• push the �les to GitLab using git push -u origin master.

• create a new project for feedback under iLab_feedback group in GitLab using
GitLab API.

5.5. Labsystem integration 83

Figure 5.11: Export script �ow chart

84 Chapter 5. Implementation

• create a new issue named labname_comments in the feedback project for com-
ments. This is also done using GitLab API.

• change working directory to the lab solutions directory.

• create a new project containing the lab solutions under iLab_solutions group in
GitLab using GitLab API.

• add all items to git index using git add -all.

• create an initial commit using git commit -m "initial commit".

• push the �les to GitLab using git push -u origin master.

The other script, update.sh is used to push the changes in the local copy in the labsystem
installation to the GitLab repository. It requires two parameters: path to the lab folder
directory and the commit message. Here is a breakdown of the update script:

• change working directory to the lab folder directory.

• print the changes in the git repository using git status.

• add all the changes with git add -all.

• commit the changes with git commit -m "commit_message".

• push the changes using git push -u.

• get the latest commit id using git log -n 1.

• change working directory to the lab folder directory.

• change the latest commit id stored in a text �le named latest_commit with the
latest commit id

• print the changes in the git repository using git status.

• add all the changes with git add -all.

• commit the changes with git commit -m "commit_message".

• push the changes using git push -u.

Additionally, an import script, import.sh, is also written to checkout labs from the
GitLab. It requires two parameters: the GitLab project name of the lab, and directory to
import the lab to. Here is a breakdown of the import script:

• change working directory to the speci�ed path

• pull the lab project using git clone

• change working directory to data

• pull the solutions project using git clone

5.5. Labsystem integration 85

Figure 5.12: Update script �ow chart

• renamed the solutions project directory name to withSolutions to keep it com-
patible with labsystem format

The labsystem scripts are the last component of our implementation. We have the labsys-
tem to create and perform lab exercises, the labsystem scripts to import/export/update
labs to the GitLab repository, a GitLab repository to store labs, a database to store survey
token and data, and a frontend portal to show the labs and give lab feedback. In the
next section, an example scenario is described that involves all the components of this
implementation.

86 Chapter 5. Implementation

5.6 Example Scenario

The exchange platform we implement has many components, and to provide an overview
of how the whole system interacts with one another, we described the following sce-
nario. A teacher creates a new lab and wants to use the exchange platform to gather
lab feedback via survey.

Figure 5.13: Sequence diagram of setting up lab for survey

A lab IN001_iLab1 is created from the labsystem, and using the export script (export.sh),
it is pushed to the GitLab repository. Three projects are created in the GitLab repository:

• ilab_labs/IN001_iLab1

• ilab_solutions/IN001_iLab1_solutions

• ilab_feedback/IN001_iLab1_feedback

The teacher heads to the frontend portal and login. The lab is selected from the catalog
in the portal to show its description. The teacher then generate feedback tokens for lab
survey. After specifying the branch and commit, URLs for the lab survey is generated.
Each of this link is given to a student.

The student navigates to the given url and submit lab feedback. The token is deleted,

5.6. Example Scenario 87

and a survey data entry is added to the database. The lab survey result can then be seen
in the frontend portal.

To conclude, we have implemented labsystem integration scripts to export/import labs,
a GitLab repository to store labs and solutions, a database to store tokens and survey
data, and a frontend portal to access and submit feedback for labs. The frontend source
code and the integrations scripts are available in
https://gitlab.com/JulianElda/Exchange_Platform_Frontend. In the next chapter,
we compare the exchange platform with other related works and evaluate its advantages
and disadvantages.

https://gitlab.com/JulianElda/Exchange_Platform_Frontend

89

Chapter 6

Evaluation

In the previous chapters we described, analyzed, and implemented the exchange plat-
form. In this chapter we conclude by assessing the exchange platform and comparing it
with similar platforms.

6.1 Work�ow Comparison

The evaluation is conducted on the following work�ows:

• Giving lab feedback

• Viewing feedback result

• Browsing labs

• Creating and sharing labs

• Importing labs

• Versioning labs

The �rst three work�ows are feedback related use cases, while the others are related
to sharing labs. The �rst three work�ows are compared with MOOC platforms for its
feedback features, and the rest with Moodle and IEEE ComSoc Lab Exchange for their
sharing features.

First we compare the feedback aspects of the exchange platform with MOOC platforms,
due to their many tools provided to give feedback.

In the exchange platform, the lab feedback is given with a comment and a survey. The
comment requires authentication, and the survey requires a survey link for the lab with
attached token. In MOOC providers like Coursera, feedback is given with a comment or
review and a rating. A registration is required, and the student needs to be enrolled in

90 Chapter 6. Evaluation

the course to give feedback. An advantage of the implementation used by the exchange
platform is that the lab comment that requires authentication is not necessary, since
the survey does not require authentication. Tokens can be generated as needed to be
distributed to students. Version of the lab is also attached to the token so that analysis
can be done separately on di�erent version of the labs.

Analyzed and processed feedback in exchange platform can be seen publicly without
authentication. The analyzed feedback is visualized and descriptive statistics is shown.
In MOOC providers like Coursera, the latest comments on the course is shown in the
course page, and its aggregated rating. The ratings are also shown in the course list. An
advantage of the exchange platform is that visualization is available to provide more
understanding of the survey results, where MOOC providers do not share the result of
their survey. However, the current implementation of the exchange platform does not
show the aggregated rating or result of the feedback in the catalog or in the lab page,
requiring additional navigation to access the feedback results.

Browsing labs in the exchange platform is done in the catalog page, where it shows the
list of available labs. Search function via keyword search and tag �lter are provided.
Similarly in MOOC platforms, keyword search and tag �lter are also provided. Addi-
tionally, often the courses are further grouped, such as specializations, universities, or
similar courses. The exchange platform does not o�er this, and further groupings, such
as multiple labs into a course should be considered.

Now we compare the sharing aspect of the exchange platform with Moodle and IEEE
ComSoc Lab Exchange, due to a similar concept of lab sharing.

In order to share a lab in exchange platform, the lab is created from the labsystem, and
exported to GitLab using an export script. In Moodle this is done by using Moodle’s
export tool, while in IEEE ComSoc Lab Exchange it is done by uploading the lab �les
directly. In its current implementation, the exchange platform has a disadvantage where
the script has to be executed manually, and not integrated directly to the labsystem’s
export tool. Moodle also has an advantage of selectively choosing which component of
the course to be exported.

In the exchange platform, Moodle, and IEEE ComSoc Lab Exchange, a portal website is
available to browse shared courses or labs. In all three, the labs needs to be downloaded
and imported to their respective platform separately. It is not implemented in the
exchange platform, but for future labsystem integration, importing labs can be done
directly without browsing the portal, which make the process faster. Additionally, with
Git, di�erent versions of the lab can be checked out. However, similar with exporting
labs, importing lab in exchange platform in the current implementation also requires a
separate script to be executed, which adds additional process.

Versioning is one of exchange platform’s advantages, which Moodle and IEEE ComSoc
Lab Exchange do not provide. Versioning labs o�ers many possibilities: associating

6.2. User Evaluation 91

feedback to versions, comparing di�erent versions of labs, checking out older versions,
and forking labs to create a new lab. Since GitLab is used, features o�ered by GitLab
can be used as well, such as issue tracking, branching, etc.

6.2 User Evaluation

An evaluation test is conducted to evaluate user experience in the exchange platform
work�ow. Two separate evaluation is conducted:

• Survey evaluation. Evaluate the survey work�ow, starting from receiving survey
url, submitting survey, and viewing survey result.

• Labsystem evaluation. Evaluate labsystem integration using the provided integra-
tion scripts.

Participants are given survey urls to multiple lab courses, from which they can submit
survey for those courses. Participants are then asked to submit any data to the survey
module. They are then instructed to view the survey result and analysis page to view
the analyzed survey data. Additionally, participants are instructed to browse around
the website and post comments in the lab pages. Finally, participants are asked to �ll a
user experience form to give their feedback for the whole process.

The evaluation form asks 8 questions; all questions other than the last are answered
in a likert scale from completely disagree to completely agree, question 7 asks a rating,
while the last question is a comment section. The questions are the following:

• The survey process is easy to follow and intuitive

• The user interface of the survey process is intuitive and informative

• My opinions on the subject is represented in the survey questions

• The data visualization is intuitive

• The data visualization helps me understand the data

• The data visualization shows information relevant to my interests

• Rate your experience

• Do you have a particular feedback?

A total of 15 participants �lled in the user evaluation feedback form. The result is listed
in Appendix B. The majority of participant express favorable user experience using
the portal website. However, some remarked about the visualized graphs and how
they are di�cult to understand. These feedbacks are noted and considered as future
enhancements for the portal website.

92 Chapter 6. Evaluation

The other evaluation concerns with the integration with the labsystem. This is not made
available for the participants of the evaluation since this requires the labs generated by
the labsystem.

A supervisor is instructed to run the provided scripts and evaluate the labsystem. A lab
is generated using the labsystem’s export tool. Using the export script, it is uploaded to
the GitLab repository. Then the lab is modi�ed, and using the update script, the changes
are committed to GitLab. Finally, the lab is imported from GitLab to the labsystem using
the import script. The integration scripts run successfully, and labs can be exported,
updated, and imported using the provided scripts.

Additional evaluation by the next semester of iLab students are considered, but is outside
the time scope of this thesis. The same instructions can be given to those students if
this is to be conducted.

93

Chapter 7

Conclusion

In this thesis, a lab exchange platform is constructed by extending the functionalities
of the labsystem. A GitLab repository is used to store labs. The labsystem exports and
imports labs to a GitLab repository. A portal website is created to access labs in the
GitLab, and to submit feedback for the labs. Result of the feedback is analyzed and
available in the portal.

GitLab, while mostly known for software source code versioning, is shown to be capable
of storing labs, solutions, and lab comments. Separate GitLab projects are used to store
labs and their solutions. Forbidding access to these solutions is achieved by associating
the projects in groups, and providing member access to said groups.

The implemented exchange platform ful�lls goals to share labs to a community portal.
Labs created by the labsystem are successfully exported to and imported from the GitLab
repository. Using GitLab API, the portal shows labs stored in the repository. Provided
integration scripts are tested successfully and integration with the running labsystem
can be considered.

The platform also achieves feedback gathering, analysis, and visualization. Survey urls
are distributed to students as primary method of gathering feedback for labs. Survey
result is analyzed, with descriptive statistics and visualization shown to help understand-
ing the data. A small initial test shows favorable opinion on the feedback delivering
process. Visualization for the survey results receives criticism and should be improved.

Section 2.5 listed the questions this thesis aims to answer. A work�ow consisting of the
labsystem , GitLab, and portal website is made as a proof of concept for a lab exchange
platform. Section 7.1 described on expanding the platform to multiple universities or
institution. To ensure quality of the labs, feedback from students are gathered using
survey and comments.

94 Chapter 7. Conclusion

7.1 Future Work

Throughout the development of this thesis, several alternatives and features were con-
sidered, but did not make it into the �nal result. Here are some points to consider to
develop the platform further.

• Directly integrate the labsystem scripts into the labsystem. In the current imple-
mentation, the scripts to push new, update existing labs, and import labs from
the labsystem are run separately. This can be directly integrated to labsystem’s
export functionality. Direct integration with the labsystem would make exporting
and importing labs more convenient.

• Add emoji reactions to comments. Lab comments are implemented using GitLab
comments, and emojis can be added (in GitLab terms, awarded) to each comments.
Each emojis awarded are counted and shown beside their emoji icons. A similar
implementation can be made in the lab comments. This is an additional feature
to rate a comment, where later a high rated comment could be shown more
prominently.

• Periodically remove unused or expired tokens from database. In the current
implementation, expired tokens have to be removed manually: via the frontend
portal, or using mysql queries. A better way would be to add a job on the web
server to periodically run a task to clean these expired tokens.

• Word/tag cloud visualization for analyzing comments. In Chapter 4, we mentioned
tag cloud to analyze comments but decided not to implement it. Regardless, this
feature can be considered when adding more functionality on the survey result
visualization.

• Integrate learning analytics from the labsystem. The labsystem performs some
learning analytics as the students perform lab exercises. The results can be shown
in the lab page in the portal website.

• Test implementation and deployment with multiple institutions. In the current
implementation, there is only one institution or university (TUM) in the system.
However, this proof of concept should work with multiple institution using the
system. An approach to this problem is to use Git branches to store di�erent
versions of the lab for each institutions.

• Forking lab projects from GitLab. GitLab’s fork project feature can be used to
quickly create a new lab from another lab project. This can be useful if one wish
to create a lab based on another.

95

Appendix A

Source Code

The source code of the implementation can be found in https://gitlab.com/JulianElda/

Exchange_Platform_Frontend. The instructions can be found in the wiki page in
https://gitlab.com/JulianElda/Exchange_Platform_Frontend/wikis/home. More
detailed comments and instructions of the implementation can be found in the source
code.

Additionally, the thesis project can be found in https://gitlab.dev.ds2os.org/thesis/

ma_polar. A mirror of the source code is also available in https://gitlab.dev.ds2os.

org/polar/exchange_platform_frontend.

https://gitlab.com/JulianElda/Exchange_Platform_Frontend
https://gitlab.com/JulianElda/Exchange_Platform_Frontend
https://gitlab.com/JulianElda/Exchange_Platform_Frontend/wikis/home
https://gitlab.dev.ds2os.org/thesis/ma_polar
https://gitlab.dev.ds2os.org/thesis/ma_polar
https://gitlab.dev.ds2os.org/polar/exchange_platform_frontend
https://gitlab.dev.ds2os.org/polar/exchange_platform_frontend

97

Appendix B

Survey Evaluation

The survey evaluation’s instruction is available in
https://gitlab.com/JulianElda/Exchange_Platform_Frontend/wikis/evaluation

The instructions for labsystem evaluation is available in https://gitlab.com/JulianElda/

Exchange_Platform_Frontend/wikis/labsystem

The user experience form is available in
https://docs.google.com/forms/d/1vwQO1hfVE8_kzXxsr0vbytrH5MIG1w7xV6hgjg4qQVw

The result of the user experience survey is available in
https://docs.google.com/forms/d/1vwQO1hfVE8_kzXxsr0vbytrH5MIG1w7xV6hgjg4qQVw/

viewanalytics

Figure B.1: Evaluation survey result, part 1

https://gitlab.com/JulianElda/Exchange_Platform_Frontend/wikis/evaluation
https://gitlab.com/JulianElda/Exchange_Platform_Frontend/wikis/labsystem
https://gitlab.com/JulianElda/Exchange_Platform_Frontend/wikis/labsystem
https://docs.google.com/forms/d/1vwQO1hfVE8_kzXxsr0vbytrH5MIG1w7xV6hgjg4qQVw
https://docs.google.com/forms/d/1vwQO1hfVE8_kzXxsr0vbytrH5MIG1w7xV6hgjg4qQVw/viewanalytics
https://docs.google.com/forms/d/1vwQO1hfVE8_kzXxsr0vbytrH5MIG1w7xV6hgjg4qQVw/viewanalytics

98 Appendix B. Survey Evaluation

Figure B.2: Evaluation survey result, part 2

Figure B.3: Evaluation survey result, part 3

99

Figure B.4: Evaluation survey result, part 4

Figure B.5: Evaluation survey result, part 5

100 Appendix B. Survey Evaluation

Figure B.6: Evaluation survey result, part 6

Figure B.7: Evaluation survey result, part 7

101

Bibliography

[1] A. Hargreaves, Teaching in the knowledge society: Education in the age of insecurity.
Teachers College Press, 2003.

[2] M. Alkhattabi, D. Neagu, and A. Cullen, “Assessing information quality of e-
learning systems: a web mining approach,” Computers in Human Behavior, vol. 27,
no. 2, pp. 862–873, 2011.

[3] M. Castells, The Internet galaxy: Re�ections on the Internet, business, and society.
Oxford University Press on Demand, 2002.

[4] S. Downes, “E-learning 2.0.,” Elearn magazine, vol. 2005, no. 10, p. 1, 2005.

[5] Y. E. Kalay, “Virtual learning environments,” Journal of Information Technology in
Construction (ITcon), vol. 9, no. 13, pp. 195–207, 2004.

[6] R. O’Leary and A. Ramsden, “Virtual learning environments,” Learning and Teach-
ing Support Network Generic Centre/ALT Guides, LTSN. Retrieved July, vol. 12,
p. 2005, 2002.

[7] R. C. Clark and R. E. Mayer, E-learning and the science of instruction: Proven guide-
lines for consumers and designers of multimedia learning. John Wiley & Sons, 2016.

[8] Moodle, “Moodle.net,” 2017. [Online, last accessed 12.09.2017; https://moodle.
net].

[9] J. Donovan, C. E. Mader, and J. Shinsky, “Constructive student feedback: Online
vs. traditional course evaluations.,” Journal of Interactive Online Learning, vol. 5,
no. 3, pp. 283–296, 2006.

[10] S. E. Sampson, “Gathering customer feedback via the internet: instruments and
prospects,” Industrial Management & Data Systems, vol. 98, no. 2, pp. 71–82, 1998.

[11] K. B. Wright, “Researching internet-based populations: Advantages and disadvan-
tages of online survey research, online questionnaire authoring software packages,
and web survey services,” Journal of Computer-Mediated Communication, vol. 10,
no. 3, pp. 00–00, 2005.

https://moodle.net
https://moodle.net

102 Bibliography

[12] W. C. Schmidt, “World-wide web survey research: Bene�ts, potential problems,
and solutions,” Behavior Research Methods, vol. 29, no. 2, pp. 274–279, 1997.

[13] M. D. Kaplowitz, T. D. Hadlock, and R. Levine, “A comparison of web and mail
survey response rates,” Public opinion quarterly, vol. 68, no. 1, pp. 94–101, 2004.

[14] N. Kumar and I. Benbasat, “Shopping as experience and website as a social actor:
web interface design and para-social presence,” ICIS 2001 Proceedings, p. 54, 2001.

[15] R. Cheng and J. Vassileva, “Design and evaluation of an adaptive incentive mech-
anism for sustained educational online communities,” User Modeling and User-
Adapted Interaction, vol. 16, no. 3-4, pp. 321–348, 2006.

[16] P. A. Tess, “The role of social media in higher education classes (real and virtual)–a
literature review,” Computers in Human Behavior, vol. 29, no. 5, pp. A60–A68, 2013.

[17] G. Siemens and P. Long, “Penetrating the fog: Analytics in learning and education.,”
EDUCAUSE review, vol. 46, no. 5, p. 30, 2011.

[18] E. Duval, “Attention please!: learning analytics for visualization and recommenda-
tion,” in Proceedings of the 1st International Conference on Learning Analytics and
Knowledge, pp. 9–17, ACM, 2011.

[19] B. Burdeva, “Improving elearning through statistical feedback,” 2017.

[20] K. Ram, “Git can facilitate greater reproducibility and increased transparency in
science,” Source code for biology and medicine, vol. 8, no. 1, p. 7, 2013.

[21] K. Brandl, “Are you ready to “moodle”,” Language Learning & Technology, vol. 9,
no. 2, pp. 16–23, 2005.

[22] Moodle, “Moodle.net: Course approval criteria,” 2017. [Online, last accessed
12.09.2017; https://moodle.net/mod/page/view.php?id=2].

[23] A. Kaushik, Web analytics: An hour a day (W/Cd). John Wiley & Sons, 2007.

[24] S. A. Miller, Piwik Web Analytics Essentials. Packt Publishing Ltd, 2012.

[25] S. Chacon and B. Straub, Pro git. Apress, 2014.

[26] J. Loeliger, “Collaborating with git,” Linux Magazine, June, 2006.

[27] J. M. Hethey, GitLab Repository Management. Packt Publishing Ltd, 2013.

[28] GitHub, “Github api,” 2017. [Online, last accessed 12.09.2017; https://developer.
github.com/v3/].

[29] GitLab, “Gitlab api,” 2017. [Online, last accessed 12.09.2017; https://docs.gitlab.
com/ee/api/].

https://moodle.net/mod/page/view.php?id=2
https://developer.github.com/v3/
https://developer.github.com/v3/
https://docs.gitlab.com/ee/api/
https://docs.gitlab.com/ee/api/

Bibliography 103

[30] R. Rivard, “Measuring the mooc dropout rate,” Inside Higher Ed, vol. 8, p. 2013,
2013.

[31] T. Daradoumis, R. Bassi, F. Xhafa, and S. Caballé, “A review on massive e-learning
(mooc) design, delivery and assessment,” in P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), 2013 Eighth International Conference on, pp. 208–213, IEEE,
2013.

[32] S. Taneja and A. Goel, “Mooc providers and their strategies,” International Journal
of Computer Science and Mobile Computing, vol. 3, no. 5, pp. 222–228, 2014.

[33] Coursera, “Privacy policy,” 2016. [Online, last accessed 12.09.2017; https://www.
coursera.org/about/privacy].

[34] edx, “edx privacy policy,” 2016. [Online, last accessed 12.09.2017; https://www.
edx.org/edx-privacy-policy].

[35] Yale, “Yalecourses,” 2017. [Online, last accessed 12.09.2017; https://www.youtube.
com/channel/UC4EY_qnSeAP1xGsh61eOoJA].

[36] Google, “Privacy policy,” 2016. [Online, last accessed 12.09.2017; https://www.
google.com/intl/en/policies/privacy/].

[37] F. L. Cerdà and N. C. Planas, “Facebook’s potential for collaborative e-learning,”
Revista de Universidad y Sociedad del Conocimiento, vol. 8, no. 2, pp. 197–210, 2011.

[38] Facebook, “Data policy,” 2017. [Online, last accessed 12.09.2017; https://www.
facebook.com/policy.php].

[39] Facebook, “Page roles,” 2017. [Online, last accessed 12.09.2017; https://www.

facebook.com/help/1206330326045914/?helpref=hc_fnav].

[40] Moodle, “Question permissions explained with diagrams - moodledocs,” 2017.
[Online, last accessed 12.09.2017; https://docs.moodle.org/24/en/Question_
permissions_explained_with_diagrams].

[41] Moodle, “Standard roles - moodledocs,” 2017. [Online, last accessed 12.09.2017;
https://docs.moodle.org/32/en/Standard_roles].

[42] Moodle, “Permissions - moodledocs,” 2017. [Online, last accessed 12.09.2017; https:
//docs.moodle.org/32/en/Permissions].

[43] Moodle, “Global search - moodledocs,” 2017. [Online, last accessed 12.09.2017;
https://docs.moodle.org/31/en/Global_search].

[44] Moodle, “Site-wide reports - moodledocs,” 2017. [Online, last accessed 12.09.2017;
https://docs.moodle.org/32/en/Site-wide_reports].

https://www.coursera.org/about/privacy
https://www.coursera.org/about/privacy
https://www.edx.org/edx-privacy-policy
https://www.edx.org/edx-privacy-policy
https://www.youtube.com/channel/UC4EY_qnSeAP1xGsh61eOoJA
https://www.youtube.com/channel/UC4EY_qnSeAP1xGsh61eOoJA
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/privacy/
https://www.facebook.com/policy.php
https://www.facebook.com/policy.php
https://www.facebook.com/help/1206330326045914/?helpref=hc_fnav
https://www.facebook.com/help/1206330326045914/?helpref=hc_fnav
https://docs.moodle.org/24/en/Question_permissions_explained_with_diagrams
https://docs.moodle.org/24/en/Question_permissions_explained_with_diagrams
https://docs.moodle.org/32/en/Standard_roles
https://docs.moodle.org/32/en/Permissions
https://docs.moodle.org/32/en/Permissions
https://docs.moodle.org/31/en/Global_search
https://docs.moodle.org/32/en/Site-wide_reports

104 Bibliography

[45] Moodle, “Moodle plugins directory: overview statistics,” 2017. [Online, last ac-
cessed 12.09.2017; https://moodle.org/plugins/report_overviewstats].

[46] R. Bowley, E. Luther, and D. G. Michelson, “The comsoc hands-on lab exchange,”
IEEE Communications Magazine, 2016.

[47] IEEE, “Hands on lab exchange,” 2017. [Online, last accessed 12.09.2017, last accessed
12.09.2017; http://labs.comsoc.org/].

[48] O. E. Resources, “Oer commons,” 2017. [Online, last accessed 12.09.2017; https:
//www.oercommons.org/about].

[49] O. E. Resources, “Oer commons,” 2017. [Online, last accessed 12.09.2017; https:
//www.oercommons.org/oer].

[50] GitHub, “Working with large �les,” 2017. [Online, last accessed 12.09.2017; https:
//help.github.com/articles/working-with-large-files/].

[51] GitLab, “Announcing git lfs support in gitlab,” 2015. [Online,
last accessed 12.09.2017; https://about.gitlab.com/2015/11/23/

announcing-git-lfs-support-in-gitlab/].

[52] J. T. Richardson, “Instruments for obtaining student feedback: A review of the
literature,” Assessment & Evaluation in Higher Education, vol. 30, no. 4, pp. 387–415,
2005.

[53] N. Kor�atis, E. GarcíA-Bariocanal, and S. Sánchez-Alonso, “Evaluating content
quality and helpfulness of online product reviews: The interplay of review help-
fulness vs. review content,” Electronic Commerce Research and Applications, vol. 11,
no. 3, pp. 205–217, 2012.

[54] “Survey analysis guidelines,” American Association of Community College, vol. 6.

[55] N. B. Robbins, R. M. Heiberger, et al., “Plotting likert and other rating scales,” in
Proceedings of the 2011 Joint Statistical Meeting, pp. 1058–1066, 2011.

[56] R. M. Heiberger, N. B. Robbins, et al., “Design of diverging stacked bar charts for
likert scales and other applications,” Journal of Statistical Software, vol. 57, no. 5,
pp. 1–32, 2014.

[57] S. Lohmann, J. Ziegler, and L. Tetzla�, “Comparison of tag cloud layouts: Task-
related performance and visual exploration,” in IFIP Conference on Human-
Computer Interaction, pp. 392–404, Springer, 2009.

[58] W. Cui, Y. Wu, S. Liu, F. Wei, M. X. Zhou, and H. Qu, “Context preserving dynamic
word cloud visualization,” in Visualization Symposium (Paci�cVis), 2010 IEEE Paci�c,
pp. 121–128, IEEE, 2010.

https://moodle.org/plugins/report_overviewstats
http://labs.comsoc.org/
https://www.oercommons.org/about
https://www.oercommons.org/about
https://www.oercommons.org/oer
https://www.oercommons.org/oer
https://help.github.com/articles/working-with-large-files/
https://help.github.com/articles/working-with-large-files/
https://about.gitlab.com/2015/11/23/announcing-git-lfs-support-in-gitlab/
https://about.gitlab.com/2015/11/23/announcing-git-lfs-support-in-gitlab/

Bibliography 105

[59] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in github: transparency
and collaboration in an open software repository,” in Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work, pp. 1277–1286, ACM, 2012.

[60] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean ghtorrent: Github
data on demand,” in Proceedings of the 11th working conference on mining software
repositories, pp. 384–387, ACM, 2014.

[61] D. Balla, “State of app development in 2016,” 2017. [Online, last accessed 12.09.2017;
http://blog.bitrise.io/2017/01/27/state-of-app-development-in-2016.

html].

[62] GitLab, “What’s next for gitlab ci,” 2017. [Online, last accessed 12.09.2017; https:
//about.gitlab.com/2017/06/29/whats-next-for-gitlab-ci/].

[63] D. Kohn, “The 30 highest velocity open source projects,” 2017. [On-
line, last accessed 12.09.2017; https://www.cncf.io/blog/2017/06/05/

30-highest-velocity-open-source-projects/].

[64] GitLab, “Gitlab eep vs. github enterprise,” 2017. [Online, last accessed 12.09.2017;
https://about.gitlab.com/comparison/gitlab-ee-vs-github-enterprise.

html].

[65] GitLab, “Gitlab user permissions,” 2017. [Online, last accessed 12.09.2017; https:
//docs.gitlab.com/ee/user/permissions].

[66] GitLab, “Gitlab groups,” 2017. [Online, last accessed 12.09.2017; https://docs.
gitlab.com/ce/workflow/groups.html].

[67] GitLab, “Gitlab issues,” 2017. [Online, last accessed 12.09.2017; https://docs.
gitlab.com/ee/user/project/issues/index.html].

[68] GitLab, “Gitlab installation,” 2017. [Online, last accessed 12.09.2017; https://
about.gitlab.com/installation].

[69] GitLab, “Gitlab con�guration options,” 2017. [Online, last accessed 12.09.2017;
https://docs.gitlab.com/omnibus/settings/configuration.html].

http://blog.bitrise.io/2017/01/27/state-of-app-development-in-2016.html
http://blog.bitrise.io/2017/01/27/state-of-app-development-in-2016.html
https://about.gitlab.com/2017/06/29/whats-next-for-gitlab-ci/
https://about.gitlab.com/2017/06/29/whats-next-for-gitlab-ci/
https://www.cncf.io/blog/2017/06/05/30-highest-velocity-open-source-projects/
https://www.cncf.io/blog/2017/06/05/30-highest-velocity-open-source-projects/
https://about.gitlab.com/comparison/gitlab-ee-vs-github-enterprise.html
https://about.gitlab.com/comparison/gitlab-ee-vs-github-enterprise.html
https://docs.gitlab.com/ee/user/permissions
https://docs.gitlab.com/ee/user/permissions
https://docs.gitlab.com/ce/workflow/groups.html
https://docs.gitlab.com/ce/workflow/groups.html
https://docs.gitlab.com/ee/user/project/issues/index.html
https://docs.gitlab.com/ee/user/project/issues/index.html
https://about.gitlab.com/installation
https://about.gitlab.com/installation
https://docs.gitlab.com/omnibus/settings/configuration.html

	Introduction
	Goals of the thesis
	Outline
	Methodology

	Analysis
	e-Learning Workflows
	Course Information
	Course Material
	Content Catalog
	Communication
	Feedback
	Learning Analytics

	iLab
	Exchange Platform
	Existing Frameworks
	Moodle
	Google Analytics
	Piwik
	Git

	Research Problems and Requirements

	Related Works
	MOOC Providers
	YouTube
	Facebook
	Moodle
	IEEE ComSoc Hands-on Lab Exchange
	OER Commons
	Summary

	Design
	Requirements
	Uploading and Sharing Materials
	Role Based Access Control
	Version Control
	Listing Materials
	Searching Content
	Gathering and Analyzing Feedback
	Displaying Feedback
	Gathering, Analyzing, and Visualizing Usage Data

	Labsystem Workflow and Integration
	Git
	Git Hosting
	Git as Backend

	Frontend Portal
	Database

	Implementation
	Workflow
	GitLab
	Setup and Installation
	Structure

	Frontend Portal
	Setup and Installation
	Backend Communication
	Portal Components
	Portal Catalog
	Lab Description
	Lab Feedback

	Database
	Setup and Installation
	Structure

	Labsystem integration
	Example Scenario

	Evaluation
	Workflow Comparison
	User Evaluation

	Conclusion
	Future Work

	Source Code
	Survey Evaluation
	Bibliography

